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Abstract 

Background:  Compilation of emission inventories (EIs) for cities is a whole new challenge to assess the subnational 
climate mitigation effort under the Paris Climate Agreement. Some cities have started compiling EIs, often following a 
global community protocol. However, EIs are often difficult to systematically examine because of the ways they were 
compiled (data collection and emission calculation) and reported (sector definition and direct vs consumption). In 
addition, such EI estimates are not readily applicable to objective evaluation using modeling and observations due to 
the lack of spatial emission extents. City emission estimates used in the science community are often based on down-
scaled gridded EIs, while the accuracy of the downscaled emissions at city level is not fully assessed.

Results:  This study attempts to assess the utility of the downscaled emissions at city level. We collected EIs from 14 
major global cities and compare them to the estimates from a global high-resolution fossil fuel CO2 emission data 
product (ODIAC) commonly used in the science research community. We made necessary adjustments to the esti-
mates to make our comparison as reasonable as possible. We found that the two methods produce very close area-
wide emission estimates for Shanghai and Delhi (< 10% difference), and reach good consistency in half of the cities 
examined (< 30% difference). The ODIAC dataset exhibits a much higher emission compared to inventory estimates in 
Cape Town (+ 148%), Sao Paulo (+ 43%) and Beijing (+ 40%), possibly related to poor correlation between nightlight 
intensity with human activity, such as the high-emission and low-lighting industrial parks in developing countries. On 
the other hand, ODIAC shows lower estimates in Manhattan (− 62%), New York City (− 45%), Washington D.C. (− 42%) 
and Toronto (− 33%), all located in North America, which may be attributable to an underestimation of residential 
emissions from heating in ODIAC’s nightlight-based approach, and an overestimation of emission from ground trans-
portation in registered vehicles statistics of inventory estimates.

Conclusions:  The relatively good agreement suggests that the ODIAC data product could potentially be used as a 
first source for prior estimate of city-level CO2 emission, which is valuable for atmosphere CO2 inversion modeling and 
comparing with satellite CO2 observations. Our compilation of in-boundary emission estimates for 14 cities con-
tributes towards establishing an accurate inventory in-boundary global city carbon emission dataset, necessary for 
accountable local climate mitigation policies in the future.
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Background
Currently 55% of the global population lives in cities in 
2018, and the proportion will be 68% by 2050 [1]. With 
a mere 1% of global land area, cities consume 240EJ 
energy yearly, and are projected to consume 500–1000EJ 
in 2100 [2, 3]. Most of this energy is from burning fossil 
fuels, emitting large quantities of CO2 that continues to 
warm the planet. Therefore, constructing effective plans 
to reduce emission in cities is a top priority at present. 
Many cities around the world have actively committed to 
reduce CO2 emission, often in the form of coordinated 
efforts such as the network of C40 cities (https​://www.
c40.org/) and the global covenant of mayors for climate 
and energy (https​://www.globa​lcove​nanto​fmayo​rs.org/).

A key demand for the science community is to accu-
rately monitor changes of greenhouse gas (GHG) emis-
sion. It would be the foundation to directly gauge the 
effectiveness in various mitigation policies implemented 
by cities and regions worldwide. In addition, such sci-
ence-based GHG monitoring will support global climate 
change negotiations to assure the accuracy of reported 
emissions [4]. Focused efforts on estimating city CO2 
emission flux has been carried out for some cities, e.g. 
Megacities over Los Angeles [5], INFLUX over Indian-
apolis [6], and CO2-Megaparis over Paris [7]. These city-
scale projects usually require multiple CO2 towers and/or 
flight campaigns to constrain spatial flux distribution of 
the city [8], and mesoscale atmospheric inversion mod-
eling is often employed to derive spatial flux distribution 
from CO2 concentration measurements and wind. They 
provide much needed data for top-down estimate of city 
emissions, however, the labor and economic cost of such 
projects could be prohibitively high to scale up to a large 
number of additional cities for long-term observations, 
especially for megacities in developing countries whose 
role would be critical in global climate mitigation efforts.

Top-down city emission estimates could potentially be 
bolstered by the recent development and deployment of 
carbon observing satellites from the United States, Euro-
pean Union, Japan and China, including NASA’s Orbiting 
Carbon Observatory 2 (OCO-2) satellite. These satellites 
show promising aspects of directly measuring the spati-
otemporal regional changes of CO2 concentrations [9, 
10]. For example, OCO-2 is shown to be able to differ-
entiate CO2 concentrations at very high temporal and 
spatial resolution [11], more suitable for local source 
emission estimations than GOSAT [12], and it has been 
applied to estimate emission at city scale [13, 14]. While 
OCO-2 has some limitations on city scale including its 
spatial and temporal coverage, other existing and planned 
carbon monitoring satellites such as TanSat (in orbit 
since 2017), OCO-3 (in orbit since 2019) and GeoCar-
bon (expected 2023) could potentially enable estimation 

of CO2 emission in an unprecedented number of cities 
worldwide. Through atmospheric inversion methods, 
there is great potential to provide an independent estima-
tion on the changes in fossil fuel emission at high spatial 
resolution based on satellite data, greatly supplementing 
the sparse flux tower measurements on the ground.

In the meantime, cities have started to collect emission 
inventory data that contribute to bottom-up estimates 
of emissions, which are usually derived based on various 
emission activity data such as transportation, electricity 
generation, industry, and heating. Bottom-up estimates 
are relatively accurate at global level, and at national level 
for developed countries [15]. At the city scale, although 
emission statistics have been reported for some cities 
around the world [16–20], in many developing coun-
tries the statistical infrastructure required for bottom-up 
inventory is still lacking. Additionally, comparing existing 
city emission statistics with top-down estimates could be 
difficult, because the city emission statistics are often not 
reported in a way that is directly comparable to top-down 
estimates. An exception is the Hestia data product [21], 
which provides spatiotemporally-resolved bottom-up 
estimate of fossil fuel CO2 emissions. However, the Hes-
tia approach requires lengthy development time, such 
that the data is only limited to four U.S. cities [22]. The 
World Business Council for Sustainable Development 
and World Resources Institute has defined three differ-
ent scopes for fossil fuel emissions from different cities 
[17, 23, 24]. Scope 1 refers to direct emissions produced 
in city boundaries mainly from fossil fuel combustion, 
transportation, industrial processes and production, land 
use and waste. Scope 2 emissions are associated with 
total electricity consumed in cities and regions generated 
in and out-of-boundary. Scope 3 include GHG attribut-
able to cities emitted out of city boundaries such as emis-
sions generated during a life-cycle process of production 
chain, upstream emissions from power plants and out-of-
boundary aviation and marine emissions (Fig. 1). For the 
carbon monitoring community, the most relevant scope 
is scope 1, which represents direct emission within city 
boundaries, because the spatial information for scope 2 
and 3 emissions is not clear. Therefore, satellite-based 
estimates cannot track and be compared with the out-of-
boundary part of scope 2 and 3 emissions for cities. How-
ever, the currently available city-scale inventory estimates 
are mostly for scope 2 and 3. Due to the nature of data 
collection (for example, electricity bills do not differenti-
ate whether power is generated within cities), we do not 
yet have a global base of scope 1 emission in large cities 
over the globe. The pressing need of estimating direct city 
emissions thus motivates us to derive in-boundary emis-
sions for some of world’s major cities based on reported 
inventory statistics in this study.

https://www.c40.org/
https://www.c40.org/
https://www.globalcovenantofmayors.org/
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The top-down and bottom-up estimates of city emis-
sions could potentially complement each other, and they 
are linked by atmospheric transport modeling [25, 26]. 
One of the connecting points between them is gridded 
emission inventories, which resolve the spatial pattern 
of CO2 emission within cities through spatial disaggrega-
tion of national emission statistics based on various prox-
ies (population, GDP, nighttime light intensity etc.) [27]. 
Several gridded CO2 emission estimates exist at different 
spatial resolution and coverage and have served as prior 
for atmospheric CO2 modeling in some case studies: 
CDIAC with global scale and 1° resolution [28], EDGAR 
[29] and FFDAS [30, 31] with global scale and 0.1° resolu-
tion, and Vulcan [32] with 0.1° resolution only covering 
the United States [33]. Only the Open source Data Inven-
tory of Anthropogenic CO2 emissions (ODIAC) dataset 
has both global coverage and 1  km resolution [34–37], 
making it suitable to represent the spatial emission pat-
tern at city scale and potentially comparable to top-down 
and bottom-up CO2 emission estimates over many cit-
ies worldwide. In fact, ODIAC data product have been 
successfully used for CO2 analyses at city scales [14, 25, 
38, 39]. For the carbon monitoring community, it is then 
important to understand the potential downscaling bias 
and uncertainty of the ODIAC emission dataset in differ-
ent cities in order to obtain robust results and make the 
estimates more policy relevant.

The focus of our study is to evaluate the downscaling 
bias and error of the ODIAC dataset over a number of 
large cities/metropolitan regions, by comparing with 
in-boundary emission derived from existing inventory 
city CO2 emission estimates. “Data and methods” sec-
tion describes the ODIAC dataset, boundaries of cities 
studied, and our methods and assumptions in deriving 
in-boundary CO2 emission based on inventory estimates 
reported in literature. “Results” section shows the results 
of comparing the two sources of city emission estimates. 
“Discussions” and Conclusions sections present discus-
sions and conclusions, respectively.

Data and methods
City inventory estimates
In this study, we first retrieved from literature [16, 17, 
23, 40–42] inventory emissions for 14 cities and metro-
politan areas with various economic status and climate 
regime across the world (Sao Paulo for the year 2011; 
Beijing, Shanghai, and Tokyo for the year 2006; Bang-
kok, Cape Town, Greater Paris, New York City, Man-
hattan, and Greater Toronto for the year 2005; Greater 
London for the year 2003; Delhi, Los Angeles, and Wash-
ington D.C. for the year 2000). Detailed information of 
these 14 cities and metropolitan regions were given in 
Table 1. Per capita city emission statistics were reported 
by sector (electricity, heating & industrial fuels, industrial 

Fig. 1  Schematic diagram: the three scopes of city emission. Only scope 1 emissions occurred within city boundary are comparable with inversion 
results based on observations
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processes, ground transportation, waste, aviation and 
marine) for 10 cities (excluding Delhi, Tokyo, Manhattan 
and Washington D.C.) in literature [42] (see Additional 
file 1: Table S1 excluding waste, aviation and marine). For 
Delhi, Tokyo and Washington D.C., some sectors (elec-
tricity, heating and industrial fuels, and ground trans-
portation) were reported as the energy sector along with 
other sectors (industrial processes, aviation, marine, agri-
culture, forestry, other land-use and waste) in literature 
[17] (see Additional file 1: Table S1 excluding agriculture, 
forestry, other land-use, aviation, marine, and waste). We 
added Manhattan, the central borough of New York City, 
as an additional example of small city area despite of no 
direct data, where we assumed its per capita sector emis-
sions were the same as the New York City.

The sector inventory city emissions (primarily elec-
tricity, heating & industrial fuels, industrial processes, 
ground transportation) reported in literature were deter-
mined by multiplying activity levels data (e.g., fossil fuel 
combustion quantity) by appropriate emissions factors 
(e.g., emissions per fossil fuel combustion quantity). 
Here emission factors were based on the revised Inter-
governmental Panel on Climate Change (IPCC) defaults 
or corresponding national values for local city and the 
activity levels data were adopt from local data specifi-
cally (e.g., energy statistical yearbook for cities). The 
detailed calculations and data sources by sectors used in 
this study are shown in Additional file 1: Table S2. Due to 

its importance in understanding the uncertainties in the 
reported data, based on descriptions in related literature, 
below we provide a brief synthesis for the main sectors 
how the emissions are calculated in inventory estimates.

Emissions associated with electricity are calculated as 
the product of electricity consumption (GWh), electri-
cal line losses factor (including line losses in transmis-
sion and distribution), and the emissions factors (tCO2e/
GWh). The electricity consumption data are collected by 
final users, namely, from local aggregation of consumer 
bills for electricity (excluding the electricity consumption 
from combined heat and power (CHP) plants in the city 
boundary and electricity provided by waste combustion, 
which are conventionally included in heating fuels and 
waste sectors, respectively). The city-specific emission 
factors vary widely depending on the mix of local power 
plants. Note that inventory electricity emission estimates 
include emissions from power plants outside of city 
boundary.

Emissions from ground transportation primarily 
include gasoline and diesel, with natural gas and fuel 
oil consumptions of small amounts, but do not include 
emissions produced by electrified modes of transporta-
tion (e.g., subways) which is allocated in the electricity 
sector. Emissions (tCO2e) for ground transportation are 
computed to sum all emissions from fossil fuel consump-
tions by ground transportation sector, after multiply-
ing energy contents (TJ) of fuels by respective emissions 

Table 1  Information of 14 Cities and metropolitan regions in this study

The population data for Delhi, Tokyo and Washington D.C. were taken from Kennedy et al. [17], for Manhattan was adopt from NYC Open Data [58], the population 
data for other 10 cities were used from Kennedy et al. [42]. Area information was based on GADM database except City of Cape Town and Washington D.C. The official 
area boundary from local governmental open source online for Cape Town [46] and Washington D.C. [47] were used in this study directly
a  Area boundary for Sao Paulo referred to Ferreira MJ [59]

City or metropolitan region Definition Population (Kennedy) Year (Kennedy) Area (km2) Total 
in-boundary 
FFE (MtCO2)

In-boundary 
FFE (tCO2/cap)

Bangkok Bangkok Metropolis 5,658,953 2005 1574 27.53 4.86

Beijing Beijing Municipality 15,810,000 2006 16,424 115.19 7.29

Shanghai Shanghai Municipality 18,150,000 2006 6905 179.91 9.91

Delhi Metropolis 13,200,000 2000 1508 12.72 0.96

Cape Town City of Cape Town 
Metropolitan 
Municipality

3,497,097 2005 2451 6.12 1.75

Sao Paulo Municipality 11,300,000 2011 1531a 10.58 0.94

Tokyo Tokyo Metropolis 12,677,921 2006 1805 39.94 3.15

Greater Paris Ile de France 11,532,398 2005 12,058 50.30 4.36

Greater London Greater London 7,364,100 2003 1604 32.36 4.39

Los Angeles County 9,519,338 2000 10,612 77.64 8.16

Manhattan Borough 1,570,274 2005 69 7.44 4.74

New York City City 8,170,000 2005 807 43.13 5.28

Washington D.C. District of Columbia 571,723 2000 177.5 6.81 11.91

Greater Toronto Greater Toronto 5,555,912 2005 7636 44.35 7.98
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factors (tCO2e/TJ) from IPCC for each fuel type. The 
energy contents are calculated as the product of net cal-
orific value (TJ/m3) and fossil fuel consumption (ML). 
Three different methods are employed to calculate the 
fossil fuel consumption: (1) local fuel sales data where 
available, this is preferred by the IPCC and appropriate 
where the number of daily commuter trips across the city 
boundary is smaller than the number of trips within the 
city; (2) vehicle kilometres travelled (VKT) (billion km, 
values derived from modeling or vehicle counting sur-
veys, vary by city) divided by fuel efficiency for specific 
vehicles (km/L). This approach is appropriate for central 
cities where the number of cross-boundary commuter 
trips is large and the fuel sales may occur out of the cen-
tral city boundary; (3) scale fossil fuel consumptions 
from state, provincial, or wider regional data based on 
the assumption that vehicles in the city travel the same 
average annual kilometres as in the wider region, if there 
is no reliable data in the city. The scaling factor may be 
determined by motor vehicle registrations or population 
corresponding closely to the total travel commute times.

Emissions in the category of heating and industrial 
fuels include fossil fuel consumption for heating demands 
(e.g., district heating, cooking, and water heating), fossil 
fuels consumed by CHP facilities within the urban region 
(primarily natural gas and oil), and combustion of fossil 
fuels in industry; Emissions from industrial processes 
are non-combustion emissions released during chemi-
cal processes (e.g., cement manufacturing and limestone 
consumption), which can be determined as a product of 
the product quantity (Mt) and the emission factor (kg 
CO2/t) of the process.

ODIAC CO2 emission data
In order to estimate fossil fuel CO2 emissions in the 
boundary of each city or metropolis, we utilized the 
2017 version of ODIAC CO2 emissions data which was 
available at the time of this study [4, 34–37]. This global 
monthly CO2 emission dataset spans from 2000 to 2017 
and downscales the national level emission statistics 
from the Carbon Dioxide Information Analysis Center 
(CDIAC, version 2014) [28] and the global fuel statisti-
cal review data from the British Petroleum Company 
(after 2014) to 1 km resolution. The downscaling is based 
on 1  km globally nighttime light data from the Defense 
Meteorological Satellite Program (DMSP) satellite and 
worldwide large point emission sources (power plants/
companies) from Carbon Monitoring for Action database 
(CARMA) [43]. CO2 emission at country level was first 
assigned at manually corrected geographical locations of 
large point sources according to their emission quanti-
ties reported in CARMA. Then the remaining non-point 
source emission (industrial, commercial and household 

consumption, land transportation) was distributed 
using nighttime light intensity as surrogate, assuming 
that nighttime light intensity correlates with CO2 emis-
sions directly and the correlation was uniform and lin-
ear across countries worldwide. Note that although the 
emissions from cement production should be regarded 
as point sources, these parts of emissions were distrib-
uted as nonpoint source emissions in ODIAC due to the 
lack of data [34]. This might show up as a small difference 
between ODIAC and emissions reported by cities.

City boundaries data
In order to have a consistent comparison, we identified 
the city boundaries to be as close to the boundaries used 
in inventory estimates in literature as possible. Since the 
exact city boundaries used in such literature are often 
not clear, we relied on listed city name and area meta-
data for helping to identify consistent city boundaries. 
We started from the database of Global Administra-
tive Areas (GADM) version 2.0 [44] to define most cit-
ies’ boundary excluding Cape Town (City of Cape Town 
Metropolitan Municipality) and Washington D.C. This 
database features high-resolution vector-form bound-
ary data, coming with three main levels for most regions: 
country level (L0), state/province level (L1), and county/
city level (L2). The extracted city areas from GADM were 
then compared with corresponding city area information 
listed in inventory estimates literature [16, 45]. We found 
that the city areas differed on average only by 2.3%, with 
largest difference of 8.2% for Shanghai (see Additional 
file  1: Table  S3). For Cape Town and Washington D.C., 
in order to have boundaries close to reported city area in 
inventory literature (Additional file 1: Table S3), we used 
instead the boundaries from Municipal Demarcation 
Board [46] and Washington D.C. government open data-
sets [47] separately.

After identifying the boundaries for the 14 city and 
metropolis areas, we computed the cities’ total CO2 
emission by overlaying with both total emission and 
point source emission data from ODIAC, for years cor-
responding to those reported in inventory studies. The 
spatial patterns of ODIAC city emissions and the city 
boundaries were presented in Fig.  2 (ODIAC data with 
years corresponding to local inventory estimates, as listed 
in Table 1, were used in this figure), and per capita large 
point source emissions in each city were listed in Addi-
tional file 1: Table S1.

Calculation of in‑boundary CO2 emission
For inventory estimates, we first determined which sec-
tor or part of sector contributes to cities’ total in-bound-
ary CO2 emissions. For most sectors, although the sector 
emissions were reported as GHG emission instead of 
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CO2 emissions, we used the data as CO2 emissions by 
neglecting (except for the waste sector) non-CO2 gases 
emitted from the sectors (for simplicity, we refer to fossil 
fuel CO2 emissions as emissions in most cases except for 

waste). Sectors of heating and industrial fuels, industrial 
processes are more straightforward and could generally 
be considered to occur within city boundaries, there-
fore we directly used their numbers as reported from 

Fig. 2  Spatial distributions of fossil fuel emissions (tC/grid) for 14 cities and metropolitan regions in the year listed in Table 1 based on the ODIAC 
inventory (1 km resolution). Manhattan is located in the upper left part in New York City showed in region (i). Grid points with high emissions 
(shown red) clearly represent some large point sources. Three scale bars were chosen in this distribution. Scale bar (1) corresponds to region (a–e), 
scale bar (2) to region (f) to (l) and scale bar (3) to Washington D.C.
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literature. A major part of emissions from ground trans-
portation likely occurs in large city areas, and because 
better alternative estimates do not exist at global scale, 
we also treated reported emissions from ground trans-
portation as in-boundary emission. For the electricity 
sector, reported electricity consumption statistics nor-
mally include a significant part of electricity generated 
outside of the consumer city. For example, 71% of total 
electricity in Beijing was provided from power plants 
out of its boundary in 2006 [48]. Therefore, we adopt an 
alternative way to estimate in-boundary city electricity 
emissions. For the aviation and marine transportation 
sectors, the city statistics were calculated in terms of full 
volumes of fuels loaded at the airports or harbors of the 
city. However, most fuels were consumed and emitted as 
GHG outside of city boundaries; only very limited emis-
sions were produced from take-offs and landings within 
the city boundaries, therefore we excluded these sectors 
from in-boundary city emissions. As for emissions from 
waste, since most is methane as a result of organic waste 
decomposing at low oxygen, waste emission was also 
excluded in counting in-boundary city CO2 emissions.

For in-boundary emission from the electricity sec-
tor, instead of using reported inventory data, we relied 
on the CARMA large point sources (power plant) emis-
sion database, which was manually corrected for location 
errors and provided as an annual point source emission 
layer from ODIAC. By overlaying cities’ boundaries with 
the point source emission layer, we computed electric-
ity in-boundary emission in the same year as the inven-
tory sector emission statistics for each city. For example, 
for Beijing in 2006, we found the in-boundary emission 
contributes to 29% of reported emission from Beijing’s 
electricity sector, consistent with previous literature 
[48]. Then we added the in-boundary large point source 
emission with emissions from heating and industrial 
fuels, industrial processes and ground transportation 
as reported from literature to determine the inventory 
in-boundary emission for each city. Note that our com-
parison between ODIAC and inventory estimates do not 
include differences in the electricity sector as the same 
point source dataset was used in both estimates.

For calculation of emissions from ground transporta-
tion, the method based on fuel sales data was applied 
to Bangkok, Cape Town, Beijing, Shanghai, Greater 
Toronto, and Sao Paulo; the VKT method was estab-
lished for Greater London, and New York City; and 
the scaling approach was used for Los Angeles [23]. 
The method choices of fuel consumption calculation 
for ground transportation in other cities are unknown 
to the authors. Data for emissions from industrial pro-
cesses is only available for eight cities: Beijing, Shang-
hai, Sao Paulo, Tokyo, Greater Paris, Los Angeles, 

Washington D.C., and Greater Toronto. For Bangkok, 
Delhi, Cape Town, Greater London, and New York 
City, there are no recorded emissions. The magnitude 
of emissions in this category is usually small, but emis-
sions in specific cities are quite substantial. For exam-
ple, emissions from industrial facilities in Greater 
Toronto are larger than 100,000 t CO2e reported by 
Environment Canada and could not be neglected [23].

For most of the cities studied, all sector emission data 
are available in literature, and we assigned zero value to 
“unknown” or “negligible” in the columns named indus-
trial processes and marine in the tables. For Delhi, Tokyo 
and Washington D.C., we proxied the fractions of elec-
tricity sector emission from their reported emission for 
the total energy sector (electricity, heating and industrial 
fuels and ground transportation), by referring to cities 
with similar geographical location and social economic 
development level. In general, larger emission proportion 
from electricity associates with less clean energy sources 
used to generate electricity in cities. For Delhi where coal 
is the main fuel supply for electricity generation [49], we 
chose the value of 45% for proportion of electricity in 
energy. This was slightly higher than some other big cities 
in the Asian region, such as Beijing and Shanghai, which 
were also densely-populated megacities plagued by poor 
air quality. For Washington D.C., we assumed 35% as 
the proportion, a value in between emission percent-
ages for the other two U.S. cities studied (New York City 
and Los Angeles). Similarly, for Tokyo, we assume 36% of 
emissions from energy contributed to electricity sector 
emission. This value was chosen to be roughly the aver-
age of some megacities in developed countries such as 
New York City, Los Angeles and Greater London. These 
values should be treated with caution as actual propor-
tion values may easily differ from our partially subjec-
tive assumptions by 10% or more, so results from Delhi, 
Tokyo, Manhattan and Washington D.C. might not be 
as reliable as the other ten cities. Nevertheless, sensitiv-
ity analyses show our main results of comparing the two 
emission estimates remain largely the same with different 
proportion assumptions (see Additional file 1: Table S4).

After the emissions of electricity division from total 
energy in Delhi, Washington D.C., Manhattan and 
Tokyo, like the other cities we added emission from 
large point sources to emission from remainder of 
energy consumption and industrial processes to obtain 
per capita in-boundary CO2 emissions for these cit-
ies. Then for the total in-boundary emission in the 14 
cities and regions, we multiplied the reported popula-
tion data in the same year reported in literature [17, 42] 
with the per capita CO2 emissions in each city/region 
to compare with ODIAC-based in-boundary city emis-
sion estimates.
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Results
Inventory scope 2 and in‑boundary city emissions
Per capita emissions for these 14 cities and regions are 
shown in Fig. 3. The scope 2 emissions (left bar) display 
a wide range from 1.39 to 19.3 tCO2 (tCO2 equivalent 
for waste) per capita. The U.S. capital has the highest per 
capita emissions by a wide margin, followed by Los Ange-
les and Shanghai, while Sao Paulo has the lowest emis-
sions thanks to its reliant on renewable energy sources 
such as hydropower and biogas. The high per capita emis-
sions in Washington D.C. come from a large contribution 
of ground transportation, heating and industrial fuels, 
electricity consumption and (to a lesser extent) waste. 
It is also the top emitter among these cities and regions 
with in-boundary emissions of 11.9 tCO2/cap, with the 
next highest city being Shanghai (9.9 tCO2/cap) followed 
by Los Angeles at 8.2 tCO2/cap. The order reversal of Los 
Angeles and Shanghai is related to the larger emissions 
from international marine and aviation in Los Angeles.

There are a couple of interesting observations from 
the sector specific emissions (see Fig. 3 and Additional 
file  1: Table  S1). Per capita ground transportation 
emissions are generally high in Washington D.C., Los 
Angeles and greater Toronto, all North America cities 
where commuting with cars is probably more attrac-
tive than public transportation due to high car owner-
ship, relatively low population density and/or people 
live further away from their workplaces. Emissions 
from industrial processes are generally small in cities: 

the highest number is found in Shanghai (1.25 t CO2/
cap), a city known for its strong industry presence with 
large production of steel, cars etc.; Beijing and Greater 
Toronto are the other cities that exceed 0.5 t CO2/cap 
emission for industrial processes. For the electricity 
sector, comparing emission from large point sources 
within city boundaries with inventory statistics show 
interesting differences in cities’ reliance on external 
regions to provide power. While Washington D.C. has 
the largest CO2 emissions from electricity sector (6.3 t 
CO2/cap), most of the electricity consumed is not gen-
erated by large power plants in the city boundary (only 
0.21 t CO2/cap). Bangkok, Manhattan, Cape Town and 
greater Toronto also rely on out-of-boundary or non-
large point sources to meet most (over 90%) electricity 
consumption demands. In contrast, partially thanks to 
its strong industry, Shanghai has the highest in-bound-
ary large point sources emissions (2.73 t CO2/cap, 59% 
of its electricity consumption), near 65% higher than 
the next city Los Angeles (1.65 t CO2/cap, 67% of its 
electricity consumption), and a factor of 54 more than 
the lowest city of this category (Cape Town, 0.05 t CO2/
cap). The largest CO2 emissions per capita from avia-
tion in Greater London and from marine in Los Ange-
les reflect the roles of Greater London and Los Angeles 
as international gateway centers. The high aviation 
emission in Bangkok is probably related to its abundant 
tourism.

Fig. 3  Emissions per capita (tCO2/cap) for the 14 cities and regions worldwide. Left bar: emission statistics in Scope 2 adapted from the prior 
literature [17, 42], composed of emissions from heating and industrial fuels, industrial processes, ground transportation, electricity, waste, aviation 
and marine; Right bar: in-boundary (Scope 1) emissions for the same cities and regions, where in-boundary large point source emission totals 
replaced emission from the electricity sector
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Comparing ODIAC emissions to local inventory estimates
Comparison of per capita and total CO2 emissions 
based on ODIAC and in-boundary CO2 emissions are 
illustrated in Fig.  4a, b, respectively. Despite distinct 
approaches in city emission estimates, the total and 
per capita emissions in half of the cities and regions are 

remarkably similar, with less than 30% difference (Bang-
kok, Shanghai, Delhi, Tokyo, Greater Paris, Greater 
London, and Los Angeles). The ODIAC-based city emis-
sions range from 0.9 t CO2/cap in Delhi to 10.4 t CO2/
cap in Shanghai. Meanwhile, in-boundary CO2 emis-
sions per capita in Delhi and in Shanghai are 1.0 t CO2/

Fig. 4  a Per capita emissions for the 14 cities and metropolitan regions, based on in-boundary inventory (green) fossil fuel emissions (FFE) and 
ODIAC dataset (blue) (tCO2/cap). b Total CO2 emissions for cities and metropolitan regions based on in-boundary fossil fuel emission (green) and 
ODIAC dataset (blue) (MtCO2)
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cap and 9.9 t CO2/cap, respectively, which are very close 
to ODIAC emissions with less than 10% difference. The 
CO2 emissions per capita based on ODIAC is notably 
higher than in-boundary CO2 emissions in Cape Town, 
Sao Paulo, and Beijing, with a difference of 148%, 43% 
and 40%, respectively. On the other hand, the ODIAC 
dataset exhibits lower estimates in North American cities 
and regions: Manhattan (− 62%), New York City (− 45%), 
Washington D.C. (− 42%), and Greater Toronto (− 33%).

The ODIAC nighttime light-based emission disaggre-
gation is known to work less well in developing coun-
tries compared to developed countries, as the nightlight 
intensity sometime correlates poorly with human activ-
ity in developing countries [50, 51]. In general, lots of 
low emissions in non-urban areas are missed in the 
light-based emission disaggregation for developing coun-
tries, and they tend to be assigned to cities instead [34]. 
The manufacturing industry tends to have relatively 
high emission, and the industrial fossil fuel combustion 
and industrial processes may take place outside big cit-
ies. Factories in developing countries may also not be so 
well lit as in developed countries, especially compared 
to their relatively high emission output. This may partly 
explain the overestimation of ODIAC-based city CO2 
emissions in the central metropolis cities of developing 
countries such as Beijing, Cape Town and Sao Paulo. This 
is especially the case for Cape Town (the city with larg-
est discrepancy), the well-lit tourist and high-tech hub 
of South Africa, where few power plants (see Table 1) or 
factories are located. However, there does not seem to 
have a consistent pattern as the two estimates agree rea-
sonably well in some other cities in developing countries 
such as Bangkok, Delhi and Shanghai. In those cases, a 
closer examination is needed. Shanghai for example has 
a strong industry within the city border, which may lead 
to error-offsetting that ends up producing a similar num-
ber as ODIAC-based estimate. And most power plants 
and vehicles agglomeration within Delhi can contribute 
to error-offsetting.

On the other hand, ODIAC-based emission may 
underestimate the emissions in North American cities/
regions, especially in cold regions, as this nightlight-
based approach might underestimate emission from 
heating: more heating consumption is needed in cities 
with cold winters, while the cities’ lights are not neces-
sarily brighter than southern cities where less heating 
is needed. Therefore, disaggregating non-point source 
emission from nighttime light alone in a large country 
with quite varied climate condition might lead to over-
estimating emission in warmer cities and underestimat-
ing emissions in colder cities, while ODIAC does include 
emission seasonality. Note that although the north-
ern cities may require less cooling in summer which 

potentially offset the emission from increased heating in 
winter, cooling consumes electricity which is not disag-
gregated based on nighttime light in ODIAC. Addition-
ally, in the case of Washington D.C. (to a lesser extent 
also Manhattan, New York City, and Greater Toronto), 
it is likely that in-boundary emissions might be overes-
timated because of the way ground transportation emis-
sion is calculated. In cities like Washington D.C. and New 
York City, vehicles registered there may travel not only in 
the limited city area but also in nearby states as the in-
city travel distance is short in general, therefore only part 
of the reported CO2 emissions from ground transporta-
tion may occur in the city. This effect is much weaker in 
larger city areas such as Los Angeles.

The total CO2 emissions based on ODIAC have a range 
of 2.8 MtCO2 in Manhattan to 189.1 MtCO2 in Shang-
hai, while the total in-boundary emissions range from 
6.1 MtCO2 in Cape Town to 179.9 MtCO2 in Shanghai 
(Fig.  4b). Total city emissions in Beijing and Shanghai 
stand out, as they are cities with largest total populations, 
even though their per capita emissions are comparable 
with some other cities in developed countries. The total 
emissions comparatively go down in Cape Town and 
Washington D.C., due to their relatively small population 
numbers.

Discussions
To our knowledge, the in-boundary emission estimates 
and comparison with ODIAC for 14 large cities and 
metropolis areas as presented in the study is one of 
the first at this scale, and the differences at city scale 
suggest some levels of confidence in using ODIAC 
dataset as a first prior for city emissions. We note 
that although a possible error under 30% or 10% seem 
fine given the relatively simple spatial disaggregation 
method employed in ODIAC, city emissions based on 
ODIAC may only track the long-term progress instead 
of year-to-year variations of emission related to emis-
sion reduction policies. In the data-rich U.S. recently 
there has been increasing effort to quantify emission 
at local scale. Gurney et  al. [22] compared ODIAC 
and the Hestia dataset in four American urban areas, 
and they found an even smaller whole-city difference 
(− 1.5%) for Los Angeles Basin. However, Gurney 
et  al. [21] reported that Hestia emissions are 10.7% 
larger than the local emission estimates in Los Ange-
les. Additionally, both the study area (17,795 km2 ver-
sus 10,612 km2 in our study) and year (2011 vs 2000 in 
our study) are different from our study. The whole-city 
difference in other cities were also found to be small 
and within the range of our estimates, up to + 20.8% 
for Salt Lake City. Although confined to four U.S. cit-
ies due to lengthy development time requirements, the 
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high spatiotemporal details of the Hestia dataset allows 
for grid level analyses and spatial correlation compu-
tation, which shows much larger differences at 1  km 
grid level, with the median difference ranged from 47 
to 84% (largest discrepancies were dominated by the 
on-road sector and large point sources), and moderate 
spatial correlations between 0.34 and 0.68. Oda et  al. 
[4] implemented a similar comparison using ODIAC 
and a national-level multi-resolution inventory over 
the domain of Poland. The study showed ~ 40% pixel 
level differences over the cities. New sub-city bottom-
up inventory estimates similar to Hestia, especially in 
megacities from developing countries, would provide 
much needed insights on the error estimations for 
local emission inventories.

In this study, we have so far focused on the poten-
tial downscaling biases and errors of the ODIAC data-
set when used on city scale, in order to understand its 
difference with local inventory-based estimates. It is 
worth noting that many fundamental difficulties exist 
when using ODIAC, which was not originally designed 
for urban CO2 emission monitoring purposes [4, 22]. 
Also, the nighttime light data ODIAC use also has 
some minor location errors/shifts that may affect in-
boundary emission estimates at city scale, especially 
for point sources at the border of cities. Nevertheless, 
we observed some general patterns in the differences 
which, when combined with known shortcomings 
of ODIAC data, could be plausibly explained. How-
ever, we acknowledge that our assumptions to derive 
in-boundary city emissions based on reported sector 
emission data could potentially render the inventory-
based city emissions equally uncertain, therefore the 
differences in these two emission estimates (especially 
for the few cities with aggregated sector emission data) 
need to be interpreted with care.

Uncertainty estimation for inventory CO2 emissions 
at city level is challenging as the data are only available 
from a few sources, for which the uncertainty estima-
tions are rarely reported, and usually rely on “expert 
judgment”. Nevertheless, it is critical and necessary 
to evaluate the uncertainties of emissions inventories 
especially at local and city scales. While it is beyond our 
capacity to quantify uncertainty of inventory estimates 
for every sectors in each city, in the following part of 
this section, we attempt to quantify some uncertainties 
for fossil fuel CO2 inventories at city scale, by compar-
ing in-boundary inventory emission estimates used in 
this study with some other sector inventory emission 
products in the United States. Specifically, we focus on 
ground transportation and electricity sectors. We also 
discuss the important issue of inventory data version-
ing and other sources of uncertainties.

Uncertainty associated with emissions from ground 
transportation
Our assumption that inventory ground transportation 
emission is in-boundary emission may cause significant 
errors especially in smaller cities, as a considerable por-
tion of vehicles refuel or travel can occur outside city 
boundaries, which is not easily differentiable from local 
activity data. In order to evaluate the uncertainty from 
ground transportation emissions, we compared inventory 
city emissions from ground transportation sector with 
emissions reported in the database of Road Transporta-
tion Emissions (DARTE) in the same year for the four 
U.S. cities (Washington D.C. and Los Angeles in 2000, 
and New York City and Manhattan in 2005). DARTE is 
an emission inventory which can estimate CO2 emis-
sions from US road transportation with an annual 1 km 
resolution for 1980–2012, based on archived roadway-
level vehicle traffic data [52, 53], therefore it could poten-
tially provide more accurate in-boundary emission from 
ground transportation for U.S. cities. The inventory data 
shows higher ground transportation CO2 emissions con-
sistently in all of these four American cities and regions, 
relative to DARTE (see Additional file  1: Table  S8). The 
relative differences in New York City and Los Angeles, 
computed by (inventory data-DARTE)/DARTE *100%, 
are 7.9% and 9.3%, respectively, while the relative dif-
ferences are more than 100% in Washington D.C. and 
Manhattan. The results imply that uncertainty of CO2 
emissions estimation by ground transportation sector at 
larger city or region level can be much less than smaller 
city or county.

Uncertainty associated with emissions from electricity 
sector
While the city emission differences in our comparison 
do not directly come from the electricity sector (as both 
in-boundary estimates and estimates from ODIAC use 
the same large point source emission layer), it is impor-
tant to discuss whether the CARMA data is sufficient 
for estimating in-boundary emission from electricity. To 
evaluate this uncertainty source, we compared power 
plant emissions from the CARMA (Carbon Monitoring 
for Action) database adopted in ODIAC and the eGRID 
(the Emissions & Generation Resource Integrate Data-
base) [54] published by the United States Environmental 
Protection Agency for four American cities and regions 
(New York City, Washington D.C., Los Angeles, and 
Manhattan). The eGRID database is an inventory of elec-
tric power systems, contains emission data of all electric 
power sectors and power plant’s physical location infor-
mation in the United States, and can provide aggregated 
data by total, state, county and electric grid boundaries. 
We used emissions generated by individual power plant 
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from eGRID database for the year 2000 and 2005 to com-
pared with emissions from electricity based on CARMA/
ODIAC data for Washington D.C. and Los Angeles in 
2000, and New York City and Manhattan in 2005. The rel-
ative differences calculated as (CARMA-eGRID)/eGRID 
*100% are shown in Additional file  1: Table  S9. Emis-
sion in each city or county from CARMA is consistently 
lower than from eGRID. The largest relative difference 
is − 93.5% in Manhattan, while the least relative differ-
ence is − 7.2% in Los Angeles which features the larg-
est area of the four. Emissions from CARMA are lower 
by 66.6% in New York City and by 37.2% in Washington 
D.C. relative to the eGRID. The imprecise plant-specific 
location in CARMA may account for these differences. 
Wheeler and Ummel [43] also indicate that CARMA in 
some cases underestimate total emissions for smaller 
geographic regions because relevant geographic informa-
tion is sometimes unavailable, Therefore, the in-bound-
ary emission estimates for the electricity sector based on 
CARMA data may underestimate the actual in-boundary 
emission especially for small regions.

As we empirically estimated the fractions of emission 
from electricity sector for Delhi, Tokyo and Washington 
D.C. in absence of detailed data, for these three cities the 
fractional estimations also contribute to sources of uncer-
tainties in inventory in-boundary emissions. While we 
cannot provide an absolute uncertainty range as the three 
cities could potentially deviate outside the range based 
on similar cities, sensitivity analyses were performed on 
the empirical fraction assumptions. By applying the max-
imum/minimum electricity portion assumptions accord-
ing to similar cities, the difference between ODIAC and 
local inventory city in-boundary CO2 emission estimates 
are 7–16% for Delhi, 5–28% for Tokyo, and 38–49% for 
Washington D.C. (see Additional file 1: Table S4).

Uncertainty associated with data versioning
In inventory emission reporting, it is common to update 
previous emission estimates, however, the data version-
ing is often poorly documented; emission data for some 
sectors could be collected in prior data year, and there 
could also be errors in previous data versions [4]. While 
it would be quite difficult to track down data versioning 
for the inventory emission sources used in this study (the 
differences caused by an offset of 1 or 2  years in some 
sectors will also likely not be substantial relative to the 
city-scale emission difference between inventory and 
ODIAC estimates), we believe a better reporting with 
clear data versioning is urgently needed for transparent 
emission accounting in inventory compilation efforts. 
Data errors can be large in some cases, for example, Ken-
nedy et al. [55] reported erratum about fuel consumption 
data for the city of Cape Town in 2005. Some of the fuel 

data in the previously paper was erroneous due to the 
relative data refers to national sales data from local refin-
ery in the city of Cape Town, not required fuel consump-
tion data in the city. The revised emissions are reported 
as 7.6 t CO2 e/cap in Cape Town, much lower than the 
previous result of 11.6 t CO2 e/cap emissions by 34.5%. 
We adopted the revised data in our study, however, we 
foresee that such errors may recur in the future and could 
potentially greatly undermine emission reduction efforts 
from the cities; it is also potentially exploitable as some 
emission reduction may simply come from updating to a 
later data version. Therefore, we recommend systematic 
versioning of inventory emission data as a common prac-
tice to promote transparent city emission monitoring in 
the future.

Other uncertainty sources
In addition to the above uncertainties, there are uncer-
tainties associated with some other sources. Firstly, only 
a few government sources about emission are reported, 
and without reported estimates of uncertainties. In addi-
tion, no other data sets are available with these unknown 
uncertainties. For example, emissions by industrial pro-
cesses such as from the brick and clay plants in Cape 
Town are unknown. It’s uncertain whether the combus-
tion emissions during flaring are included and no other 
available data to estimate this uncertainty. Secondly, 
large uncertainty may exist for IPCC default emission 
factors, which will contribute to the uncertainties in 
this study. Liu et al. [56] found that the emission factors 
for coal in China are average 40% lower than the IPCC 
default emission factors. Shan et al. [57] also found that 
the aggregated CO2 emissions in China calculated by 
updated emission factors and the apparent energy con-
sumption are 12.69% lower than emissions calculated 
by IPCC default emission factors and the traditional 
approach. Multiple different emission estimation meth-
ods, accompanied by transparent documentation and 
data versioning, would be fundamental in quantifying 
data uncertainties and making emission reduction goals 
trackable.

Conclusions
In this study we have summarized bottom-up in-bound-
ary city CO2 emissions estimates based on large point 
emission sources and inventory statistics for 14 large cit-
ies and metropolis areas across the globe. These city CO2 
emission statistics are compared with downscaled city 
emissions based on the ODIAC dataset. Results show 
that despite of mostly relying on satellite nighttime light 
data for spatial disaggregation of emissions, the ODIAC 
dataset agree with inventory-based in-boundary CO2 
emission reasonably well (difference within 30%) for half 
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of the cities examined. The relatively good agreement, in 
conjunction with ODIAC’s high spatial resolution (1 km) 
and timely update of its monthly global database, sug-
gest that the ODIAC dataset has promising potential as 
a good first source for prior estimate of city-level CO2 
emission, especially as the in-boundary city emission 
estimates, while urgently needed, are not easily available 
in all cities. The total and point source emission informa-
tion from ODIAC could be useful for inversion modeling 
and comparing with satellite CO2 observations.

However, there are still many uncertainties at city scale 
in both the inventory in-boundary city emission esti-
mates and ODIAC-based estimates. While we attempted 
to compile in-boundary estimates for 14 large cities and 
metropolis areas, more cities especially in the devel-
oping countries are needed in the comparison to fur-
ther improve our understanding on the uncertainties. 
Much effort is needed in the future towards establishing 
an accurate inventory in-boundary city carbon emis-
sion dataset with good global coverage, which would be 
highly valuable for evaluating the effectiveness of various 
emission reduction measures pledged at city scale. On 
the other hand, the 1  km ODIAC dataset will continue 
to evolve and improve on the potential shortcomings in 
the process of being applied in various carbon emission 
monitoring and modeling efforts and compared to other 
high-quality dataset at local scale. Through our pre-
liminary comparison effort, it is our hope to draw more 
attention from the community to city-scale in-boundary 
emissions calculation and more engagement with policy 
makers, which can add crucial contribution to account-
able local climate mitigation policies in the future.
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