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Abstract 

Background:  Compounds with the ability to scavenge reactive oxygen species (ROS) and inhibit tyrosinase may be 
useful for the treatment and prevention from ROS-related diseases. The number and location of phenolic hydroxyl of 
the flavonoids will significantly influence the inhibition of tyrosinase activity. Phenolic hydroxyl is indispensable to the 
antioxidant activity of flavonoids. Isoeugenol, shikonin, baicalein, rosmarinic acid, and dihydromyricetin have respec‑
tively one, two, three, four, or five phenolic hydroxyls. The different molecular structures with the similar structure to 
l-3,4-dihydroxyphenylalanine (l-DOPA) were expected to the different antityrosinase and antioxidant activities.

Methods:  This investigation tested the antityrosinase activity, the inhibition constant, and inhibition type of isoeuge‑
nol, shikonin, baicalein, rosmarinic acid, and dihydromyricetin. Molecular docking was examined by the Discovery 
Studio 2.5 (CDOCKER Dock, Dassault Systemes BIOVIA, USA). This experiment also examined the antioxidant effects 
of the five compounds on supercoiled pBR322 plasmid DNA, lipid peroxidation in rat liver mitochondria in vitro, and 
DPPH, ABTS, hydroxyl, or superoxide free radical scavenging activity in vitro.

Results:  The compounds exhibited good antityrosinase activities. Molecular docking results implied that the com‑
pounds could interact with the amino acid residues in the active site center of antityrosinase. These compounds also 
exhibited antioxidant effects on DPPH, ABTS, hydroxyl, or superoxide free radical scavenging activity in vitro, lipid 
peroxidation in rat liver mitochondria induced by Fe2+/vitamin C system in vitro, and supercoiled pBR322 plasmid 
DNA. The activity order is isoeugenol < shikonin < baicalein < rosmarinic acid < dihydromyricetin. The results showed 
the compounds with more phenolic hydroxyls have more antioxidant and antityrosinase activities.

Conclusion:  This was the first study of molecular docking for modeling the antityrosinase activity of compounds. 
This was also the first study of the protective effects of compounds on supercoiled pBR322 plasmid DNA, the lipid 
peroxidation inhibition activity in liver mitochondria. These results suggest that the compounds exhibited antityrosi‑
nase and antioxidant activities may be useful in skin pigmentation and food additives.
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Background
Flavonoids play a key role in the treatment of various 
diseases. Compounds with the ability to protect against 
DNA damage caused by reactive oxygen species (ROS) 
and inhibit tyrosinase may be useful for the treatment 
and prevention from ROS-related diseases. Flavonoids 
are a large type of compounds in natural products. Flavo-
noids already have been used widely as lead compounds 
or drugs.

Some studies showed that the number and location 
of phenolic hydroxyl on the flavonoids will significantly 
influence the inhibition of tyrosinase activity [1–3]. The 
number of phenolic hydroxyl on the B ring of flavo-
noids or catechins structure or resorcinol structure, can 
greatly enhance the inhibition of tyrosinase activity. At 
present, 4-hexyl resorcinol have been used as commod-
ity in shrimp preservation [4]. The number and position 
of phenolic hydroxyl on the 1,2-diphenylethene deriva-
tives can greatly effect the inhibition of tyrosinase activ-
ity. Two phenol hydroxyls compared to one hydroxyl 
and phenol hydroxyl replaced methoxyl will significantly 
enhance the inhibition of tyrosinase activity [5–7].

The tyrosinase inhibition mechanism of phenol 
hydroxyl compounds was analysed. Because the activ-
ity center of tyrosinase is hydrophobic, H +, combined 
with Eoxy double oxygen, only come from the hydroxyl 
of tyrosine and dopamine. Phenol hydroxyl compounds, 
similar to tyrosine and dopamine, can inhibit the activity 
of tyrosinase [8].

Phenolic hydroxyl is indispensable to the antioxidant 
activity of flavonoids. Many studies showed that the 
antioxidant activity increased with the phenol hydroxyl 
number in B ring of flavonoids. Seyoum [9] studied the 
activity of scavenging free radicals of 52 kinds of fla-
vonoids. The result showed that two or three phenol 
hydroxyls compared to one hydroxyl in A ring or B ring, 
will greatly enhance the antioxidant activity.

The relationship between phenolic hydroxyl num-
ber and antioxidant activity of flavonoids is very signifi-
cant. The reason may be: (1) the more phenolic hydroxyl 
number, the more H+ combined with free radicals; (2) 
the phenolic hydroxyl has strongly denounce electronic 
effect, which result to the free radicals reaction; (3) the 
more phenolic hydroxyl number, the more hydrogen 
bonding, antioxidant activity is also enhanced obviously 
[10].

The number and location of phenolic hydroxyl of the 
flavonoids will significantly influence the inhibition of 
tyrosinase activity. Phenolic hydroxyl is indispensable 
to the antioxidant activity of flavonoids. Isoeugenol, 
shikonin, baicalein, rosmarinic acid, and dihydromyri-
cetin have respectively one, two, three, four, or five 

phenolic hydroxyls. The different molecular structures 
with the similar structure to l-3,4-dihydroxyphenyla-
lanine (l-DOPA) were expected to the different antity-
rosinase and antioxidant activities.

Tyrosinase (EC 1.14.18.1) plays a key role in the 
biosynthesis of melanin pigment [11]. Under normal 
physiological conditions, melanin plays a key role in 
the protection against UV injury, animal mimicry and 
camouflage [12]. Thus, it has attracted researchers to 
find efficient tyrosinase inhibitors. Recently, molecu-
lar docking for modeling the antityrosinase activity of 
compounds had been used widely in drug design [13].

Isoeugenol is the major constituent of Eugenia caryo-
phyllata Thunb., which has extensive pharmacological 
activities, such as antimicrobe, stomach-invigorating. 
The result of Jin [14] indicated that isoeugenol analogs 
exhibited the cytotoxic activity against A549, KB, and 
KB-VCR cell lines.

Shikonin is the major constituent of Arnebia 
euchroma(Royle)Johnst, which has extensive pharmaco-
logical activities. Shikonin has good antioxidant activi-
ties, which supports the use of shikonin as the new 
anti-aging candidate drug, cosmetic materials and food 
additives. The results of Chen [15] revealed that SK-
Hep-1 cells apoptosis induced by shikonin proceeds by 
involvement of reactive oxygen species and an oxidative 
stress-mediated pathway.

Baicalein, a kind of oriental medicine, exhibits anti-
oxidant and anti-inflammatory activities. The results of 
Li-Weber [16] revealed that baicalein can inhibit sev-
eral genes of the cell cycle, attenuate NF-κB activity, 
and scavenge many kinds of oxidative radicals.

Rosmarinic acid, isolated from Perilla frutescens (L.) 
or Rosmarinus officinalis, exhibits many potent bio-
logical activities. The result of Zhu [17] indicated that 
rosmarinic acid extract exhibits the high activity of 
inhibiting á-glucosidase for allergy treatments and dia-
betes mellitus.

Dihydromyricetin can be used to scavenge the free 
radicals. It also has the effects of anti-oxidation and 
anti-tumour. Based on the results of Xin [18], dihydro-
myricetin was less toxic and highly effective as a good, 
natural antioxidant for polypropylene.

This investigation tested the antityrosinase activity, the 
inhibition constant, and inhibition type of compounds. 
Molecular docking can simulate the binding mode 
and binding affinity of the tyrosinase and compounds. 
This investigation also tested the antioxidant effects of 
isoeugenol, shikonin, baicalein, rosmarinic acid, and 
dihydromyricetin on supercoiled pBR322 plasmid DNA, 
lipid peroxidation, and DPPH, ABTS, hydroxyl, or super-
oxide free radical scavenging activity in vitro.
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Methods
Chemicals and reagents
Isoeugenol, shikonin, baicalein, rosmarinic acid, dihy-
dromyricetin, l-3,4-dihydroxyphenylalanine (l-DOPA), 
tyrosinase (EC 1.14.18.1), phenanthroline, pyrogallol, 
2, 2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) 
(ABTS), diphenyl-2-picrylhydrazyl (DPPH), thiobarbitu-
ric acid (TBA), and 2,2′-azobis(2-methylpropionamidine)
dihydrochloride (AAPH) were purchased from the Sigma 
Chemical Company (St. Louis, MO, USA). C3606 rea-
gent kit for organization mitochondria separation was 
purchased from Shanghai Biyuntian company. Diso-
dium phosphate, sodium dihydrogen phosphate, K2S2O8, 
potassium sulfate, and ferrous sulfate were purchased 
from Sinopharm Chemical Reagent Co., Ltd (Shanghai, 
China). All other solvents and chemicals with analytical 
grade were commercially available. The Minimum Stand-
ards of Reporting Checklist contains details of the experi-
mental design, and statistics, and resources used in this 
study (Additional file 1).

Tyrosinase activity assay
According to the reference of Chen et al. [19], the tyrosi-
nase activity was measured using l-DOPA as a sub-
strate. Dimethyl sulfoxide (DMSO) was used to dissolve 
the inhibitor samples. l-DOPA in PBS buffer (pH 6.8) 
was previously incubated at 30 °C. Then, 0.1 mL sample 
was mixed with 2.8 mL l-DOPA (0.5 mM). After 1 min, 
the mixture was added to 0.1 mL of tyrosinase solution 
(5.33  μg/mL) at 475  nm for 400  s, the absorbance was 
immediately monitored. The relative enzyme activity was 
regarded as the slope of the linear part. The inhibitory 
concentration 50 (IC50) was used to examined the antity-
rosinase activity. Each sample was examined in five times 
and averaged. The inhibitory rate was examined accord-
ing to the formula:

where S1 is the slope value with samples and S0 is the 
slope value without samples.

Determination of the inhibition type and inhibition 
constant
By Lineweaver–Burk plot, the inhibition type was 
assayed. The inhibition constant was assayed by the sec-
ond plots of the apparent Km/Vmapp or 1/Vmapp versus the 
concentration of the inhibitor.

Molecular docking study
Molecular docking can predict the binding mode and 
binding affinity of the tyrosinase and compounds. From 
the Protein Data Bank (UCSD/SDSC and Rutgers, http://
www.rcsb.org/), the crystal structure of tyrosinase (PDB 

(1)Inhibitory rate(%) = [(S0 − S1)/S0] × 100%

code: 2Y9X) was available [20]. The polar hydrogen was 
added and all ligands and bound water were eliminated. 
The ligands were used as configuration of each com-
pound. Using Discovery Studio Version 4.5 (CDOCKER 
Dock, Dassault Systemes BIOVIA, USA), molecular 
docking was carried out and the interactions were ana-
lyzed [21].

DPPH free radical scavenging activity
According to the references of Lee et  al. [22], DPPH 
free radical scavenging capacity was measured. In the 
tube, 1  mL of tested samples in different concentra-
tions was added in turn. 3.5  mL of ethanol and 0.5  mL 
of 0.6 mmol/L DPPH methanol solution were added. In 
room temperature and a dark environment, the reaction 
lasted 30  min. The wavelength used was 517  nm. Each 
sample was examined in three times and averaged. The 
DPPH scavenging activity was examined according to the 
formula:

where AS is the absorbance value with samples and AC is 
the absorbance value without samples.

ABTS free radical scavenging activity
According to the references of Wan et al. [23], ABTS free 
radical scavenging capacity was measured. ABTS was dis-
solved in water to make 7 mmol/L ABTS water solution. 
ABTS + was produced by reacting 2.45  mmol/L potas-
sium persulfate (K2S2O8) with the ABTS stock solution. 
The reaction lasted 12–16 h at room temperature in the 
dark. The absorbance of ABTS+ stock solution at 734 nm 
was 0.70 ± 0.02, diluted with methanol.

Samples (0.5  mL) were added to ABTS+ (5  mL) for 
6 min. The control group contains 0.5 mL of ethanol and 
5 mL of ABTS+ solution. Each sample was examined in 
three times and averaged. The ABTS+ scavenging activity 
was examined according to the formula:

where AS is the absorbance value with samples and AC is 
the absorbance value without samples.

Hydroxyl free radical scavenging activity
According to the references of De Avellar IGJ et al. [24], 
hydroxyl free radical scavenging capacity was meas-
ured. In the tube, 0.2 mL of samples, 1 mL of PBS buffer 
(pH = 7.4),0.2 mL of 5 mmol/L phenanthroline, 0.2 mL of 
7.5 mmol/L FeSO4, 0.2 mL of 0.05% H2O2, 3.2 mL of eth-
anol were added in turn for 20 min in 37 °C. The wave-
length used was 536 nm. Each sample was examined in 

(2)
DPPH scavenging activity (%) = [(AC − AS)/AC]× 100%

(3)
ABTS+ scavenging activity (%) = [(AC − AS)/AC]× 100%

http://www.rcsb.org/
http://www.rcsb.org/
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three times and averaged. The hydroxyl free radical scav-
enging activity was examined according to the formula:

where AS is the absorbance value with samples and AC is 
the absorbance value without samples.

Superoxide free radical scavenging activity
According to the references of Shen et  al. [25], super-
oxide free radical scavenging capacity was measured 
using Varioskan Flash multifunction microplate reader 
(Thermo scientific, USA) and 96 wells plates. Each well 
was added 264 μL PBS buffer (pH = 8.2), 12 μL samples of 
different concentrations, 25 °C for 10 min. Then 24 μL of 
1.25  mmoL/L pyrogallol solution was added and shaken 
3 s quickly. The blank group is ethanol. Absorbance values 
were measured every 30  s. The reaction lasted 5  min in 
37 °C. The wavelength used was 320 nm. Each sample was 
measured in triplicate and averaged. The slope is the self-
oxidation rate of pyrogallol. The lower slope indicated the 
better superoxide free radicals scavenging capacity.

Each sample was examined in three times and aver-
aged. The inhibitory rate was examined according to the 
formula:

where SC is the slope value without samples and SS is the 
slope value with samples.

Lipid peroxidation assay in liver mitochondria in vitro
Using the diagnostic kits from Biyuntian (Shanghai, 
China), liver mitochondria were obtained. The liver mito-
chondria from Sprague–Dawley (SD) rats were obtained, 
according to the references of Zuo et al. [26].

In the tubes, 1  mL of mitochondria liquid, 0.5  mL of 
antioxidant solution, 0.25  mL of 1  mM Vitamin C, and 
0.25  mL of 0.1  mM Fe2+ were added in turn. The posi-
tive control group contains 0.5 mL of 0.05 M PBS buffer, 
instead of the antioxidant solution. The blank group was 
added 1 mL of mitochondrial liquid and 1 mL of 0.05 M 
PBS buffer. The reaction lasted for 1  h at 37  °C. 2.5% 
hydrochloric acid solution and 2 mL of 20% CCl3COOH 
were added for 10 min, followed by 0.3% NaOH solution 
and 2 mL of 0.67% TBA were added. The test tubes were 
placed in the water for 30 min at 95 °C, then centrifuged 
for 10  min at 1372g. The wavelength used was 532  nm. 
Each sample was examined in three times and averaged. 
The lipid peroxidation inhibition activity was examined 
according to the formula:

(4)
Hydroxyl free radical scavenging activity (%)

= [(AC − AS)/AC]× 100%

(5)
Superoxide free radical scavenging activity (%)

= [(SC − SS)/SC]× 100%

where AS is the absorbance value with samples and AC is 
the absorbance value without samples.

Supercoiled pBR322 plasmid DNA assay
According to the references of Lin et  al., and Zuo et  al. 
[27, 28], supercoiled pBR322 plasmid DNA assay was 
measured. Briefly, 10  mM AAPH in PBS (pH 7.4) was 
added 100 ng of pBR322 DNA to a final volume of 25 μL 
in microcentrifuge tubes at 37 °C for 1 h. The 25 μL solu-
tion contains 15 μL AAPH, 5 μL DNA, 5 μL antioxidants. 
Five microliter distilled water was used in the absence of 
antioxidants. After incubation, 2 μL 10× loading buffer 
were mixed with the samples, loaded into a 0.8% agarose 
gel. The agarose gel was electrophoresed in 1× TAE gel 
buffer for 75 min (20 mA, 50 V). Using the Bio-Rad Gel 
Doc XR system (New York, America), the gels were then 
photographed under UV transillumination. DNA strand 
breaks were evaluated. The amount of supercoiled DNA 
was quantified by the Bio-Rad Quantity One software.

One-way ANOVA was used to analyze the differences 
among means, and statistically significant was considered 
by a P < 0.05 value (SPSS version 13.0, SPSS).

Results
Tyrosinase activity assay
The substrate of tyrosinase for the diphenolase activity 
assay was l-DOPA. The results showed that a group of 
lines with different slopes passing through the origin was 
the progress curve of enzyme reaction. The slope indi-
cated the diphenolase activity. In the progress of oxida-
tion of l-DOPA, the lag period did not exist. Isoeugenol, 
shikonin, baicalein, rosmarinic acid, and dihydromyrice-
tin exhibited, with dose dependence, inhibitory effect on 
tyrosinase diphenolase activity. The IC50 values of the five 
compounds on the tyrosinase diphenolase activity were 
respectively 33.33  μmol/L, 26.67  μmol/L, 13.33  μmol/L, 
6.67  μmol/L, and 3.33  μmol/L (n = 5, P < 0.05, Fig.  1; 
Table  1). The order of activity was: isoeugenol < shi-
konin < baicalein < rosmarinic acid < dihydromyricetin. 
Therefore, the five compounds had obvious inhibitory 
effects on the tyrosinase diphenolase activity. The order 
of activity was very consistent with the docking score 
between tyrosinase and compounds.

Inhibition mechanism on the diphenolase activity 
of tyrosinase
The inhibitory mechanism of isoeugenol, shikonin, baica-
lein, rosmarinic acid, and dihydromyricetin on tyrosinase 
for oxidation of l-DOPA was examined. The relation-
ship between the concentration of five compounds and 

(6)
Lipid peroxidation inhibition activity (%)

= [(AC − AS)/AC] × 100%
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enzyme activity was examined. The inhibitory mecha-
nism of shikonin on tyrosinase was tested. As shown in 
Fig.  2, at different inhibitor concentrations, the plots of 
enzyme activity versus the enzyme concentration gave 
a family of straight lines, which all passed through the 
origin. The final concentration of shikonin for curves 
1–5 was respectively 0 μmol/L, 3.3 μmol/L, 6.67 μmol/L, 
13.33  μmol/L, and 26.67  μmol/L. The presence of an 
inhibitor resulted in the inhibition of enzyme activity, 
but did not reduce the amount of enzyme. The inhibi-
tors showed the same behavior. The results exhibited 
that isoeugenol, shikonin, baicalein, rosmarinic acid, and 
dihydromyricetin were reversible inhibitors of tyrosinase 
diphenolase.

By Lineweaver–Burk double-reciprocal plots for the 
inhibition tyrosinase diphenolase, the inhibition type of 
the five compounds was examined. The enzyme kinetics 
in the presence of shikonin are shown in Fig. 3. The final 
concentration of shikonin for curves 1–6 was respectively 

0  μmol/L, 3.3  μmol/L, 6.67  μmol/L, 13.33  μmol/L, 
26.67  μmol/Land 33.33  μmol/L. Lineweaver–Burk dou-
ble-reciprocal plots were the plots of 1/v versus 1/[S]. A 
family of straight lines intercepted in the second quad-
rant, which indicated that shikonin was a competitive–
uncompetitive mixed type inhibitor (Fig. 3a). It indicated 
that shikonin can combine with not only enzyme–sub-
strate complexes, but also free enzymes. From a plot 
of the slope (Km/Vmapp) versus the concentration of the 
inhibitor, KI was measured (Fig.  3b). From a plot of the 
vertical intercept (1/Vmapp) versus the concentration of 
inhibitor, KIS was measured (Fig. 3c). The values of KI and 
KIS were determined as 19.0  μM and 48.6  μM, respec-
tively. By contrast, isoeugenol was the same inhibitor 
type as shikonin, and the inhibitor constants (KI and KIS) 
were determined as 25.6  μM and 64.7  μM, respectively. 
Baicalein was the same inhibitor type as shikonin, and 
the inhibitor constants (KI and KIS) were determined as 
16.5 μM and 38.4 μM, respectively. Rosmarinic acid was 
the same inhibitor type as shikonin, and the inhibitor 
constants (KI and KIS) were determined as 14.3 μM and 
29.8  μM, respectively. Dihydromyricetin was the same 
inhibitor type as shikonin, and the inhibitor constants 
(KI and KIS) were determined as 10.26 μM and 23.6 μM, 
respectively.
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Fig. 1  The inhibition effects of isoeugenol, shikonin, baicalein, 
rosmarinic acid, and dihydromyricetin on the diphenolase activity 
of mushroom tyrosinase. The IC50 values of the five compounds on 
the tyrosinase diphenolase activity were respectively 33.33 μmol/L, 
26.67 μmol/L, 13.33 μmol/L, 6.67 μmol/L, and 3.33 μmol/L (n = 5, 
P < 0.05)

Table 1  The IC50 values of flavonoids

Isoeugenol Shikonin Baicalein Rosmarinic acid Dihydromyricetin

Tyrosinase diphenolase activity (μmol/L) 33.33 26.67 13.33 6.67 3.33

DPPH free radical (μmol/L) 101.6 83.2 58.6 28.5 12.4

ABTS free radical (μmol/L) 36.36 27.27 9.09 6.82 3.41

Hydroxyl free radical (μmol/L) 32.5 18.3 11.6 8.3 4.2

Superoxide free radical (μmol/L) 38.2 31.5 16.1 12.3 7.6

Lipid peroxidation (μmol/L) 25.1 16.67 12.5 8.33 6.25

Fig. 2  Determination of the inhibitory mechanism of shikonin 
on mushroom tyrosinase. The results showed that shikonin was 
reversible inhibitor of tyrosinase for the oxidation of l-DOPA. 
l-DOPA = l-3,4-dihydroxyphenylalanine
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Molecular docking
Figure 4 shows that docking simulations colored 2D-repre-
sentations of binding mode and binding position between 
tyrosinase and compound isoeugenol (a), shikonin (b), bai-
calein (c), rosmarinic acid (d), and dihydromyricetin (e), 
respectively. The binding interactions between tyrosinase 
and compound include mainly the pi–pi stacked, conven-
tional hydrogen bond, pi–alkyl, and alkyl. Molecular dock-
ing results implied that the compounds could interact with 
the amino acid residues in the active center of tyrosinase.

The docking score between tyrosinase and compound 
isoeugenol, shikonin, baicalein, rosmarinic acid, and 
dihydromyricetin was 33.14, 36.13, 37.93, 44.56, 50.98, 
respectively. The order of activity was: isoeugenol < shi-
konin < baicalein < rosmarinic acid < dihydromyrice-
tin. The order of activity was very consistent with the 
experimental results (Fig. 1). Docking score indicates the 
interaction affinity between enzyme and ligand by the 
optimized algorithm, which helps to speculate the scope 
of inhibitory activity. The main significance of dock-
ing score is the evaluation index for quick preliminary 
screening compounds. In this paper, based on the dock-
ing score, the inhibit tyrosinase activity of five typical 
compounds was verified by the experiments in vitro.

Figure  5 shows that docking simulations of conforma-
tional changes and binding position between tyrosinase 

and inhibitors. Colored 3D-representations of the protein–
ligand complex showed that surface and conformation 
changes of compounds before (a) and after (b) docking 
into tyrosinase. Docking simulations of binding position of 
compound isoeugenol (A), shikonin (B), baicalein (C), ros-
marinic acid (D), and dihydromyricetin (E), respectively, in 
the hydrophobic pocket of tyrosinase (c), which indicates 
the inhibition mechanism on the diphenolase activity of 
tyrosinase.

The combination mode and binding sites of tyrosinase 
and five typical compounds were studied by molecular 
simulation. The results showed that these compounds 
enter the hydrophobic activity cavity of tyrosinase, change 
the enzyme conformation, which in turn affect the cata-
lytic activity. The hydrogen bonds between Met 280, Val 
283, His 85 residues and compounds, the pi–pi bonds 
between Phe 264, His 244, His 259, or His 263 and com-
pounds or pi–alkyl bonds between Val 283, Val 248 and 
compounds, may be related to the identification and fix 
the ligand and tyrosinase. Besides phenolic hydroxyls, the 
scaffold components of different compounds may also 
effect on their antityrosinase activities. Particularly, differ-
ent hydrophobic groups may have significant contribution 
to binding with the hydrophobic cavity of the target pro-
teins. The molecular docking results showed the detailed 
information and the visual evidence of the binding position 

Fig. 3  a Lineweaver–Burk plots for the inhibition of shikonin on mushroom tyrosinase for the oxidation of l-DOPA. b The plot of slope versus the 
concentration of shikonin for determining the inhibition constants KI. KI = 19 μmol/L. c The plot of intercept versus the concentration of shikonin for 
determining the inhibition constants KIS. KIS = 48.6 μmol/L.KI = equilibrium constant for inhibitor binding with free enzyme; KIS = enzyme–substrate 
complex; l-DOPA = l-3,4-dihydroxyphenylalanine
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between the tyrosinase and inhibitors. The similar binding 
position and binding mode may be the similar inhibition 
mechanism. However, without any experimental evidence, 
the developed models will be too early to be applicable for 
antityrosinase activity of compounds. The result of Seo 
[29] indicated that CDOCKER and CDOCKER interaction 
energies of quercetin and its analogues were decreased by 
C151W mutation whereas benzoic acid and its analogues 
did not lower the energies. In particular, the results illus-
trated the blockage of pi–pi stacked or pi–alkyl interac-
tions between quercetin and quercetin-4′-methyl ether 
and His154 or Val132. These results indicate that the influ-
ence of Cys 151 residue of Keap1 keeps on the interaction 
between compounds and Keap1 protein.

DPPH free radical scavenging activity
Figure 6 shows that isoeugenol, shikonin, baicalein, ros-
marinic acid, and dihydromyricetin had obvious DPPH 
free radical scavenging activity. The IC50 values of DPPH 
free radical scavenging capacity of isoeugenol, shikonin, 

baicalein, rosmarinic acid, and dihydromyricetin were 
respectively 101.6  μmol/L, 83.2  μmol/L, 58.6  μmol/L, 
28.5  μmol/L, and 12.4  μmol/L (n = 3, P < 0.05, Table  1). 
The order of activity was: isoeugenol < shikonin < baica-
lein < rosmarinic acid < dihydromyricetin.

The result of Zhu [17] indicated that IC50  of DPPH 
radical scavenging activity of rosmarinic acid extract was 
5.5 ± 0.2  μg/mL, and IC50  of α-glucosidase inhibitory 
activity was 0.23 ± 0.01  mg/mL. The result of Liu [30] 
showed that IC50 of DPPH radical scavenging activity of 
the dihydromyricetin–lecithin complex was 22.60 μg/mL. 
The result of Xu [31] showed that the scavenging capacity 
of hydroxyl radical (·OH), superoxide radical (O2·), and 
alkane radical (ROO·) for dihydromyricetin was 83.9%, 
90.0%, and 63.9% respectively.

ABTS free radical scavenging activity
Figure 7 shows that isoeugenol, shikonin, baicalein, ros-
marinic acid, and dihydromyricetin had obvious ABTS 

Fig. 4  Docking simulations 2D diagram of binding position and binding mode between tyrosinase and compound isoeugenol (a), shikonin (b), 
baicalein (c), rosmarinic acid (d), and dihydromyricetin (e), respectively
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free radical scavenging activity. The IC50 values of ABTS 
free radical scavenging capacity of isoeugenol, shikonin, 
baicalein, rosmarinic acid, and dihydromyricetin were 
respectively 36.36 μmol/L, 27.27 μmol/L, 9.09 μmol/L, 
6.82 μmol/L, and 3.41 μmol/L (n = 3, P < 0.05, Table 1). 
The order of activity was: isoeugenol < shikonin < baica-
lein < rosmarinic acid < dihydromyricetin.

Hydroxyl free radical scavenging activity
Figure  8 shows that isoeugenol, shikonin, baicalein, 
rosmarinic acid, and dihydromyricetin had obvi-
ous hydroxyl free radical scavenging activity. The 
IC50 values of hydroxyl free radical scavenging capac-
ity of isoeugenol, shikonin, baicalein, rosmarinic acid, 
and dihydromyricetin were respectively 32.5  μmol/L, 
18.3 μmol/L, 11.6 μmol/L, 8.3 μmol/L, and 4.2 μmol/L 
(n = 3, P < 0.05, Table  1). The order of activity was: 
i s o e ugenol  <  sh ikonin  <  b a ic a le in  <  ro smar in ic 
acid < dihydromyricetin.

Superoxide free radical scavenging activity
Figure 9 shows that isoeugenol, shikonin, baicalein, ros-
marinic acid, and dihydromyricetin had obvious super-
oxide free radical scavenging activity. The IC50 values of 
superoxide free radical scavenging capacity of isoeuge-
nol, shikonin, baicalein, rosmarinic acid, and dihydro-
myricetin were respectively 38.2  μmol/L, 31.5  μmol/L, 
16.1 μmol/L, 12.3 μmol/L, and 7.6 μmol/L (n = 3, P < 0.05, 
Table  1). The order of activity was: isoeugenol < shi-
konin < baicalein < rosmarinic acid < dihydromyricetin.

Lipid peroxidation assay in liver mitochondria in vitro
Figure 10 shows that isoeugenol, shikonin, baicalein, ros-
marinic acid, and dihydromyricetin had obvious activity 
of inhibiting lipid peroxidation. The IC50 values of inhib-
iting lipid peroxidation of isoeugenol, shikonin, baicalein, 
rosmarinic acid, and dihydromyricetin were respectively 
25.1  μmol/L, 16.67  μmol/L, 12.5  μmol/L, 8.33  μmol/L, 
and 6.25  μmol/L (n = 3, P < 0.05, Table  1). The order 

Fig. 5  Colored 3D-representations of the protein–ligand complex showed that surface and conformation changes of compounds before (a) 
and after (b) docking into tyrosinase, and docking simulation of compound isoeugenol (A), shikonin (B), baicalein (C), rosmarinic acid (D), and 
dihydromyricetin (E), respectively, in the hydrophobic pocket of tyrosinase (c)
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of activity was: isoeugenol < shikonin < baicalein < ros-
marinic acid < dihydromyricetin.

Supercoiled pBR322 plasmid DNA assay
Figure 11a shows that in the absence of AAPH, the plas-
mid DNA was mainly supercoiled. The supercoiled form 

of plasmid DNA was changed into the linear forms 
and open circular with the addition of 10  mM AAPH. 
In the presence of 10  μM compounds, the amount of 
supercoiled form increased, but the amount of the 
linear and circular forms decreased. The amount of 
supercoiled plasmid DNA was quantified by the Bio-
Rad Quantity One software. Figure  11b shows the 
observed values. Thus, these compounds exhibited 
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protection against free radical injury induced by AAPH 
in a dose-dependent manner. The order of inhibition 
activity was: isoeugenol < shikonin < baicalein < ros-
marinic acid < dihydromyricetin.

An index of DNA damage is used as the change of bac-
teriophage or plasmid DNA from the supercoiled form to 
the linear forms. Strand breaks in pBR322 DNA can be 
caused by the presence of AAPH [32].

Discussion
Isoeugenol is the major constituent of E. caryophyl-
lata Thunb. The result of Hubungan [33] indicated that 
antioxidant activities in the following orders: butylated 
hydroxytoluene (BHT) > mannich product of isoeuge-
nol > isoeugenol > mannich product of eugenol > eugenol. 
The result of Ko [34] indicated that demethyldi-isoeuge-
nol inhibited Fe2+-induced lipid peroxidation. It also 
scavenged superoxide anion generated by peroxyl radical 
(ROO.) derived from AAPH.

Shikonin is the major constituent of Arnebia 
euchroma(Royle)Johnst. The observed results revealed 
that shikonin demonstrated higher reducing ability 
(0.431%), and deoxy-shikonin showed maximum inhibi-
tion (0.440%) to DPPH-radical scavenging assay.

Baicalein is the major constituent of Rheum officinale. 
The results of Nishioka [35] revealed that baicalein can 
inhibit the express of human intestinal sucrase in the 
Caco-2 cells. The results of Tsai [36] revealed that baica-
lein can protect against the acute lung injury induced by 
lipopolysaccharide in rats. The results of Jeli [37] revealed 
that baicalein exhibit good inhibitory activities of both 
production of cytokine IL-6 and tyrosine kinase.

Rosmarinic acid can inhibit the enzymatic browning 
of fruits and vegetables. The result of  Ha [38] showed 
that rosmarinic acid possess mushroom tyrosinase 
inhibitory activities (IC50 of 4.0 μM). The result of Ding 
[39] showed that rosmarinic acid methyl ester can 
inhibit tyrosinase, and reduce the melanin contents in 
B16 cells. The result of Fujimoto [40] showed that ros-
marinic acid afforded a highly tyrosinase-inhibitory 
active product. Rosmarinic acid has antioxidant and 
prooxidant activities. The result of Sánchez-Campillo 
[41] indicated that rosmarinic acid can be used as a 
good photo-protective agent.

Zhao et al. [42] evaluated the antioxidant properties of 
Citri Exocarpium Rubrum based on its DPPH free radi-
cal scavenging activity, ferric ion reducing antioxidant 
power (FRAP) and trolox equivalent antioxidant capac-
ity (TEAC) assays. Bivariate correlation analysis revealed 
correlations between the characteristic peaks and the 
antioxidant activities of the samples. Sambucus wil-
liamsii Hance (Jiegumu) is traditionally used in Chinese 
medicine to treat bone and joint diseases. The major phy-
tochemicals are phenolic acids, lignans, and terpenoids. 
This compounds may have the antioxidant, anti-inflam-
matory, bone fracture healing, and anti-osteoporotic 
effects [43].
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Tyrosinase (EC 1.14.18.1) play a key role in melanin 
biosynthesis [44]. Due to the over expression of tyrosi-
nase, excessive melanin leads to melasma and age spots 
[45]. Tyrosinase is responsible for the browning of veg-
etables and fruits in the food industry, which results in 
reduced market value and shorter product shelf life [46]. 
Increased attention has also drawn to the applications of 
antioxidants and tyrosinase inhibitors as preservatives in 
skin-protective ingredients in cosmetics and in the food 
industry. On the other hand, ROS could induce oxidative 
damage of proteins and DNA, and peroxidation of mem-
brane lipids. Lipid peroxidation will generate malon-
dialdehyde (MDA), and do harm to cells [47]. It may be 
useful in diets to obtain properly antioxidants.

Conclusion
In conclusion, isoeugenol, shikonin, baicalein, rosmarinic 
acid, and dihydromyricetin exhibited good antityrosinase 
activities. These compounds also exhibited good antioxi-
dant effects on lipid peroxidation, supercoiled pBR322 
plasmid DNA, and DPPH, ABTS, hydroxyl, or superoxide 
free radical scavenging activity. The different molecular 
structures lead to the different antityrosinase and anti-
oxidant activities. The activity order is isoeugenol < shi-
konin < baicalein < rosmarinic acid < dihydromyricetin. 
The results showed the compounds with more phenolic 
hydroxyls have more antioxidant and antityrosinase 
activities. This was the first study of molecular docking 
for modeling the antityrosinase activity of compounds. 
This was also the first study of the lipid peroxidation 
inhibition activity of compounds in liver mitochondria 
induced by Fe2+/vitamin C(Vc) system in vitro, the pro-
tective effects on supercoiled pBR322 plasmid DNA. In 
a word, the results support the use of compounds as the 
new anti-aging candidate drugs, cosmetic materials and 
food additives.
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