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Abstract

Background: Since non-invasive prenatal testing (NIPT) in maternal blood became available, we evaluated which
chromosome aberrations found in our cohort of fetuses with an enlarged NT in the first trimester of pregnancy
(tested with SNP microarray) could be detected by NIPT as well.

Method: 362 fetuses were referred for cytogenetic testing due to an enlarged NT (≥3.5 mm). Chromosome
aberrations were investigated using QF-PCR, karyotyping and whole genome SNP array.

Results: After invasive testing a chromosomal abnormality was detected in 137/362 (38 %) fetuses. 100/362 (28 %)
cases concerned trisomy 21, 18 or 13, 25/362 (7 %) an aneuploidy of sex chromosomes and 3/362 (0.8 %) triploidy.
In 6/362 (1.6 %) a pathogenic structural unbalanced chromosome aberration was seen and in 3/362 (0.8 %) a
susceptibility locus for neurodevelopmental disorders was found. We estimated that in 2–10 % of fetuses with
enlarged NT a chromosome aberration would be missed by current NIPT approaches.

Conclusion: Based on our cohort of fetuses with enlarged NT we may conclude that NIPT, depending on the
approach, will miss chromosome aberrations in a significant percentage of pregnancies. Moreover all abnormal
NIPT results require confirmatory studies with invasive testing, which will delay definitive diagnosis in ca. 30 % of
patients. These figures are important for pretest counseling enabling pregnant women to make informed choices
on the prenatal test. Larger cohorts of fetuses with an enlarged NT should be investigated to assess the additional
diagnostic value of high resolution array testing for this indication.
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Background
Nuchal translucency (NT) measurement is widely used
as a marker of fetal abnormalities both of chromosomal
and non-chromosomal origin [1–3]. A fetal NT > 99th
percentile is by definition found in about 1 % of pregnan-
cies [4]. Enlarged NT is not only associated with aneu-
ploidies and other chromosome abnormalities, but also
with a number of genetic syndromes, as well as with struc-
tural congenital anomalies, mainly cardiac defects [3, 5, 6].
The majority of fetuses with NT ≥ 3.5 mm have a normal
karyotype and the pregnancy outcome is highly dependent
on the absence of anomalies on expert fetal ultrasound
examination [7]. Since non-invasive prenatal testing
(NIPT) in maternal blood became available, we evaluated
which chromosome aberrations found in our cohort of fe-
tuses with an enlarged NT in the first trimester of preg-
nancy (tested with SNP microarray) could be detected by
NIPT as well. The results of this study can be used in pre-
test counseling, which can be helpful for making informed
choice between invasive and non-invasive genetic testing.

Methods
362 women carrying a fetus with an enlarged NT
(≥3.5 mm) in the first trimester were prospectively re-
ferred for Illumina SNP genotyping array as described
before [8, 9]. Fetal material was obtained through chori-
onic villi sampling (311 cases) or amniocentesis (51
cases) after the NT was measured as a part of the first
trimester combined screening or as part of the routine
first trimester crown rump length (CRL) measurement
for pregnancy dating. Samples collected in our central
location and 3 satellite hospitals between 1st September
2011 until 31st March 2016 that were routinely referred
for SNP array testing (0.15 Mb resolution) were included in
this cohort. All cytogenetic tests were done in one central
laboratory. This cohort overlaps slightly with the cohort
published before [10]. To create a homogenous cohort as
much as possible we excluded the following cases:

� fetuses referred for hydrops foetalis,
� fetuses referred for enlarged NT with co-existing

congenital anomalies evident on the CRL scan or
the NT scan

All samples were tested with QF-PCR or MLPA to
detect common aneuploidies (rapid aneuploidy detec-
tion - RAD). When RAD detected trisomy 21 or 13,
such samples were karyotyped (GTG banding ana-
lysis) to assess the recurrence risk. Cases of triploidy
or trisomy 18 were not further tested. All cases showing
normal RAD results or sex-chromosomal aneuploidy were
tested with Illumina SNP array (HumanCytoSNP-12 or
Infinium_CytoSNP_850K with analysis resolution of ca.
0.15 Mb) as described before [8].

To answer our research question we have divided
chromosome aberrations in the following groups:

1) autosomal aneuploidies
2) sex-chromosome aneuploidies that may be detected

by NIPT when sex-chromosomes analysis is included
in the test

3) triploidy
4) pathogenic structural unbalanced chromosome

aberrations (both microscopic and submicroscopic)
5) susceptibility loci for neurodevelopmental disorders.

Further, we evaluated which aberrations would theoretic-
ally be missed by current NIPTapproaches (NIPT tests were
not routinely performed in this cohort). To be able to make
this assessment, for the purpose of this paper, we assumed
that all non-mosaic aneuploidies (both autosomal and sex-
chromosomal) would be detectable by current NIPT [11] as
well as structural unbalanced aberrations larger than 10 Mb
[12, 13]. We report estimated percentages of abnormal cases
missed by particular NIPT approaches with Agresti–Coull
(adjusted Wald) 95 % confidence intervals, which have
higher coverage probability than large-sample Wald inter-
vals, in particular for small proportions [14, 15].

Results
The distribution of chromosomal abnormalities accord-
ing to NT within the study population is presented in
Table 1. The diagnostic flow was shown in Fig. 1. 38 %
(137/362) of the cases showed abnormal cytogenetic re-
sults, which are presented in Table 2. The most common
aberration was trisomy 21 (17 % 63/362) and in total in
28 % (100/362) of the cases an autosomal aneuploidy
was detected (trisomy 21, 18 or 13). In 6/362 (1.6 %) a
pathogenic unbalanced structural chromosome aberra-
tion was found: 5 were microscopically visible (>10 Mb)
and 1 was submicroscopic (an atypical 22q11 microdele-
tion) [16]. There were three cases (3/362, 0.8 %) that
showed a susceptibility locus for a neurodevelopmental
disorder (2 cases of 15q11 microdeletion and one case of
16p11.2 microdeletion), these aberrations are probably
not related to the enlarged NT.
Table 2 also shows the estimated percentage of cases

that could be missed by current NIPT approaches in
each category of chromosome aberrations. Based on our
estimation a chromosomal anomaly would be undetected
by NIPT in about 2–10 % of patients, depending on the
approach used (Table 3).

Discussion
Nuchal fluid accumulation may be caused by several
factors, therefore, diverse genetic abnormalities may
be expected in such fetuses. Taking this and numerous ad-
vantages of genomic microarrays [17] into account we

Srebniak et al. Molecular Cytogenetics  (2016) 9:69 Page 2 of 7



have chosen a whole genome SNP array technique for
cytogenetic investigations in cases of an enlarged NT
[8, 9]. In the present study, we prospectively investi-
gated the frequency of (sub) microscopic aberrations
in this group of fetuses. Since non-invasive prenatal
testing (NIPT) in maternal blood became available and
the patients can face a choice between an invasive and
non-invasive testing, we evaluated how high the risks of
missing a pathogenic chromosome finding can be in a
cohort of fetuses with enlarged NT measurement.

Autosomal aneuploidies and triploidy
Although most of the anomalous fetuses showed trisomy
13, 18 or 21 (100/137, 73 %) and NIPT seems to be an

excellent and safe test with a high positive predictive
value in this selected high risk group, there are some
drawbacks that have to be taken into account. One has
to be aware of the risk of false-negative NIPT results for
the common trisomies [18, 19]. 3.5 % of Down/Patau/
Edwards syndrome cases would potentially be missed by
NIPT due to generalized mosaicism with discrepant dir-
ect results (GMDD) [20]. Therefore, as shown in Table 2,
at least 3 trisomic cases in the cohort presented in this
paper (3.5 % out of 100 cases) would potentially be also
missed if this cohort was tested with NIPT as a first-tier
test. Additionally, other potential causes for false-
negative NIPT results such as a low fetal DNA fraction
(e.g. due to a high maternal body mass index) or tech-
nical failures, should also be taken into account [21].
The detection of triploidy is problematic as well. Al-
though are SNP approaches are able to detect triploidy
[22, 23], in our knowledge, there are no data showing
that this could be achieved in assays based on whole
genome shallow sequencing.

Sex-chromosome aneuploidies
The second most common group of aberrations in fe-
tuses with an enlarged NT is monosomy X (5.5 % 20/
362, Table 2). Gil and colleagues showed that cfDNA
tests could detect monosomy X in about 90 % of the
cases [24], so at least 2 cases of monosomy X (10 % out
of 20 cases) would be missed in this cohort. An accurate
non-invasive detection of fetal monosomy X remains
problematic due to several reasons. First of all, chromo-
somal mosaicism is common in sex chromosomal aneu-
ploidy [25]. A low percentage of abnormal cells in the
cytotrophoblast and co-existence of different abnormal
cell lines may mask the actual chromosome aberration
(e.g. 45,X/47,XXX) and lead to false negative results.
There is also a maternal factor influencing the results as
normal adult females show an age-related loss of X-
chromosomes [26]. This mosaicism of chromosome X
influences the positive predictive value in case of a
monosomy X detection [27]. Moreover, finding sufficient
Y-chromosome loci that are informative for copy num-
ber quantification may be difficult [28], causing mono-
somy X detection to be highly dependent on the NIPT
method used. These difficulties are reflected in the re-
cent literature that showed very limited follow-up of
monosomy X cases diagnosed non-invasively [21, 29]. So
although some authors suggest that there are accurate
methods to detect fetal sex chromosomal aneuploidy in
maternal plasma [30, 31], recent clinical experience
shows low positive predictive value for monosomy X.
This situation can be expected since the fetal DNA in
maternal plasma is derived from the cytotrophoblast of
chorionic villi (CV) and cytogenetic studies in CV
already showed that sex-chromosomal aneuploidy in the

Table 1 Distribution of chromosomal abnormalities according
to NT within the study population (n = 362)

NT in mm Number of cases
in the cohort (%)

Number of cases with
chromosome aberrations
(% within the category)

3.5–4.4 179 (49 %) 35 (19 %)

4.5–5.4 68 (19 %) 32 (47 %)

5.5–6.4 42 (11.6 %) 30 (71 %)

6.5–7.4 24 (6.6 %) 14 (58.3 %)

7.5–8.4 14 (3.9 %) 6 (43 %)

≥8.5 10 (2.8 %) 6 (60 %)

unknown (hygroma colli,
where NT measurement
was not specified)

25 (7 %) 14 (56 %)

Total 362 137 (38 %)

Fig. 1 Diagnostic flow and the cytogenetic findings
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cytotrophoblast of CV (STC-villi, short term cultured
villi) is often not representative for the actual fetal
karyotype [19, 32].

Pathogenic unbalanced structural aberrations
Although an enlarged NT was observed in fetuses with
unbalanced translocations, no significant differences
were seen in a study that evaluated the role of nuchal
translucency (NT) in the prediction of unbalanced trans-
location in offspring of couples carrying balanced translo-
cations [33]. A recent study of Christiansen and colleagues
showed that the distributions for NT measurements in

case of an aberration other than trisomy 21, 13 or 18 more
closely resembled that of the normal population [34]. So
the detection of rare unbalanced chromosome anomalies
in cohorts with an enlarged NT may be co-incidental.
Nevertheless karyotypically visible unbalanced chromo-
some aberrations are likely to be detected by whole gen-
ome profiling NIPT approaches [12, 13, 35]. Unfortunately
it is difficult to assess how many may be missed due to
their mitotic origin and absence in the cytotrophoblast.
The incidence of pathogenic submicroscopic chromo-

somal abnormalities in fetuses with an enlarged NT has
been studied by only few groups [36–41] resulting in

Table 2 Results of cytogenetic testing in fetuses with enlarged NT (≥3.5 mm) or hygroma colli in the first trimester in fetuses
referred for cytogenetic testing

Type of chromosome aberration Number of
fetuses n = 362

Potential detection by
current NIPT approaches

% of anomalies that are going to be
missed due to placental mosaicism
or current testing resolution (>7–10 Mb)

Autosomal aneuploidy Yes 3.5 % is likely to be missed [20, 49, 50]
0.8 % (3/362)

Trisomy 21 63 (17 %)

Trisomy 18 28 (7.7 %)

Trisomy 13 9 (2.5 %)

Sex-chromosomal aneuploidy Yes (if X/Y analysis are
included)

10 % of monosomy X are likely to be
missed [24]
0.5 % (2/362)
Mosaic samples are most probably
missed
0.5 % (2/362)

Monosomy Xa 20 (5.5 %)

XXX 2 (0.5 %)

XXY 1 (0.3 %)

Mosaic X/XY 2 (0.5 %)

Triploidy 3 (0.8 %) Yes (if SNP approach is
applied)

Most of the current approaches cannot
detect triploidy, and so far it is not
possible to combine targeted SNP
analysis with high coverage and whole
genome profiling with high resolution
0.8 % (3/362)

Pathogenic unbalanced chromosome aberrations:
1) 46,XY,der [9] t (9;13) (q33.1;q12.11),-13
(NT 4.9 mm; 116 Mb gain at 9p24-q33))

2) 46,XX,del [8] (p23.1) inv dup [8] (p11.21p23.1)
(NT 4.6 mm; 28 Mb gain at 8p)

3) 45,XX,der [4] t (4;15) (q32.1;q13.3),-15dn
(hygroma colli; 34 Mb loss at 4p))

4) arr [hg19] 9p24.3p22.2 (46,587-18,277,618) x1
(NT 5.2 mm; 18 Mb loss at 9p)

5) arr [hg19] 1q32.1q44 (202,542,202-249,218,992)
x3,9p24.3p24.1 (46,587-7,017,391) x1 (NT 3.6 mm,
47 Mb gain at 1q, 7 Mb loss 9p)

6) atypical 22q11 microdeletion of paternal origin
arr [hg19] 22q11.21 (21,111,299-21,463,730) x1
pat (NT 4.3 mm, >0.5 Mb)

6 (1.6 %) Larger than 10 Mb Yes
(if whole genome profiling
with resolution of 10
Mb is applied)

1/6 cases would be potentially missed:
0.3 % (1/362)

Susceptibility loci for neurodevelopmental disorders:
1) 15q11 microdeletion of NIPA1/NIPA2 of paternal

origin arr [hg18] 15q11.2 (20,191,584-21,025,923) x1pat
(NT 4.7 mm)

2) 15q11 microdeletion of NIPA1/NIPA2 of maternal
origin arr [hg19] 15q11.2 (22,299,434-23,272,733) x1mat
(NT 4.4 mm)

3) de novo 16q11.2 microdeletion arr [hg19] 16p11.2
(29,595,483-30,198,151) x1dn (hygroma colli)

3 (0.8 %) No So far genome wide detection of
submicroscopic aberrations is not
feasible. All will be missed
0.8 % (3/362)

Total number abnormal cases 137 (38 %)
aOne case showed also isochromosome Xp (case published before in [51])
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conflicting conclusions [42, 43]. These differences in fre-
quencies of chromosomal aberrations in published co-
horts were observed before [42] and it may be a
consequence of both cohort selection and differences in
array design. Many of previously reported cohorts were
either retrospectively tested and highly selected [38, 39]
or included a heterogeneous group of fetuses with and
without additional ultrasound anomalies detected in
both first and second trimester [36, 38, 44, 45]. Our
results show that the prevalence of submicroscopic aber-
rations in fetuses with enlarged NT resembles the preva-
lence in fetuses without ultrasound anomalies. This
confirms previous results published by Huang and col-
leagues [39]. Therefore, in our opinion larger unselected
cohorts with enlarged NT should be published to assess
the actual risk of a pathogenic submicroscopic unbal-
anced chromosome aberration when an enlarged NT is
diagnosed in the first trimester.

Susceptibility loci for neurodevelopmental disorders
We did not take the susceptibility loci for neurodevelop-
mental disorders into account for the calculations shown
in Table 3. Susceptibility CNVs are quite often found in
prenatal array testing [46], however there is no study
that showed any relationship with an enlarged NT. Find-
ing additional predisposition factors may play a role in
decision making in pregnancy, however it is less likely
that one would choose invasive testing with a primary
aim to investigate these. Therefore we assume that miss-
ing these findings is not the most important incentive
for deciding on the prenatal test. Moreover the fre-
quency of susceptibility CNVs in this cohort (0.8 % 3/
362) resembles more the frequency in fetuses without

ultrasound anomalies (1.3 %) [47] than those with ultra-
sound anomalies (2.7 %) [10].

Conclusions
Since most (73 %; 100/137) chromosome aberrations in
cases of an enlarged NT (≥3.5 mm) in the first trimester
involved trisomy 21, 18 and 13, NIPT at first sight seems
to be an appropriate test. However, our study confirms
the previously published data by Lichtenbelt and col-
leagues [48] and shows that because of current limitations
of NIPT (depending on the type of analysis) in ca. 2–10 %
of cases with an enlarged NT a chromosome aberration
will be missed by non-invasive testing. Moreover since the
risk for a chromosome aberration is high (1:3) and since
aberrant NIPT requires confirmatory studies due to the
origin of the cfDNA, therefore NIPT as compared to inva-
sive testing will delay a final diagnosis in about 30 % of
patients. The limitations of NIPT should be clearly ad-
dressed in the pre-test counseling: possible diagnostic
delay, the risk for false negative and false positive results
and the fact that false-positive cases of monosomy X in
enlarged NT fetuses may cause additional anxiety.
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