PUBLISHER CORRECTION **Open Access** ## Publisher Correction: Is DNA methylation the new guardian of the genome? Robert M. Hoffman^{1,2} ## Correction In the original publication of this article [1] the figures and the captions of 3 figures do not match correctly due to a typographical error. In this correction article the corrected figures and captions for Figs. 1, 2 and 3 are shown. The publisher apologizes to the readers and authors for the inconvenience. Received: 21 May 2018 Accepted: 22 May 2018 Published online: 13 June 2018 ## Reference Hoffman RM. Mol Cytogenet. 2017;10(11) https://doi.org/10.1186/s13039-017-0314-8 **Fig. 1** Rates of transmethylation of human tumor cell lines and normal human fibroblast cell strains. All cells were labeled with 100 μ M [35 S]-methionine-containing medium (25 μ Ci/ml) for 24 h. Periodateoxidized 3-deazaadenosine was added to a concentration of 10 μ M and the accumulation of [35 S] AdoHcy was measured at half- hour intervals. Solid lines are human cancer cell lines. Dashed lines are human normal cell strains [38] **Fig. 2** Recombinant methioninase (rMETase) traps cancer cells in S/G_2 phase. Time-course imaging of HeLa-FUCCI cells treated with rMETase (1.0 unit/ml). Kinetics of rMETase trapping of cells in S/G_2 . Images were acquired with the FV1000 confocal microscope (Olympus, Tokyo, Japan). In the FUCCI system, the cells in G_0/G_1 , S_0 , or G_2/M phases appear red, yellow, or green, respectively [66] Fig. 3 Efficacy of recombinant methioninase (rMETase) on growth of human colon tumors HCT 15 in nude mice. rMETase (5 or 10 units/g every 8 h) was administered by i.p. injection in nude mice with human colon tumor HCT 15, growing s.c. [54]