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Abstract

Background: Sepsis is a life-threatening clinical condition that happens when the
patient’s body has an excessive reaction to an infection, and should be treated in one
hour. Due to the urgency of sepsis, doctors and physicians often do not have enough
time to perform laboratory tests and analyses to help them forecast the consequences
of the sepsis episode. In this context, machine learning can provide a fast
computational prediction of sepsis severity, patient survival, and sequential organ
failure by just analyzing the electronic health records of the patients. Also, machine
learning can be employed to understand which features in the medical records are
more predictive of sepsis severity, of patient survival, and of sequential organ failure in
a fast and non-invasive way.

Dataset andmethods: In this study, we analyzed a dataset of electronic health
records of 364 patients collected between 2014 and 2016. The medical record of each
patient has 29 clinical features, and includes a binary value for survival, a binary value
for septic shock, and a numerical value for the sequential organ failure assessment
(SOFA) score. We disjointly utilized each of these three factors as an independent
target, and employed several machine learning methods to predict it (binary classifiers
for survival and septic shock, and regression analysis for the SOFA score). Afterwards,
we used a data mining approach to identify the most important dataset features in
relation to each of the three targets separately, and compared these results with the
results achieved through a standard biostatistics approach.

Results and conclusions: Our results showed that machine learning can be
employed efficiently to predict septic shock, SOFA score, and survival of patients
diagnoses with sepsis, from their electronic health records data. And regarding clinical
feature ranking, our results showed that Random Forests feature selection identified
several unexpected symptoms and clinical components as relevant for septic shock,
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SOFA score, and survival. These discoveries can help doctors and physicians in
understanding and predicting septic shock. We made the analyzed dataset and our
developed software code publicly available online.

Keywords: Sepsis, Septic shock, Septic severity, Survival, Sequential organ failure
assessment, SOFA, Machine learning, Binary classification, Regression analysis, Feature
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Background
Sepsis is a dangerous clinical condition that happens when the body over-reacts to an
infection, and its mortality is strictly related to sepsis severity. The more severe is the
sepsis, the more risks there are for the patient.
Predicting the severity of a sepsis episode and if a patient will survive it are urgent tasks,

because of the riskiness of this condition. A severe sepsis episode is called septic shock.
Septic shocks require the prompt use of vasopressors, and must be treated immediately
to improve the survival chances of the patient [1].
In addition to sepsis severity and survival prediction, another important task for doctors

and physicians is to anticipate the possible sequential organ failure assessment that the
patient will experience as a consequence of the sepsis episode. To diagnose the level of
organ failure happening in the body, the biomedical community takes advantage of the
sequential organ failure assessment (SOFA) score [1], which is based upon six different
rates (respiratory, cardiovascular, hepatic, coagulation, renal and neurological systems)
[1].
In this context, machine learning and artificial intelligence applied to electronic health

records (EHRs) of patients diagnosed with sepsis can provide cheap, fast, non-invasive
and effective methods that are able to predict the aforementioned targets (septic shock,
survival, and SOFA score), and to detect the most predictive symptoms and risk factors
from the features available in the electronic health records. Scientists, in fact, already took
advantage of machine learning for survival or diagnosis prediction and for clinical feature
ranking several times in the past [2], for example to analyze datasets of patients having
heart failure [3, 4], mesothelioma [5], neuroblastoma [6–8], and breast cancer [9].
Several researchers employed computational intelligence algorithms to medical records

of patients diagnosed with sepsis, too, especially for clinical decision-making purposes.
Gultepe and colleagues [10] applied machine learning to the EHRs of 741 adults

diagnosed with sepsis at the University of California Davis Health System (California,
USA) to predict lactate levels and mortality risk of the patients. Tsoukalas et al. [11]
employed several pattern recognition algorithms to analyze medical record data of 1,492
patients diagnosed with sepsis at the same health centre. Their data-derived antibiotic
administration policies improved the conditions of patients. Taylor and colleagues [12]
analyzed medical records of a cohort of approximately 260 thousand individuals from
three hospitals in the USA. They usedmachine learning to predict in-hospital mortality of
patients diagnosed with sepsis, and to show the superior results of machine learning over
traditional univariate biostatistics techniques. Horng et al. [13] applied computational
intelligence techniques to medical records of 230,936 patient visits containing heteroge-
neous data: free text, vital signs, and demographic information. The dataset was collected
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at the Beth Israel Deaconess Medical Center (BIDMC) of Boston (Massachusetts, USA).
Shimabukuro and colleagues [14] employed machine learning techniques to clinical
records of 142 patients with severe sepsis from University of California San Francisco
Medical Center (California, USA) to predict the in-hospital length of stay and mortal-
ity rate. Burdick et al. [15] used several computational intelligence methods on medical
records of 2,296 patients related to sepsis, that were provided by Cabell Huntington Hos-
pital (Huntington, West Virginia, USA). Their goal was to predict patients’ mortality and
in-hospital length of stay. Calvert and colleagues [16] merged together several datasets
of clinical records of sepsis-related patients to create a large cohort of approximately
500 thousand individuals. Then they used machine learning to forecast how the high-
risk patients are likely to have a sepsis episode. Barton et al. [17], lastly, re-analyzed two
datasets previously exploited [13, 14] to predict sepsis up to 48 hours in advance.
Scientists employed machine learning for the prediction of sepsis in infants in the

neonatal intensive care unit (NICU), as well. In 2014, Mani and colleagues [18] applied
nine machine learning methods to 299 infants admitted to the neonatal intensive care
unit in the Monroe Carell Junior Children’s Hospital at Vanderbilt (Nashville, Tennessee,
USA). Barton et al. [19] took advantage of data mining classifiers to analyze the EHRs of
11,127 neonatal patients collected at the University of California San Francisco Medical
Center (California, USA). More recently, Masino and his team [20] applied computational
intelligence classifiers to the data of infants admitted at the neonatal intensive care unit
of the Children’s Hospital of Philadelphia (Pennsylvania, USA).
To recap, four studies applied machine learning to minimal electronic health records

to diagnose sepsis or predict survival of patients [10, 11, 21, 22], while six other studies
applied them to complete electronic health records for the same goals [12–14, 16, 17, 19].
The study of Burdick and colleagues [15] even reported an observed decreased in the
mortality at the hospital where the computational intelligence methods were applied to
recognize sepsis. Only two articles, additionally, include a feature ranking phase to the
binary classification: Mani et al. [18] identified as most predictive variables hematocrit or
packed cell volume, chorioamnionitis and respiratory rate, while Masino and coauthors
[20] highlighted central venous line, mean arterial pressure, respiratory rate difference,
systolic blood pressure.
Our present study fits in the latter category: we use several machine learning methods

not only to predict survival, SOFA score, and septic shock, but also to detect the most
relevant and predictive variables from the electronic health records. Moreover, we also
perform a feature ranking through traditional biostatistics rates, and make a comparison
between the results obtained with these two different approaches. And, differently from
all the studies mentioned earlier, we do not focus only on predicting survival and diagnos-
ing sepsis, but we also make computational predictions on the SOFA score, that means
predicting how much and how many organs will fail because of the septic episode.
Regarding scientific challenges and competitions, in 2019 PhysioNet [23, 24], an online

platform for physiologic data sharing, launched an online scientific challenge for the
prediction of early sepsis in medical records [25].
On the business side, the San Francisco bay area startup company Dascena Inc. recently

released InSight, a machine learning tool able to computational predict sepsis in EHR data
[26]. Desautels et al. [21] applied InSight to predict sepsis in the medical records of the
Multiparameter Intelligent Monitoring in Intensive Care (MIMIC)-III dataset [27].
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In the present study, we analyzed a dataset of electronic health records of patients
having cardiovascular heart diseases [28]: each patient profile has 29 clinical features,
including a binary value for survival, a binary value for septic shock, and a numerical value
for the sequential organ failure assessment (SOFA) score.We separately used each of these
three features as an independent target, and employed several machine learning classi-
fiers to predict it with high accuracy and precision. Afterwards, we employed machine
learning to detect the most important features of the dataset for the three target sepa-
rately, and compared its results with the results obtained through traditional biostatistics
univariate techniques.

Dataset
The original dataset contains electronic health records (EHRs) of 29 features for
364 patients, and was first analyzed by Yunus and colleagues to investigate the role
of procalcitonin in sepsis [29]. These 364 patients with sepsis diagnosis entered
the general medical ward and intensive care unit between September 2014 and
December 2016 at the Methodist Medical Center and Proctor Hospital (today called
UnityPoint Health – Methodist | Proctor) in Peoria, Illinois, USA [29]. The group of
patients include 189 men and 175 women, aged 20–86 years old [29, 30].
Each patient stayed at the hospital for a period between 1 and 48 days, and her/his

dataset profile represent the co rresponding clinical record at the moment of discharge
or death. Since the maximum observation window was 48 days, we consider our binary
predictions in reference to the same time frame.
The dataset collectors defined septic shock “as a condition that requires the use of vaso-

pressors in order to maintain a mean arterial pressure (MAP) of 65 mm Hg or above, and
a persistent lactate greater than 2mmol/L in spite of adequate fluid resuscitation” [29, 30].
We report the quantitative characteristics of the dataset (amount of individuals and

percentage of individuals for each binary feature condition; median and mean for each
numeric or category feature) in Table 1, and the interpretation details (meaning, mea-
surement unit, and value range in the dataset) in Table 2. More information about the
analyzed dataset can be found in the original dataset curators publication [29, 30].
We derived the survival feature from the outcome feature of the original dataset

(Supplementary information) [31]. The extent of the infection feature can have 3 values
that represent bacteremia, focal infection, or both. The urine output 24 hours feature can
have 3 values that represent > 500 mL, [ 200, 500] mL, or < 200 mL.
Regarding the dataset imbalance, considering septic shock as the target, there are 297

individuals without septic shock (having value 0 for the vasopressors feature), corre-
sponding to 81.59% of the total size, and 67 individuals with septic shock (having value 1
for the vasopressors feature), corresponding to 18.41% of the total size.
When we consider the survival as target, instead we observe 48 deceased patients (class

0, corresponding to 13.19% of all the individuals), and observe 316 survived patients (class
1, corresponding to 86.81% of all the individuals).
The dataset with septic shock as target results therefore negatively imbalanced, and the

dataset with survival as target results positively imbalanced.

Methods
We implemented our computational pipeline in the open-license, free R programming
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Table 1 Statistical quantitative description of the features. Binary and category features on the left,
and numeric features on the right

binary feature # % numeric feature median mean

atrial fibrillation (1: yes) 49 13.46 age 63 61.32

atrial fibrillation (2: no) 315 86.54 anatomical site of infection 2 2.84

cancer (1: yes) 71 19.51 bilirubin 0.6 0.87

cancer (2: no) 293 80.49 creatinine 1.37 1.96

chronic kidney disease (CKD) with dialysis
(1: yes)

16 4.40 extent of infection 2 1.80

chronic kidney disease (CKD) with dialysis
(2: no)

348 95.60 Glasgow coma scale 15 13.45

chronic kidney disease (CKD) without
dialysis (1: yes)

51 14.01 initial procalcitonin (PCT) 1.65 13.88

chronic kidney disease (CKD) without
dialysis (2: no)

313 85.99 mean arterial pressure 79 79.68

chronic obstructive pulmonary disease
(COPD) (1: yes)

109 29.95 microorganism 2 2.32

chronic obstructive pulmonary disease
(COPD) (2: no)

255 70.05 platelets 216 231.16

congestive heart failure (CHF) (1: yes) 72 19.78 respiration (PaO2) 79 93.86

congestive heart failure (CHF) (2: no) 292 80.22 respiration (FiO2) 32 45.79

coronary artery disease (CAD) (1: yes) 81 22.25 urine output 24 hours 1 1.14

coronary artery disease (CAD) (2: no) 283 77.75 [target] SOFA score 4 5.06

diabetes mellitus (DM) (1: yes) 135 37.09

diabetes mellitus (DM) (2: no) 229 62.91

hypertension (HTN) (1: yes) 152 41.76

hypertension (HTN) (2: no) 212 58.24

mechanical vent (1: yes) 97 26.65

mechanical vent (2: no) 267 73.35

pulmonary embolism (PE) (1: yes) 6 1.65

pulmonary embolism (PE) (2: no) 358 98.35

sex (1: male) 175 48.08

sex (2: female) 189 51.92

[target] survival (0: no) 48 13.19

[target] survival (1: yes) 316 86.81

[target] vasopressors (0: no) 67 18.41

[target] vasopressors (1: yes) 297 81.59

language, using common machine learning packages (randomForest, caret,

e1071, keras, ROSE, DMwR, mltools, DescTools). We also released all our
code scripts publicly online (“Availability of data and materials”).
As described in subsection S7.2, we can recap the computation pipeline of the analsys

with the following steps:

1 construction of the dataset (“Dataset” section);
2 definition of the three tasks:

a the binary classification problem of predicting septic shock (vasopressors);
b the regression problem of predicting SOFA score;
c the binary classification problem of predicting survival;

based on a subset of the available variables selected as input variables (Table 2);
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Table 2 Dataset feature description. Meanings, measurement units, and intervals of each feature of
the dataset

feature: explanation measurement unit range

age: age of the patient years [20, ..., 86]

anatomical site of infection: body location category [1, 2, 3, ..., 16]

atrial fibrillation: presence boolean [1, 2]

bilirubin: level in blood mg/dL [0.10, ..., 22.50]

cancer: presence boolean [1, 2]

chronic kidney disease (CKD) with dialysis: presence boolean [1, 2]

chronic kidney disease (CKD) without dialysis: presence boolean [1, 2]

chronic obstructive pulmonary disease (COPD): presence boolean [1, 2]

congestive heart failure (CHF): presence boolean [1, 2]

coronary artery disease (CAD): presence boolean [1, 2]

creatinine: level in blood mg/dL [0.15, ..., 15.10]

diabetes mellitus: presence boolean [1, 2]

extent of infection: type of infection category [1, 2, 3]

Glasgow coma scale: neurological scale to measure coma category [2, 3, ..., 15]

hypertension (HTN): presence boolean [1, 2]

initial procalcitonin (PCT): level in blood ng/mL [0.05, ..., 252.50]

mean arterial pressure: blood pressure during single cardiac cycle mm Hg [9, 44, ..., 138]

mechanical vent: if the patient needs mechanical ventilation boolean [1, 2]

microorganism: kind of bacterial infection category [1, 2, ..., 6]

platelets: level in blood kilo/microL [3.0, ..., 726.0]

pulmonary embolism: presence boolean [1, 2]

respiration (PaO2): partial pressure of oxygen mm Hg [2, 21, ..., 595]

respiration (FiO2): fraction of inspired oxygen mm Hg [21, 25, ..., 262]

sex: woman or man boolean [1, 2]

urine output 24 hours: patient’s urine in the day category (mL/24 hours) [1, 2, 3]

[target] SOFA score: sequential organ failure assessment score category [0, 1, 2, ..., 23]

[target] survival: survival or death boolean [0, 1]

[target] vasopressors septic shock: presence boolean [0, 1]

3 for each of these three tasks (septic shock, survival, and SOFA score) and for each
of the algorithms (DT, RF, SVM (linear), SVM (kernel), and NN, (DT, RF, SVM
(linear), SVM (kernel), NB, k-NN, LR, and DL, noting that NB and LR can be used
just for classification problems) we built a model using the MS strategy
(“Methods” section) where we set the number of fold k = 10. During the MS we
searched the hyper-parameters using the following ranges

a DT:H = {d} ∈ {2, 4, 6, 8, 10, 12, 14};
b RF : we set nt = 1000 since increasing it does not increases the accuracy;
c SVM (linear) :H = {C} ∈ R;
d NB: we use kernel density estimate no Laplace correction and no

adjustment (R library caret nb algorithm);
e k-NN:H = {k} ∈ {1, 3, 5, 11};
f LR:H = {λ} ∈ R;
g DL:H = {l1, l2, l3,wd} ∈

{2, 4, 8, 16, 32} × {2, 4, 8, 16, 32} × {2, 4, 8, 16, 32} × {.001, .01, .1, 1} ;
h SVM (kernel) :H = {C, γ } ∈ R × R;
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i NN:H = {nh, pd, pb, rl, ρ, rd} ∈
{5, 10, 20, 40, 80, 160} × {0, 0.001, 0.01, 0.1} × {0.1, 1} ×
{0.001, 0.01, 0.1, 1} × {0.9, 0.09} × {0.001, 0.01, 0.1, 1} and as activation
function we used the rectified linear unit (ReLU) [32];

whereR = {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50};
4 for each of the constructed models we reported the results using the EE strategy

and previously introduced the metrics (“Methods” section) together with the
standard deviation where we set nr = 100;

5 for each of the tasks we reported the ranking of the features selected by the two
feature ranking procedures (MDI and MDA, “Methods” section) together with the
mode of the ranking position where we set pFR = 0.7 and nFR = 100, and
aggregated through Borda’s method [33].

We report and discuss the results in the next sections.

Results
In this section we show the results of applying the classification and regression methods
(“Methods” section) on the described dataset (“Dataset” section).

Target predictions

In this section, we describe the results obtained for the binary prediction of septic shock,
for the SOFA score regression estimation, and for the binary prediction of survival in the
ICU. For the two binary classifications (septic shock prediction and survival prediction),
we used τ = 0.5 as cut-off threshold for the confusion matrices. We chose this value
because it corresponds to the value 0 for theMatthews correlation coefficient (MCC) [34],
which means the predicted value is not better than random prediction.
We focused on and ordered our results by the scores of the MCC, because this rate

provides a high score only if the classifier was able to correctly predict the majority of pos-
itive data instances and the majority of the negative data instances, despite of the dataset
imbalance [35, 36].
In the interest of providing fuller information, we also reported the values of ROCAUCs

[37] and PR AUCs [38], which are computed considering all the possible confusion matrix
thresholds.

Septic shock prediction

We report the performance of the learned models for the septic shock (vasopressors)
prediction with the different methods evaluated with the different metrics in Table 3,
ranked by the MCC.
Our methods were able to obtain high prediction results and showed the ability of

machine learning to predict septic shock (positive data instances), but showed low ability
to identify patients without septic shock (negative data instances). In particular, Ran-
dom Forests and the Multi-Layer Perceptron Neural Network outperformed the other
methods (Table 3), by achieving average MCC equal to +0.32 and +0.31, respectively.
All the classifiers obtained high scores for the true positive rate, accuracy, and F1 score,
but achieved low scores on the true negative rates (Table 3). Decision Tree, kernel SVM,
LogisticRegression,DeepLearning, andNaive Bayes were the onlymethods which predicted
correctly most of the negative instances, by achieving average specificity equal to 0.50.
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Table 3 Septic shock (vasopressors) prediction

method MCC F1 score accuracy TP rate TN rate

RF 0.32 ± 0.14 0.88 ± 0.03 0.80 ± 0.04 0.88 ± 0.04 0.43 ± 0.15

MLP 0.31 ± 0.13 0.87 ± 0.03 0.79 ± 0.04 0.87 ± 0.04 0.47 ± 0.15

LR 0.31 ± 0.13 0.84 ± 0.04 0.76 ± 0.05 0.79 ± 0.06 0.62 ± 0.15

DL 0.30 ± 0.11 0.83 ± 0.05 0.73 ± 0.04 0.78 ± 0.05 0.61 ± 0.16

NB 0.27 ± 0.08 0.79 ± 0.09 0.70 ± 0.09 0.72 ± 0.15 0.59 ± 0.18

SVM (linear) 0.26 ± 0.13 0.82 ± 0.06 0.75 ± 0.06 0.82 ± 0.09 0.49 ± 0.18

k-NN 0.23 ± 0.14 0.81 ± 0.06 0.71 ± 0.07 0.76 ± 0.10 0.50 ± 0.20

SVM (kernel) 0.22 ± 0.13 0.79 ± 0.06 0.70 ± 0.06 0.75 ± 0.09 0.50 ± 0.18

DT 0.18 ± 0.13 0.78 ± 0.06 0.67 ± 0.07 0.72 ± 0.10 0.50 ± 0.19

method PR AUC ROC AUC PPV NPV

RF 0.18 ± 0.07 0.28 ± 0.29 0.47 ± 0.16 0.87 ± 0.05

MLP 0.16 ± 0.05 0.28 ± 0.28 0.46 ± 0.16 0.87 ± 0.05

LR 0.11 ± 0.04 0.26 ± 0.31 0.41 ± 0.12 0.90 ± 0.04

DL 0.11 ± 0.04 0.26 ± 0.31 0.39 ± 0.12 0.88 ± 0.04

NB 0.11 ± 0.06 0.26 ± 0.29 0.34 ± 0.09 0.89 ± 0.04

SVM (linear) 0.15 ± 0.05 0.26 ± 0.24 0.37 ± 0.13 0.86 ± 0.06

k-NN 0.13 ± 0.06 0.25 ± 0.30 0.33 ± 0.12 0.87 ± 0.06

SVM (kernel) 0.13 ± 0.05 0.24 ± 0.20 0.32 ± 0.11 0.86 ± 0.06

DT 0.12 ± 0.05 0.23 ± 0.29 0.29 ± 0.10 0.86 ± 0.06

Performance of the learned models with the different methods evaluated with the different metrics, expressed in the format
“average value ± standard deviation”, obtained on 100 executions. DT: decision tree. MLP: multi-layer perceptron neural network.
RF: random forest. k-NN: k-nearest neighbors. DL: deep neural network with 3 hidden layers and weight decay. LR: logistic
regression. NB: Naïve Bayes. SVM (kernel): support vector machine with kernel. SVM (linear): linear support vector machine. MCC:
Matthews correlation coefficient. TP rate: true positive rate (sensitivity, recall). TN rate: true negative rate (specificity). PR:
precision-recall curve. ROC: receiver operating characteristic. AUC: area under the curve. MCC: worst value –1.00 and best value
+1.00. PPV: positive predictive value (precision). NPV: negative predictive value. F1 score, accuracy, TP rate, TN rate, PR AUC, ROC
AUC, PPV, NPV: worst value 0.00 and best value 1.00. Imbalance of this dataset: yes septic shock class: 1’s positives, #elements = 67
(18.41%), and no septic shock class: 0’s negatives, #elements = 297 (81.59%)

Regarding ROC AUC, it is interesting to notice that standard deviations for all the
methods is high (standard deviation from 0.20 to 0.31. Table 3).
To check the predictive efficiency of the algorithms in making positive calls, we

reported the positive predictive value (PPV, or precision). From a clinical perspective, the
PPV represents the likelihood that patients with a positive screening test truly have the
septic shock [39]. The PPV results show that Random Forests achieved the top perfor-
mance among the methods tried, but was unable to correctly make the majority of the
positive calls (PPV=0.47 in Table 3). This result means that, for each patient predicted to
have septic shock, we cannot be sure that she/he will actually have a septic shock: there is
an average top probability of 47% that she/he might have it, which leaves large room for
uncertainty.
From a clinical perspective, the negative predictive value (NPV) represents the prob-

ability that a patient who got a negative screening test will truly not suffer from a
septic shock [39]. Regarding this ratio of correct negative predictions, all the methods
achieved good results, with Logistic Regression outperforming the other ones (NPV=0.90
in Table 3). This result means that, for each patient predicted not to have septic shock, we
can be at 90% confident that he/she will not have septic shock, which leaves small room
for uncertainty.

SOFA score prediction

We report the performance of the learned models for the SOFA score prediction with the
different methods evaluated with the different metrics in Table 4, ordered by the coef-
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Table 4 SOFA score prediction

method R2 RMSE MAE MSE SMAPE

DL 0.73 ± 0.05 1.85 ± 0.26 1.31 ± 0.12 3.33 ± 0.99 0.34 ± 0.04

SVM (linear) 0.78 ± 0.06 1.81 ± 0.18 1.34 ± 0.13 3.27 ± 0.60 0.34 ± 0.05

MLP 0.76 ± 0.06 1.82 ± 0.13 1.36 ± 0.11 3.29 ± 0.71 0.34 ± 0.04

SVM (kernel) 0.74 ± 0.06 1.82 ± 0.25 1.35 ± 0.13 3.37 ± 1.06 0.33 ± 0.03

RF 0.72 ± 0.04 1.83 ± 0.26 1.32 ± 0.15 3.41 ± 1.01 0.35 ± 0.03

DT 0.48 ± 0.11 2.46 ± 0.28 1.80 ± 0.18 6.11 ± 1.38 0.49 ± 0.07

k-NN 0.41 ± 0.10 2.65 ± 0.35 1.95 ± 0.22 7.12 ± 1.85 0.53 ± 0.06

Performance of the learned models with the different methods evaluated with the different metrics, expressed in the format
“average value ± standard deviation”, obtained on 100 executions. DT: decision tree. k-NN: k-nearest neighbors. DL: deep neural
network with 3 hidden layers and weight decay. MLP: multi-layer perceptron neural network. RF: random forest. SVM (kernel):
support vector machine with kernel. SVM (linear): linear support vector machine. RMSE: root mean square error. MAE: mean
absolute error. MSE: mean square error. SMAPE: symmetric mean absolute percentage error. R2: coefficient of determination.
RMSE, MAE, MSE, SMAPE: best value 0.00 and worst value +∞. R2: best value 1.00 and worst value −∞

ficient of determination R2, and the SOFA score scatterplot of the actual and predicted
value of the ne test sets in Fig. 1. We used R2 for the method sorting because this rate
incorporates the SOFA score distribution.
Our results show that machine learning can predict SOFA score with low error

rates (Table 4). Differently from the septic shock prediction, here the Deep Learning
model resulted as the top classifier by outperforming the other methods in the R2 and
MAE. The linear SVM, theMulti-Layer Perceptron, the kernel SVM, and Random Forests
obtained similar results, and resulted in being close to the top method for this task.
It is interesting to notice that linear SVM resulted in being the top method when its
predictions were measured through RMSE and MSE, but not in the other cases.

Survival prediction

We report the performance of the learned models for the survival prediction with the
different methods evaluated with the different metrics in Table 5, ranked by the MCC.
Our results show that it is possible to use machine learning to predict the survival of

sepsis patients, with high accuracy (Table 5). In this case, the MLP neural network out-
performed the other classifiers by obtaining higher scores for MCC, F1 score, and true

0 5 10 15 20
actual values

0

5

10

15

20

pr
ed

ic
te

d 
va

lu
es

Fig. 1 SOFA score regression. Scatterplot of the actual and predicted value of the ne test sets for the SVM
(linear) method
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Table 5 Survival prediction

method MCC F1 score accuracy TP rate TN rate

MLP 0.31 ± 0.12 0.43 ± 0.11 0.67 ± 0.08 0.75 ± 0.12 0.70 ± 0.07

DL 0.16 ± 0.10 0.30 ± 0.07 0.72 ± 0.05 0.50 ± 0.12 0.82 ± 0.07

NB 0.15 ± 0.11 0.28 ± 0.08 0.82 ± 0.05 0.21 ± 0.12 0.92 ± 0.06

RF 0.15 ± 0.10 0.28 ± 0.08 0.64 ± 0.05 0.58 ± 0.16 0.65 ± 0.06

LR 0.13 ± 0.12 0.26 ± 0.08 0.69 ± 0.05 0.45 ± 0.20 0.73 ± 0.06

SVM (linear) 0.11 ± 0.13 0.26 ± 0.12 0.72 ± 0.09 0.46 ± 0.19 0.71 ± 0.11

DT 0.10 ± 0.12 0.25 ± 0.11 0.69 ± 0.08 0.39 ± 0.17 0.74 ± 0.09

SVM (kernel) 0.09 ± 0.11 0.24 ± 0.09 0.72 ± 0.06 0.38 ± 0.16 0.75 ± 0.08

k-NN 0.08 ± 0.13 0.22 ± 0.09 0.69 ± 0.11 0.38 ± 0.24 0.73 ± 0.15

method PR AUC ROC AUC PPV NPV

MLP 0.29 ± 0.07 0.86 ± 0.13 0.94 ± 0.07 0.19 ± 0.07

DL 0.20 ± 0.06 0.86 ± 0.18 0.88 ± 0.05 0.19 ± 0.13

NB 0.07 ± 0.06 0.80 ± 0.28 0.88 ± 0.03 0.31 ± 0.16

RF 0.32 ± 0.06 0.86 ± 0.25 0.91 ± 0.04 0.19 ± 0.07

LR 0.24 ± 0.05 0.86 ± 0.24 0.90 ± 0.04 0.20 ± 0.08

SVM (linear) 0.27 ± 0.11 0.83 ± 0.24 0.90 ± 0.04 0.19 ± 0.08

DT 0.23 ± 0.08 0.90 ± 0.23 0.89 ± 0.04 0.19 ± 0.09

SVM (kernel) 0.20 ± 0.07 0.80 ± 0.24 0.89 ± 0.04 0.19 ± 0.07

k-NN 0.23 ± 0.13 0.91 ± 0.21 0.89 ± 0.05 0.18 ± 0.11

Performance of the learned models with the different methods evaluated with the different metrics, expressed in the format
“average value ± standard deviation”, obtained on 100 executions. DT: decision tree. k-NN: k-nearest neighbors. DL: deep neural
network with 3 hidden layers and weight decay. LR: logistic regression. NB: naive Bayes. MLP: multi-layer perceptron neural
network. SVM (kernel): support vector machine with kernel. SVM (linear): linear support vector machine. MCC: Matthews
correlation coefficient. TP rate: true positive rate (sensitivity, recall). TN rate: true negative rate (specificity). PR: precision-recall
curve. ROC: receiver operating characteristic. AUC: area under the curve. MCC: worst value –1.00 and best value +1.00. PPV:
positive predictive value (precision). NPV: negative predictive value. F1 score, accuracy, TP rate, TN rate, PR AUC, ROC AUC, PPV,
NPV: worst value 0.00 and best value 1.00. Imbalance of this dataset: survived patients’ class: 1’s positives, #elements = 316
(86.81%), and deceased patients’ class: 0’s negatives, #elements = 48 (13.19%)

positive rate. All the methods obtained high results on the true negative rates, but only
the MLP neural network and Random Forests were able to predict most of the positive
data instances, obtaining average sensitivity equal to 0.75 and 0.58, respectively.
Regarding correct positive predictions (PPV), all the methods were able to correctly

make positive predictions (Table 5), while they obtained low results for the ratio of correct
negative predictions (NPV).
Contrarily to what happened previously for the septic shock (“Septic shock prediction”

section), here we can be confident that the patients predicted to survive will actually
survive (top PPV=0.94 for MLP). However, the low NPV values state that the probabil-
ity of decease of patient predicted as “non survival” is just 0.31%on average for the best
method (Naive Bayes), making our predictions less trustworthy in this case.

Feature rankings

In this section, we present the feature ranking results for the three targets (septic shock,
SOFA score, and survival), obtained through Random Forests and through traditional
univariate biostatistics approaches.
For complete information, we reported the feature rankings measured thorugh Ran-

dom Forests as barcharts in the Supplementary Information (Figure S3, Figure S4, and
Figure S2).
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Septic shock feature ranking

We reported the feature ranking for the septic shock obtained by the two feature selec-
tions performed through Random Forests (Methods) in Table 6, and the feature rankings
obtained through traditional biostatistics coefficients (Pearson correlation coefficient,
Student’s t-test, p-values) in Table 7.
Random Forests identified creatinine, Glasgow coma scale, mean arterial pressure, and

initial procalcitonin as the most important features to identify septic shock (Table 6), that
resulted in top positions also in the traditional univariate biostatistics rankings (Table 7).
The Student’s t-tests and p-values identified age as the top most important feature, that
instead obtained the 10th position for the Pearson correlation coefficient (Table 7) and the
14th position for the Random Forests ranking (Table 6).
Overall, with the significant exception of age, the Random Forests ranking and the

traditional univariate biostatistics rankings showed similar positions for the features
importance, confirming also the importance of the Glasgow come scale value and the
blood creatinine levels to recognize patients having septic shock.

SOFA score feature ranking

We reported the feature ranking for SOFA score obtained by the two feature selec-
tions performed through Random Forests (Methods) in Table 8, and the feature rankings

Table 6 Septic shock (vasopressors) feature ranking – Random Forests

position MDI MDA feature

1 4.73 7.48 × 10−03 creatinine

2 3.19 1.13 × 10−02 Glasgow coma scale

3 4.72 9.22 × 10−03 mean arterial pressure

4 4.70 6.19 × 10−03 initial procalcitonin (PCT)

5 3.43 1.89 × 10−03 platelets

6 3.14 4.74 × 10−03 anatomical site of infection

7 2.60 5.87 × 10−03 respiration (FiO2)

8 2.86 1.90 × 10−03 respiration (PaO2)

9 1.42 5.74 × 10−03 mechanical vent

10 2.81 7.43 × 10−04 age***

11 1.37 1.13 × 10−03 microorganism

12 6.71 × 10−01 1.01 × 10−03 urine output 24 hours

13 4.92 × 10−01 1.82 × 10−04 hypertension (HTN)

14 3.32 × 10−01 7.19 × 10−04 chronic kidney disease (CKD) without dialysis

15 3.82 × 10−01 2.72 × 10−04 coronary artery disease (CAD)

16 2.36 1.07 × 10−04 bilirubin

17 3.46 × 10−01 3.16 × 10−04 extent of infection

18 4.02 × 10−01 −3.68 × 10−05 diabetes mellitus (DM)

19 3.14 × 10−01 2.06 × 10−05 congestive heart failure (CHF)

20 2.12 × 10−01 5.70 × 10−04 chronic kidney disease (CKD) with dialysis

21 4.32 × 10−01 −3.62 × 10−04 sex

22 2.21 × 10−01 −3.58 × 10−06 atrial fibrillation

23 3.49 × 10−01 −1.00 × 10−04 chronic obstructive pulmonary disease (COPD)

24 3.08 × 10−01 −1.12 × 10−04 cancer

25 3.69 × 10−02 −1.28 × 10−05 pulmonary embolism (PE)

Feature ranking results obtained through Random Forests. ***: feature in a ranking position that clearly differs from its ranking
positions in all the biostatistics analysis feature rankings (Table 7)



Chicco and Oneto BioDataMining           (2021) 14:12 Page 12 of 22

Ta
b
le

7
Se
pt
ic
sh
oc
k
(v
as
op

re
ss
or
s)
fe
at
ur
es

ra
nk
in
g
–
bi
os
ta
tis
tic
s
an
al
ys
is

p
os
it
io
n

ab
s(
t)
ra
n
k

ab
s(
t)

p-
va

lu
e
ra
n
k

p-
va

lu
e

ab
s(
PC

C
)r
an

k
ab

s(
PC

C
)

1
ag
e

89
.8
1

ag
e

2.
49

×
10

−2
50

G
la
sg
ow

co
m
a
sc
al
e

0.
29

2
m
ea
n
ar
te
ria
lp
re
ss
ur
e

86
.5
1

m
ea
n
ar
te
ria
lp
re
ss
ur
e

1.
55

×
10

−2
44

in
iti
al
pr
oc
al
ci
to
ni
n
(P
C
T)

0.
28

3
G
la
sg
ow

co
m
a
sc
al
e

73
.5
5

G
la
sg
ow

co
m
a
sc
al
e

5.
62

×
10

−2
25

m
ec
ha
ni
ca
lv
en

t
0.
26

4
pl
at
el
et
s

36
.1
0

pl
at
el
et
s

3.
64

×
10

−1
22

m
ea
n
ar
te
ria
lp
re
ss
ur
e

0.
21

5
re
sp
ira
tio

n
(P
aO

2)
33
.6
4

re
sp
ira
tio

n
(P
aO

2)
1.
36

×
10

−1
13

cr
ea
tin

in
e

0.
20

6
re
sp
ira
tio

n
(F
iO
2)

27
.1
7

re
sp
ira
tio

n
(F
iO
2)

1.
66

×
10

−8
9

re
sp
ira
tio

n
(F
iO
2)

0.
16

7
ur
in
e
ou

tp
ut

24
ho

ur
s

21
.3
4

ur
in
e
ou

tp
ut

24
ho

ur
s

2.
55

×
10

−7
8

ur
in
e
ou

tp
ut

24
ho

ur
s

0.
16

8
bi
lir
ub

in
12
.2
5

hy
pe

rt
en

si
on

(H
TN

)
1.
08

×
10

−3
0

pl
at
el
et
s

0.
11

9
hy
pe

rt
en

si
on

(H
TN

)
12
.1
0

bi
lir
ub

in
1.
06

×
10

−2
9

ag
e

0.
11

10
se
x

10
.1
0

se
x

1.
91

×
10

−2
2

re
sp
ira
tio

n
(P
aO

2)
0.
10

11
m
ic
ro
or
ga
ni
sm

8.
57

m
ic
ro
or
ga
ni
sm

1.
56

×
10

−1
6

C
A
D

0.
07

12
pu

lm
on

ar
y
em

bo
lis
m

(P
E)

7.
83

pu
lm

on
ar
y
em

bo
lis
m

(P
E)

3.
74

×
10

−1
4

C
KD

w
ith

di
al
ys
is

0.
07

13
in
iti
al
pr
oc
al
ci
to
ni
n
(P
C
T)

7.
29

an
at
om

ic
al
si
te

of
in
fe
ct
io
n

1.
90

×
10

−1
2

an
at
om

ic
al
si
te

of
in
fe
ct
io
n

0.
06

14
an
at
om

ic
al
si
te

of
in
fe
ct
io
n

7.
28

in
iti
al
pr
oc
al
ci
to
ni
n
(P
C
T)

1.
97

×
10

−1
2

hy
pe

rt
en

si
on

(H
TN

)
0.
04

15
C
KD

w
ith

di
al
ys
is

6.
09

C
KD

w
ith

di
al
ys
is

2.
13

×
10

−0
9

at
ria
lf
ib
ril
la
tio

n
0.
04

16
di
ab

et
es

m
el
lit
us

(D
M
)

5.
75

di
ab

et
es

m
el
lit
us

(D
M
)

1.
36

×
10

−0
8

C
H
F

0.
04

17
C
O
PD

3.
66

C
O
PD

2.
67

×
10

−0
4

ca
nc
er

0.
04

18
m
ec
ha
ni
ca
lv
en

t
2.
67

m
ec
ha
ni
ca
lv
en

t
7.
74

×
10

−0
3

bi
lir
ub

in
0.
03

19
at
ria
lf
ib
ril
la
tio

n
1.
82

at
ria
lf
ib
ril
la
tio

n
6.
85

×
10

−0
2

se
x

0.
03

20
C
KD

w
ith

ou
td

ia
ly
si
s

1.
61

C
KD

w
ith

ou
td

ia
ly
si
s

1.
08

×
10

−0
1

C
O
PD

0.
03

21
cr
ea
tin

in
e

1.
38

cr
ea
tin

in
e

1.
68

×
10

−0
1

ex
te
nt

of
in
fe
ct
io
n

0.
02

22
C
A
D

1.
29

C
A
D

1.
98

×
10

−0
1

C
KD

w
ith

ou
td

ia
ly
si
s

0.
01

23
C
H
F

0.
47

C
H
F

6.
38

×
10

−0
1

pu
lm

on
ar
y
em

bo
lis
m

(P
E)

0.
01

24
ex
te
nt

of
in
fe
ct
io
n

0.
47

ex
te
nt

of
in
fe
ct
io
n

6.
41

×
10

−0
1

di
ab

et
es

m
el
lit
us

(D
M
)

0.
01

25
ca
nc
er

0.
38

ca
nc
er

7.
06

×
10

−0
1

m
ic
ro
or
ga
ni
sm

0.
00

ab
s(
PC

C
):
ab

so
lu
te

va
lu
e
of

Pe
ar
so
n
co
rr
el
at
io
n
co
ef
fic
ie
nt

[4
0]
.a
bs
(t
-t
es
t)
:a
bs
ol
ut
e
va
lu
e
of

St
ud

en
t’s

t-
te
st
[4
1]
.p
-v
al
ue

:p
ro
ba

bi
lit
y
va
lu
e
of

St
ud

en
t’s

t-
te
st
.W

e
co
m
pu

te
d
ea
ch

te
st
be

tw
ee
n
th
e
ta
rg
et

fe
at
ur
e
(v
as
op

re
ss
or
s)
an
d

ea
ch

fe
at
ur
e,
an
d
th
en

ra
nk
ed

th
e
ou

tc
om

es



Chicco and Oneto BioDataMining           (2021) 14:12 Page 13 of 22

Table 8 SOFA score feature ranking – Random Forests

position MDI MDA feature

1 9.44 × 10+02 4.35 Glasgow coma scale

2 6.88 × 10+02 2.68 creatinine

3 3.83 × 10+02 1.01 platelets

4 2.29 × 10+02 8.19 × 10−01 respiration (FiO2)

5 1.82 × 10+02 3.32 × 10−01 mean arterial pressure

6 1.59 × 10+02 6.63 × 10−01 mechanical vent

7 1.78 × 10+02 2.78 × 10−01 bilirubin

8 1.39 × 10+02 4.58 × 10−01 urine output 24 hours

9 1.73 × 10+02 1.55 × 10−01 initial procalcitonin (PCT)

10 1.14 × 10+02 1.91 × 10−01 respiration (PaO2)

11 8.34 × 10+01 5.76 × 10−02 age

12 9.38 × 10+01 3.30 × 10−02 anatomical site of infection

13 5.42 × 10+01 3.37 × 10−02 microorganism

14 1.60 × 10+01 2.26 × 10−02 chronic kidney disease (CKD) without dialysis

15 1.50 × 10+01 1.23 × 10−02 sex

16 1.44 × 10+01 9.98 × 10−03 hypertension (HTN)

17 1.26 × 10+01 9.76 × 10−03 diabetes mellitus (DM)

18 1.15 × 10+01 8.04 × 10−03 cancer

19 1.15 × 10+01 4.98 × 10−03 chronic obstructive pulmonary disease (COPD)

20 1.20 × 10+01 2.46 × 10−03 coronary artery disease (CAD)

21 8.44 4.04 × 10−03 extent of infection

22 4.45 9.73 × 10−03 chronic kidney disease (CKD) with dialysis

23 8.18 −9.64 × 10−04 congestive heart failure (CHF)

24 1.26 −1.46 × 10−03 pulmonary embolism (PE)

25 6.22 −5.16 × 10−03 atrial fibrillation

Feature ranking results obtained through random forest

obtained through traditional biostatistics coefficients (Pearson correlation coefficient,
Student’s t-test, p-values) in Table 9.
Random Forests selected Glasgow come scale, creatinine, and platelets as most impor-

tant feetures for SOFA score (Table 8).While all the biostatistics rates recognizedGlasgow
coma scale and platelets were recognized as relevant features too (Table 9), the Student’s
t-test and the p-values ranked creatinine as 22nd most important feature.
Similar to septic shock, the biostatistics techniques ranked age as a top feature, while

Random Forests put it in the 11th position of its ranking. All the other features obtained
similar rank positions in all the rankings.

Survival feature ranking

We reported the feature ranking for survival obtained by the two feature selections per-
formed through RandomForests (Methods) in Table 10, and the feature rankings obtained
through traditional biostatistics coefficients (Pearson correlation coefficient, Student’s
t-test, p-values) in Table 11.
The feature ranking results obtained for the survival target generated more divergence

between Random Forests and traditional biostatistics methods, among all three target
feature rankings.
Random Forests identified platelets as the most important feature (Table 10), which

resulted on a top position also in the Pearson correlation coefficient ranking, but not in
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Table 10 Survival feature ranking – Random Forests

position MDI MDA feature

1 3.50 3.13 × 10−03 platelets

2 2.87 1.97 × 10−03 creatinine***

3 2.42 1.76 × 10−03 respiration (PaO2)***

4 2.74 9.33 × 10−04 age

5 2.74 4.53 × 10−04 initial procalcitonin (PCT)

6 1.44 1.82 × 10−03 Glasgow coma scale

7 1.99 3.79 × 10−04 respiration (FiO2)

8 7.58 × 10−01 1.62 × 10−03 mechanical vent

9 4.51 × 10−01 5.32 × 10−06 hypertension (HTN)

10 3.90 × 10−01 3.55 × 10−04 chronic obstructive pulmonary disease (COPD)

11 3.64 × 10−01 4.45 × 10−04 coronary artery disease (CAD)

12 2.39 −5.85 × 10−04 bilirubin

13 3.43 × 10−01 8.71 × 10−05 diabetes mellitus (DM)

14 4.63 × 10−01 −3.37 × 10−05 cancer

15 3.39 × 10−01 2.78 × 10−04 congestive heart failure (CHF)

16 2.16 −5.21 × 10−05 mean arterial pressure

17 2.29 −2.14 × 10−03 anatomical site of infection

18 4.93 × 10−01 −2.46 × 10−04 sex

19 3.41 × 10−01 1.75 × 10−04 urine output 24 hours

20 1.01 −1.09 × 10−03 microorganism

21 9.88 × 10−02 −5.87 × 10−05 chronic kidney disease (CKD) with dialysis

22 7.42 × 10−02 −8.02 × 10−06 pulmonary embolism (PE)

23 2.88 × 10−01 −2.28 × 10−04 extent of infection

24 3.01 × 10−01 −2.85 × 10−04 chronic kidney disease (CKD) without dialysis***

25 2.32 × 10−01 −1.09 × 10−04 atrial fibrillation

Feature ranking results obtained through Random Forests. ***: feature in a ranking position that clearly differs from its ranking
positions in all the biostatistics analysis feature rankings (Table 11)

the ranking of the Student’s t-test and the ranking of the p-values (Table 11). Random
Forests then selected creatinine, and respiration (PaO2) as most relevant features for sur-
vival, but these three features were ranked in low positions by the traditional biostatitics
techniques (Table 11).
Another difference regarded chronic kidney disease (CKD) without dialysis. While the

Student’s t-test, p-values, and PCC ranked this feature in mid-high positions (7th, 7th, and
11th position, respectively) (Table 11), Random Forests considered CKD without dialysis
as the penultimate less important feature (Table 10).
All the ranking methods, in this case, ranked age as a top feature.

Discussion
Our results showed that machine learning can be employed efficiently to predict septic
shock, SOFA score, and survival of patients diagnosed with sepsis, from their electronic
health records data. In particular, Random Forests resulted in being the top method in
correctly classifying septic shock patients, even if no method achieved good prediction
performance in correctly identifying patients without septic shock (“Septic shock prediction”
section) The Deep Learning model outperformed the other classifier in the SOFA score
regression (“SOFA score prediction” section). Regarding the survival prediction, the
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Multi-Layer Perceptron Neural Network achieved the top prediction score among all the
classifiers (“Survival prediction” section).
This difference in the top performing methods might be due to the different kinds and

different ratios of the dataset targets (negatively imbalance for the septic shock, regres-
sion for SOFA score, and positively imbalanced for survival, “Dataset” section), and the
different data processing made by each algorithm.
Regarding feature ranking, Random Forests feature selection identified several unex-

pected symptoms and clinical components as relevant for septic shock, SOFA score, and
survival.
For septic shock, Random Forests selected creatinine as a top feature, differently

from the traditional univariate biostatistics approaches (“Septic shock feature ranking”
section). Recent scientific discoveries confirm this trend: the level of creatinine in the
blood is often used as a biomarker for sepsis [42], especially in presence of a serious kidney
injury [43].
Random Forests also ranked initial procalcitonin (PCT) as a top feature, confirming the

relationship between this protein and septic shock found by Yunus and colleagues [29].
About the SOFA score prediction, the ranking positions of the Random Forests fea-

ture selection resulted in being consistent with the ranking positions of the traditional
univariate biostatistics analysis. Also in this case, Random Forests also ranked initial pro-
calcitonin (PCT) as a mid-top feature, confirming the weak positive relationship between
this protein and the SOFA score found by Yunus and colleagues [29].
On the contrary, Random Forests labeled as important several features that were not

ranked in top positions by the Student’s t-test, p-values, and Pearson correlation coef-
ficient rankings. Different from the univariate biostatistics analysis, Random Forests, in
fact, identified creatinine, respiration (PaO2) as top components in the classification of
survived sepsis patients versus deceased sepsis patients. Kang et al. [44] recently con-
firmed the strong association between serum creatinine level and mortality. Regarding
respiration (PaO2), Santana and colleagues [45] recently showed how the SaO2/FiO2
ratio (a rate strongly correlated to the PaO2/FiO2 ratio) is associated with mortality from
sepsis. This aspect suggests the need of additional studies and analyses in this direction.
Additionally, Random Forests feature ranking showed difference with the biostatistics

rankings in the last ranking positions. Random Forests, in fact, considered having chronic
kidney disease (CKD) without dialysis as a scarcely important component for survival,
while the traditional biostatistics rates ranked that element in top positions. Maizel and
colleagues [46] confirmed our finding in 2013 by stating: “Non-dialysis CKD appears to
be an independent risk factor for death after septic shock in ICU patients” [46].

Conclusions
Sepsis is still a widespread lethal condition nowadays, and the identification of its severity
can require a lot of effort. In this context, machine learning can provide effective tools
to speed up the prediction of an upcoming septic shock, the prediction of the sequential
organ failure, and the prediction of survival or mortality of the patient by processing large
datasets in a few minutes.
In this manuscript, we presented a computational system for the prediction of these

three aspects, the feature ranking of their clinical features, and the interpretation of the
results we obtained. Our system consists of classifiers able to read the electronic health
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records of the patients diagnosed with sepsis, and to computationally predict the three
targets for each of them (septic shock, SOFA score, survival) in a few minutes. Addition-
ally, our computational intelligence system can predict the most important input features
of the electronic health records of each of the three targets, again in a few minutes.
We then compared the feature ranking results obtained through machine learning with
the feature rankings obtained with traditional univariate biostatistics coefficients. The
machine learning feature rankings highlighted the importance of some features that tradi-
tional biostatistics failed to underline. We found confirmation of the importance of these
factors in the biomedical literature, which suggests the need of additional investigation
on these aspects for the future.
Our discoveries can have strong implications on biomedical research and clinical

practice.
First, medical doctors and clinicians can take advantage of our methods to predict sur-

vival, septic shock, and SOFA scores from any available electronic health record having
the same variables of the datasets used in this study. This prediction can help doctors
understand the risk of survival and septic shock for each patient, and how many organs
risk to fail because of the septic episode. Doctors could use this information to decide the
following steps of the therapy.
Additionally, the results of the machine learning feature ranking suggest additional,

more thorough investigations on some factors of the electronic health records that would
have been unnoticed otherwise: creatinine for septic shock, procalcitonin for SOFA score,
and respiration (PaO2) for survival. We believe these discoveries could orientate the sci-
entific debate regarding sepsis, and suggest to medical doctors to pay more attention to
these three variables in the clinical records.
Regarding limitations, we have to report that our machine learning classifiers were

unable to efficiently predict patients without septic shock among the dataset, and there-
fore obtained low true negative rates. We believe this drawback is due to the imbalance of
the dataset, that contains 81.59% positive data instances (patients with septic shock), and
only 18.41% negative data instances (patients without septic shock). In the future, we aim
at exploring several over-sampling techniques to deal with this data imbalance problem
[47].
Another limitation of our study was the employment of a single dataset: having an alter-

native dataset where to confirm our findings would make our results more robust. We
looked for alternative datasets with the same clinical features to use as validation cohorts,
but unfortunately could not find them. Because of this issue and of the small size of our
dataset (364 patients), we cannot confirm that our approach is generalizable to other
cohorts.
In the future, we plan to employ alternative methods for feature ranking, to compare

their results with the results we obtained through Random Forests. We also plan to
employ similarity measures to analyze the semantic similarity between patients [48].
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