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Abstract

Background: Brain machine interface (BMI) technology has demonstrated its efficacy for rehabilitation of paralyzed
chronic stroke patients. The critical component in BMI-training consists of the associative connection (contingency)
between the intention and the feedback provided. However, the relationship between the BMI design and its
performance in stroke patients is still an open question.

Methods: In this study we compare different methodologies to design a BMI for rehabilitation and evaluate their
effects on movement intention decoding performance. We analyze the data of 37 chronic stroke patients who
underwent 4 weeks of BMI intervention with different types of association between their brain activity and the
proprioceptive feedback. We simulate the pseudo-online performance that a BMI would have under different
conditions, varying: (1) the cortical source of activity (i.e., ipsilesional, contralesional, bihemispheric), (2) the type of
spatial filter applied, (3) the EEG frequency band, (4) the type of classifier; and also evaluated the use of residual
EMG activity to decode the movement intentions.

Results: We observed a significant influence of the different BMI designs on the obtained performances. Our results
revealed that using bihemispheric beta activity with a common average reference and an adaptive support vector
machine led to the best classification results. Furthermore, the decoding results based on brain activity were
significantly higher than those based on muscle activity.

Conclusions: This paper underscores the relevance of the different parameters used to decode movement, using
EEG in severely paralyzed stroke patients. We demonstrated significant differences in performance for the different
designs, which supports further research that should elucidate if those approaches leading to higher accuracies also
induce higher motor recovery in paralyzed stroke patients.

Keywords: Neuroprostheses, Brain machine interface (BMI), Rehabilitation robotics, Proprioceptive feedback, motor
rehabilitation, stroke, Neurotechnology

Background
Brain machine interfaces (BMI) have been applied to
motor rehabilitation in stroke patients with promising re-
sults [1–7]. A recent work from our group demonstrated,
in a double-blind controlled study, that BMI training com-
bined with behavioral physiotherapy can elicit significant
and relevant motor functional recovery [2]. One of the

main hypothesis of our previous work was related to the
use of ipsilesional activity for BMI, since it has been dem-
onstrated that, after stroke, patients present bilateral or
enhanced contralesional brain activity during motor tasks,
and only patients shifting brain activation towards ipsile-
sional areas presented motor recovery in the acute phase
[8, 9]. Therefore, the BMI feedback, contingent with the
ipsilesional motor cortex activity, was postulated as the
key factor required for the functional improvements.
Despite the main organizational principle of primate

motor systems is that cortical areas control the movements
of the contralateral limbs, these areas also play a role in
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ipsilateral movements [10–12]. In fact, it has been
shown how BMIs using primates’ intracranial ipsilateral
activity could perform as well as BMIs using contralat-
eral activity [12, 13], or perilesional activity in rodents
[14]. In humans with stroke, when bihemispheric electro-
encephalographic (EEG) activity is considered to decode
movement commands (i.e., motor attempt or motor im-
agery) of the paralyzed limbs, the achieved performances
are higher than if only ipsilesional activity is considered
[15, 16]. Nevertheless, it is unclear if using a BMI to link
contralesional or bihemispheric brain activity with pro-
prioceptive feedback in the paretic limb would elicit the
same or better functional results than if ipsilesional activ-
ity is used [2] and it is out of the scope of this manuscript.
However, as BMI can create a causal link between EEG
oscillatory activity and behavior (i.e. between brain and
movement), BMI control represents motor control and, if
improved, motor learning. In this manuscript we discuss
different option to create that link (BMI design) to
optimize motor control (BMI performance).
To date, different BMI designs have been proposed to

decode movement commands in severely or completely
paralyzed stroke patients. However, the relationship
between the BMI design—and its performance—and
potential for motor functional recovery is still an open
question. In the decoding of movement information
from EEG data, there are several factors that can sig-
nificantly influence the performance. One of them is
the type of classifier used. Linear classifiers are gener-
ally preferred in rehabilitative BMI setups (despite
non-linear ones can often provide higher performances
[17]). The main reason is their simplicity, since a linear
threshold should be enough to efficiently detect some
of the EEG correlates of movement intentions: e.g., the
event-related (de)synchronization (ERD/ERS) of sen-
sorimotor rhythms (SMR). The use of adaptive classi-
fiers that update their parameters over time has been
proposed as a way to deal with EEG non-stationarities,
which can be advantageous for multi-session interven-
tions [18], although the improvements in performance
using these approaches have not been quantified in real
scenarios with stroke patients. Although the type of
classifier used can influence the final result, the way the
features are extracted, selected and processed is the
most influential step [19]. This can involve the move-
ment correlate selected and the brain area from which
it is recorded, but also the way that the signals are
processed before being analyzed by the classifier.
Generally, BMI parameters for rehabilitation applica-

tions are selected based on prior knowledge or a priori
hypotheses [17, 18, 20, 21]. Recent trends have also
proposed the use of residual electromyographic (EMG)
activity combined with EEG to build hybrid BMI
systems [22, 23], since some patients, even with severe

paralysis, show decodable EMG patterns [24]. Evaluat-
ing the role of the BMI design on functional recovery
requires studying the effects in different groups of pa-
tients, and the number of patients required grows
exponentially with the number of parameter combina-
tions, making it an effort difficult to afford. However,
the BMI designs that provide highest performances
could be determined offline, and therefore it may allow
re-designing future interventions based on the parame-
ters that offer a better control of the rehabilitation
robot. Higher BMI performances have been correlated
with larger excitability enhancement in healthy subjects
[25] and motor recovery in stroke patients [7].In the
here presented work, we propose a systematic analysis
of different configurations for a non-invasive BMI to
decode motor intentions in severely paralyzed stroke
patients, quantifying their effects on performance. We
make use of the dataset recorded in our previous study,
which involves 32 patients during 4 weeks of daily BMI
training [2], and we expanded it with 5 more patients,
making it the largest dataset of its kind. We simulated
offline the performance that the BMI would have
obtained under different conditions, varying: (1) the
cortical source of activity (i.e., ipsilesional, contralesional,
bihemispheric); (2) the type of spatial filter applied; (3) the
EEG frequency band; (4) the type of classifier. In addition,
we evaluated also motion intention decoding using re-
sidual EMG activity of the paretic muscles.

Methods
The present study aimed at evaluating the influence of
different configurations for a BMI on the obtained de-
coding accuracy. Therefore, we ran different tests on a
fixed dataset, varying several parameters offline, but
simulating an online BMI in a rehabilitation scenario.
The dataset analyzed in this work was recorded during
our previous double-blind controlled clinical study [2],
and we expanded it with 5 more patients that performed
an additional control condition.

Patients
Thirty-seven participants with chronic stroke (18 male;
mean age 53.7 ± 11.9 years, range 29 to 73 years; interval
since stroke 66.7 ± 59 months, range 10 to 232 months;
Table 1) were recruited through the University Hospital
of Tübingen. The recruitment criteria included: age be-
tween 18 and 80 years, complete paralysis of one hand
without ability for active finger extension, interval since
stroke of at least 8 months, no psychiatric or neuro-
logical condition other than stroke, no cerebellar lesion
or bilateral motor deficit, no epilepsy, Mini-Mental State
(MMS) score above 21 (for more details see [2]).
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Data acquisition
EEG data were acquired with an Acticap system (Brain-
Products, GmbH, Munich, Germany) from 16 elec-
trodes, placed at Fp1, Fp2, F3, Fz, F4, T7, C3, Cz, C4,
T8, CP3, CP4, P3, Pz, P4 and Oz, with the ground in
AFz and the reference in FCz (modified 10/20 system).
Four EOG electrodes were used to record horizontal
eye movements for both eyes and vertical eye move-
ments for the right eye. Surface electromyographic
(EMG) activity was recorded from both arms, using 8
bipolar Ag/AgCl electrodes from Myotronics-Noromed
(Tukwila, WA, USA) and a bipolar amplifier from Brain-
products GmbH, Munich Germany. EMG was recorded
on top of 4 different muscle groups (extensor carpi
ulnaris, extensor digitorum, external head of the biceps
and external head of the triceps) in order to detect the
movement onset and involuntary muscle contractions.
The Brainamp amplifiers and signal processing module
were connected through a client-server architecture, with
the amplifier acting as the server and the signal processing
module running on a stand-alone client PC. Data were
sampled at 500 Hz and transmitted over to the client PC
for storage and real-time signal processing using the
BCI2000 platform (www.bci2000.org) [26].

BMI intervention
The intervention aimed at rehabilitating the paretic
upper-limb of the patients and involved two phases. In
the first phase, the patients trained their upper arm with
an arm orthosis that allowed reaching movements, and
in the second phase, they trained their ability to open
and close the hand with a hand orthosis (see 2.4). Each
patient changed from the first to the second phase when
he/she was able to extend the arm correctly (with gravity
compensation), or when the 8th training session was
reached.
The patients were divided in one experimental group

and two control groups, and all of them performed a
daily BMI training for 4 weeks. All the subjects received
the same instructions: to attempt to move their para-
lyzed arm/hand following audiovisual cues, so that the
BMI would detect their movement intentions and con-
trol a robotic orthosis that would actually move their
limb. In the experimental group (contingent positive
feedback group), the decrease of SMR power over the
ipsilesional motor cortex was linked to the movement of
the orthosis. In the first control group (contingent nega-
tive feedback group), the increase of SMR power over
the ipsilesional motor cortex controlled the orthosis. In
the second control group (sham feedback), the move-
ments of the orthosis were random and independent of
the brain activity, although the amount of time the orth-
osis was moving was kept in the same range as in the
experimental group (between 55 and 80% of each trial).

Table 1 Details of patients

Pat.
#

Group Gender Age
(years)

Months since
stroke

Lesion
side

cFMA

1 Exp. M 69 72 L 5.5

2 M 51 139 R 24

3 F 35 60 R 25.5

4 M 48 45 R 7.5

5 M 70 23 L 8

6 M 57 122 R 17

7 M 29 25 R 15

8 M 60 130 L 9.5

9 F 35 28 R 11

10 F 53 30 L 5

11 F 36 16 L 11

12 F 72 44 L 2

13 F 55 45 L 16.5

14 M 65 45 R 3.5

15 M 47 80 R 12

16 F 52 156 L 5.5

17 Sham F 73 23 R 1

18 M 51 16 L 3.5

19 M 50 215 L 33.5

20 F 55 17 R 0.5

21 M 54 121 R 16

22 F 66 23 L 16.5

23 F 54 10 L 8

24 M 69 89 R 26

25 M 40 53 R 3.5

26 M 47 232 R 13.5

27 M 66 48 R 7.5

28 M 58 28 R 8.5

29 M 40 46 L 30.5

30 F 53 20 L 17.5

31 M 63 120 L 8.5

32 M 55 51 L 22.5

33 C- F 65 67 L 8.5

34 F 65 131 L 7.5

35 M 65 99 L 7

36 F 31 15 L 33.5

37 M 60 14 L 13

Avg. 16 Exp/16
Sham/5 C-

22 M/
15 F

54.4 ± 11.9 67.5 ± 56.4 16 R/
21 L

12.6 ± 8.9

Group indicates if the patient performed the Experimental—contingent positive
condition (Exp), the sham condition, or the contingent negative condition (C-).
Lesion side indicates the damaged brain hemisphere. cFMA stands for combined
Fugl-Meyer assessment, which comprises hand and arm motor scores combined,
excluding coordination, speed and reflexes (range 0–54 points, with 54 points
indicating normal hand/arm function)
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The day before the first training session the patients
performed an EEG-screening (patients were asked to
open and close the hand for 5 s at their own pace upon
an audiovisual imperative cue that indicated whether
the left, the right or none of the hands had to be
moved, with a randomized inter-trial interval of 5 to
7 s), which was used to identify the individual SMR fea-
tures (electrodes and frequency bins) to calibrate the
BMI classifier. These features were selected by visual
inspection as the electrode-frequency pairs that had
highest R-square values [27] when comparing the brain
activity of resting state versus attempting to open and
close the paretic hand. The electrodes on the motor
cortex in the ipsilesional hemisphere evaluated were
C3/4, CP3/4, P3/4, as F3/4 were considered to be po-
tentially corrupted with eye or forehead muscle activity
and central line electrodes might contain too much
contralateral activity due to the volume conduction ef-
fect (see Table 2). During the BMI intervention (4 weeks
of daily training, excluding weekends) the patients were
attached to a robotic exoskeleton and performed, in
each session, between 15 and 20 blocks of 17 trials

each. Auditory cues were used to instruct the patients
during the trials: first a “warning” cue was presented
and 2 s afterwards a “Go” cue initiated the trial, which
lasted for 5 s (See Fig. 1). During this time, the orthosis
was controlled according to the brain activity of the pa-
tient (in the experimental and first control groups) or
randomly (in the second control group). The BCI2000
two-class classifier (motor intention versus rest) sent an
output every 40 ms to the orthosis, requiring five
consecutive classifier outputs of the same condition
(i.e. detecting either intention to move or rest five con-
secutive times), to send the orthosis a no-move (zero
velocity value) or a move (positive velocity) command.
The SMR power was computed with an autoregressive
(AR) model [28] over a sliding window of 500 msec.
The BMI software maintained a history of the mean
SMR power from each trial and assigned this to a dis-
tribution representing observations for the two classes
(rest or motor intention). The classification threshold,
defined as the mean distance to the two distributions,
was adaptive to account for changes in the shapes of
these distributions over the course of training.

Orthoses
For the arm movements, the patients used a ReoGo re-
habilitation robot (Motorika, Cesarea, Israel), acting as
arm orthosis. With the arm of the patients attached to
the robotic orthosis, we recorded a 3D movement imi-
tating a reaching action (customized to each patient
range of movement). This trajectory was used to provide
kinesthetic feedback to the patients, who could control
moving or stopping the orthosis along the pre-recorded
trajectory.
The hand orthosis was an in-house made robotic

device. Each finger was moved individually using a
DC −Motor (M-28 from Kaehlig Antriebstechnik GmbH,
Hannover, Germany) with worm gearhead for each finger.
This motor drove via cogwheel and cograil a 5-m bowden
cable. A finger holder was mounted on the other side of
each bowden cable. Near this finger holder, an optical
position sensor was mounted to detect the finger position
independent of the bowden cable tolerance and elasticity
to correct finger positioning. The power electronics were
made as a linear regulation to prevent artifacts from
switching devices to the EEG (more information can be
found in [2, 29]). The BMI system sent the hand orthosis
positioning and velocity commands, and the movement
was determined by the difference between current and de-
sired position.

Offline analysis of EEG decoding
To evaluate how the choice of the electrode placement,
spatial filtering, frequency band, and classifier influences
the decoding accuracy, we performed an offline analysis

Table 2 Electrode-frequency pairs used during the online
intervention

Pat. # Group Channel Frequency

1 Exp. P7 11.5–14.5

2 C4, P4, P8 8.5–11.5

3 C4, P4, P8 8.5–11.5

4 C4, P4, P8 8.5–11.5

5 P7 5.5–8.5

6 C4, P4 14.5–17.5

7 C4, P8 17.5–20.5

8 C3 11.5–14.5

9 C4 5.5–8.5

10 C3, P3, P7 8.5–11.5

11 C3 5.5–8.5

12 C3 5.5–8.5

13 P7 5.5–8.5

14 C4, P4, P8 8.5–11.5

15 C4 5.5–8.5

16 P7 5.5–8.5

33 C- F4, C4, P8 14.5–17.5

34 F4, C4, P8 17.5–20.5

35 F4, C4, P4, P8 20.5–23.5

36 C4, P4, P8 8.5–11.5

37 C4, P8 9.5–12.5

Group indicates if the patient performed the Experimental—contingent
positive condition (Exp), or the contingent negative condition (C-). Patients
from the sham group are excluded from this table since they did not receive
closed-loop feedback. Channel and frequency correspond to the electrodes
and frequencies used to provide contingent feedback during the intervention
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(using MATLAB). To simulate an online scenario, we
used a time window of 500 ms, shifted it in 40 ms steps
(as done in the actual intervention) over the whole EEG
signal and used the data in this window for classification.
This offline analysis was done for each patient and each
session separately.

Electrode placement
Regarding the electrodes used to compute the features,
we compared three different spatial distributions:

1. Ipsilesional side only: C3, CP3, P3 for patients
with lesion on the left hemisphere; and C4, CP4, P4
for patients with lesion on the right hemisphere.

2. Contralesional side only: C4, CP4, P4 for patients
with lesion on the left hemisphere; and C3, CP3, P3
for patients with lesion on the right hemisphere.

3. Both hemispheres: C3, C4, CP3, CP4, P3, P4.

Spatial filter
Spatial filters are applied to EEG activity to obtain
reference-free signals [30]. We compared three differ-
ent configurations: (1) no spatial filter, (2) common

average reference (CAR), or (3) a small Laplacian (fini-
te-method from fieldtrip [31]).

Frequency band
The spectral features were estimated using a 16th-order
autoregressive model computed with the Burg method
[28] in the range of 1 to 40 Hz (resolution of 2 Hz per
bin). After power spectrum estimation, the logarithm
function was applied to each value. Then, we evaluated
the influence on decoding accuracy of relying on: (1) the
alpha band only (8–12 Hz), (2) the beta band only (15–
30 Hz), or alpha and beta bands together (8–30 Hz),

Classifier
For classification, we compared the simple linear classi-
fier used for online feedback during the BMI training
[2, 29], and an adaptive approach based on support vec-
tor machines (SVM), as proposed in [32]. This com-
parison allows evaluating the relevance of adaptation of
classifier parameters, which has been pointed as an
important aspect to deal with EEG non-stationarities,
especially in multi-session interventions [18]. The SVM
classifier was implemented using the LibSVM toolbox
(with a linear kernel and hyperparameter C = 1). To

Fig. 1 Timing and BMI functioning. a) Timing of each trial of the experiment. Each trial starts with an inter trial interval (ITI) of 3 s followed by an
auditory instruction period for the task (“Try to move the Left/Right hand”). 2 s after the instruction, a start cue is presented and 5 s later an end
cue is presented. b) The patient’s EEG from ipsilesional electrodes is processed online and transformed into power of the sensorimotor rhythm
(SMR). The BMI generates 2 distributions of data, one for resting (red area: during ITI) and one for trying to move (blue area: during task). The
classification threshold is the middle between the 2 distributions mean (dashed line between the red and grey shaded areas). When the power
of SMR is 5 consecutive times on the same side of the threshold (classified 5 consecutive time as rest or trying to move) the orthosis will change
its status (from stop to move or move to stop)
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continuously adapt the classifier and adjust to possible
non-stationaries in the EEG signal, the SVM was retrained
every 400 ms. For training the SVM, 2 buffers with data
were used with each storing the data (power spectra com-
puted on 500 ms windows) of the last 2 min of rest period
and the last 2 min of movement period. Every 400 ms new
data was added to the corresponding buffer (each buffer
depending on the period, either rest or movement) and
the SVM was trained using the data from these two
buffers. To guarantee online feasibility of this adaptive
SVM method, the update method by [33] was used. Using
this method, we do not have to completely train the SVM
from scratch each time new data is added to the buffer,
which would be very time consuming. Instead, the method
allows to update the existing SVM solution and update it
incrementally with each new data. In the same way, if old
data is removed from the buffer, the SVM solution can be
updated decrementally to consider the removal of old data
from the buffer. Thereby, this adaptive SVM procedure is
a computationally efficient way to have an SVM trained
on the latest data in each step.

Metric
No additional signal processing and artifact removal was
applied to the data to resemble online real-scenario condi-
tions. To evaluate the decoding accuracy (DA), we calcu-
lated the difference between true positives (TP; percentage
of movement classified during movement period) and
false positives (FP; percentage of movement classified dur-
ing rest period). A perfect classification would result in a
TP-FP value of 1, while a value of 0 would results from
random control. We relied on TP-FP because this metric
is independent of the classifier threshold, and therefore
can deal with coupled TP and FP biases that are caused by
an offset in the classifier output (e.g., a classifier having
high TP and high FP should have a similar result as one
having low TP and low FP). This metric is equivalent to
the accuracy obtained by averaging TP and true negatives
(TN; which is computed as 1-FP). Thus, for BMI-based
stroke rehabilitation, we try to maximize the number of
TP, while minimizing the number of FP, to optimize the
proprioceptive and visual feedback provided.

Offline analysis of EMG decoding
The EMG signal was bandpass filtered between 5 Hz
and 200 Hz (order 10 Butterworth filter). Then, the
waveform length (WL) was calculated for each of the
EMG channels [34], which is defined by:

WL ¼
Xn

k¼1

j xk−xk−1 j

Where n is the number of EMG data points of the
window to analyze, xk is the k data point in that window

and xk-1 is the previous data point. To evaluate EMG
activity as an alternative to the BMI, we implemented
an equivalent movement decoder, with a window of
500 ms shifted in 40 ms steps. In every step, the WL
from the EMG channels was used as input features for
the classifier. Different combinations of EMG elec-
trodes were used as input for the classifier. First, we
evaluated the influence of extracting the EMG features
from: (1) the paretic arm, (2) the healthy arm, or (3)
both arms. In this case, all the 4 muscles were consid-
ered (i.e., 2 on the forearm extensors, one on biceps
and one on the triceps). Then, we compared the perfor-
mances when extracting the EMG features from: (1)
only the muscles involved in the task (i.e., the 2 distal
electrodes for hand opening/closing, or the 2 proximal
electrodes for upper-arm movement), or (2) all 4 elec-
trodes [35]. Additionally, we compared the two classi-
fiers explained in the section above (simple linear
classifier vs adaptive SVM).

Statistical analysis
To investigate how the different designs influence the
performance of the BMI, we performed several statis-
tical comparisons. A linear regression model [36] was
fitted to the data, explaining the motion intention de-
coding accuracy of each session based on the various
factors, and we used an n-way ANOVA to test for
significant influence of these factors on the decoding
accuracy. Paired comparisons were conducted using a
Wilcoxon’s rank-sum test with Bonferroni correction
for multiple comparisons, if needed.

Results
We separated the analyses in 2 sections for clarity. In
the first section, we report the influence of each of the
four studied parameters (electrode placement, spatial
filter, frequency band, and classifier) on BMI perform-
ance, measured as TP-FP. In the second section, we
compared EMG and EEG (muscle vs brain) movement
intention decoding accuracy.

Comparing parameters for optimal decoding accuracy
We performed a 5-way ANOVA, considering decoding
accuracy as dependent variable and patient, electrodes,
frequency band, spatial filter, and classifier as factors.
All the factors had a significant influence on accuracy
(p < 0.0001). Overall, the use of electrodes from both
hemispheres, CAR as spatial filter, the beta band, and
the adaptive SVM classifier resulted in the best BMI ac-
curacy. Based on this parameter combination, Fig. 2
shows the effects if each parameter is varied individu-
ally—maintaining the rest of the parameters constant.
Regarding the electrode location (see Fig. 2a), the use of
electrodes placed over both hemispheres was significantly
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superior (p < 0.001) than using electrodes placed over only
one hemisphere, either ipsi- or contralesional. There was
no significant difference between ipsi- or contralesional
electrodes (p > 0.05). With respect to the spatial filter (see
Fig. 2b), CAR had the highest decoding accuracy, which
was significantly better than Laplacian spatial filtering
(p < 0.01), but not significantly better than no spatial filter-
ing (p > 0.05). For the choice of frequency bands (see Fig.
2c), beta had on average the highest decoding accuracy
but the difference with the other frequency bands was not
significant (p > 0.05). Regarding the classifier (see Fig. 2d),
SVM yielded significantly higher decoding accuracy than
the simple linear classifier used in the BMI intervention
with patients (p < 0.001; Wilcoxon rank-sum test).

Muscle vs brain decoding results
To compare the decoding accuracy using either brain
signals (i.e., EEG) or muscle signals (i.e., EMG), we first
evaluated the optimal parameters for EMG decoding.
The use of the EMG data from all the electrodes placed
on both sides and the SVM classifier yielded the best
decoding accuracy (Fig. 3). Although using the EMG

electrodes on the healthy arm only resulted in significantly
worse decoding accuracy than using the electrodes on the
paretic side (p < 0.0001), activity from both sides resulted
in significantly better decoding accuracy than using
electrodes only on one side (p < 0.0001). Decoding of
healthy arm EMG activity demonstrates the presence of
involuntary EMG activity that could affect EEG activity
used for BMI control. A quantification of the potential
bias of the BMI system caused by involuntary healthy
upper-limb muscle activity is needed to determine how
to remove, avoid or utilize the effect [37]. The use of all
the EMG electrodes placed over the entire upper-limb
(forearm and upper arm) resulted in a significantly
higher decoding accuracy (p < 0.0001) than the use of
the electrodes over muscles involved in the task only.
We observed that SVM provided significantly better
results for EMG too (p < 0.0001). A comparison of
EEG and EMG decoding accuracy using the optimal
parameter combination for both, shows that EEG
allowed for a significantly better decoding accuracy
(p < 0.0001) in chronic severely paralyzed stroke pa-
tients (see Fig. 3d).

Fig. 2 Classifier parameter effects on movement intention decoding accuracy. Average motor intention decoding accuracy (mean ± std) when
using different configurations in terms of electrode placement (a), spatial filter (b), frequency band (c), and classifier (d). For each graph, the
significance of the difference between the parameter with the highest accuracy and the other parameters was assessed using Wilcoxons ranksum
test. The asterisks denote significant difference: * (p < 0.05), ** (p < 0.01), *** (p < 0.001)
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Discussion
The use of brain machine interfaces (BMI) for stroke re-
habilitation may constitute a family of treatments that
help improving the quality of life of those patients with
the most severe motor deficits [1, 2, 38, 39]. Several dif-
ferent studies have already demonstrated the feasibility
of BMIs to improve motor function when compared
with placebo interventions [1–7]. Due to the novelty of
this technology, there are still no standards to guide the
researchers on how to design their rehabilitative BMI
systems, and therefore there is a large heterogeneity be-
tween approaches. In this study, we evaluated the influ-
ence on decoding performance of different parameters
for the design of a BMI to decode movement attempts
in chronic stroke patients with complete hand paralysis.
Our results demonstrate that the analyzed components

of the BMI (namely, the brain region considered to ex-
tract the cortical signals, the spatial filter, the frequency
band and the classifier) have a significant influence on
the average accuracy achieved, which we measured as
the difference between true positives and false positives.
The BMI design that showed the highest accuracy was
using beta activity from both hemispheres, with a CAR

filter, and an adaptive SVM classifier. In addition, for
these patients, EEG activity also resulted to be superior
to EMG.
The combination of activity from both cortical hemi-

spheres provided significantly higher BMI performances
than using the activity of each hemisphere alone, as
expected from our previous findings [15, 16]. The EEG
activity is affected after a stroke, and the degree of acti-
vation in the ipsilesional hemisphere measured during
attempts of movements is smaller than in healthy popu-
lation [40, 41]. This could explain why bihemispheric
activity yielded better decoding results than using ipsile-
sional activity. However, contralesional activity only did
not result in better decoding results than ipsilesional ac-
tivity only, which might be reflecting a compensatory
mechanism with complementary contralesional informa-
tion to the one occurring in the ipsilesional area.
Nevertheless, it remains open whether contralesional

or bihemispheric electrode placement would induce su-
perior or inferior functional and cortical rehabilitation,
and this analysis is out of the scope of this paper, as a
new clinical trial using contralesional or bihemispheric
activity during the same intervention would be needed.

Fig. 3 EMG movement intention decoding accuracy (mean ± std); a: Average accuracy using either EMG electrodes from healthy, paretic or both
arms. b: Accuracy using different EMG electrodes. c: EMG classification accuracy using different classifiers. d: Comparison of classification accuracy
using EEG and EMG signals. For each subplot, the significance of the difference between the parameter with the highest accuracy and the other
parameters was assessed using Wilcoxons ranksum test. The asterisks denote significant difference: * (p < 0.05), ** (p < 0.01), *** (p < 0.001)
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In our double-blind clinical study, we used ipsilesional
activity to control robotic orthoses to enable the patients
to move their paralyzed arm [2]. A recent study also
proposed reinforcing ipsilesional activity during motor
imagery with visual feedback, showing higher improve-
ments in the patients than if no feedback is provided [6].
Other studies presenting rehabilitative BMIs for stroke
combined the activity from both hemispheres to provide
the feedback, although the clinical improvements in the
patients reported were not significantly superior that the
ones in the control interventions [3–5]. More recent
works have also shown that contralesional activity can
be used for BMIs [15, 42], although there are still no
controlled trials proving the efficacy of this approach.
To date, the role of the contralesional hemisphere for
stroke motor rehabilitation is still not fully understood.
Therefore, answering the question of what electrode
placement is the best for motor recovery would require
a randomized controlled clinical trial, fixing the type of
EEG features and classifier, but varying the channels
used to provide feedback in three patient groups (i.e.,
ipsilesional, contralesional, bihemispheric), or a much
grounded theoretical hypothesis based probably on ani-
mal work [43].
The spatial filter that provided the best results was the

CAR. Since no artifact removal method was used to re-
semble a realistic online scenario, it is plausible that
some head movement, eye movements (electrooculog-
raphy) or EMG related artefacts could have influenced
the CAR filtering or the results with no filter at all,
yielding in better decoding results [44]. Artifacts due to
compensatory activity can be generated by (or correlated
with) the attempts of movement of the patients, being
learnt by the classifier and causing an optimistic bias
that increases the BMI performance [44]. This is the rea-
son why the Laplacian filter was used for the actual BMI
intervention [2]. To avoid possible biases and guarantee
that the BMI link is between the brain oscillations dur-
ing movement intention and the actual movement, we
recommend Laplacian filtering for online feedback, des-
pite providing lower performance. Furthermore, CAR is
a constant global spatial filter, and thus it does not help
to capture the local spatial distributions of EEG compo-
nents such as SMR, which we hypothesize is key to train
and promote recovery. Although more sophisticated
spatial filters have been shown to improve EEG decoding
[45, 46], these methods need a higher amount of training
data. This results in the need of additional calibration
each session, prolonging the session time, which results
in boredom and sleepiness with deterioration of perform-
ance. Complex spatial filters such as common spatial pat-
terns (CSP) need a larger number of EEG electrodes to
work properly. As time for BMI training is limited, time
should be reserved for neuro-rehabilitation and keep the

EEG preparation time and the BMI calibration to a
minimum [47].
Concerning EEG oscillations, our results suggest that

beta frequency is more adequate (although not significant)
than alpha (mu). Furthermore, the individual SMR se-
lected from each patient using the screening session and
applied in the contingent group only during our BMI
intervention was found to be sometimes in the mu and in
other patients in the beta frequency range. Patients were
trained to control their individual SMR (depending on
feedback contingency) resulting in significant paretic limb
movement intention decoding changes specific to the fre-
quency band used online only. Therefore, it is plausible
that the entrainment of individual oscillations (sometimes
alpha, sometimes beta) affected the paretic limb move-
ment intention decoding accuracy results when averaging
and could explain why we did not obtain significant differ-
ences when using mu, beta or a combination of mu and
beta as parameter for the decoding. Another plausible
explanation for this finding might be that beta oscillatory
activity, although affected by stroke [48], represents pro-
prioceptive afferent activity [49], multisensory interactions
during feedback [50] and has also been related to
top-down attention and sensorimotor decision making
[51]. Furthermore, as beta band is strengthened by the
proprioceptive and haptic feedback it might result in bet-
ter decoding performance (bias due to proprioceptive
feedback), but it might not be a suitable feature to repre-
sent top-down motor volitional control. If one expects the
operant conditioning effect to be significant, the best
results should have been obtained using the online param-
eters, which was not the case (this can obviously only be
checked in the experimental and contingent negative
groups). However, we know that some parts of the BMI
design were affected by the stroke (e.g. ipsilesional SMR
modulation and SNR) and therefore BMI control was
sometimes poor. The brain engages many networks to
control and improve motor control (i.e., BMI control),
and motor learning could significantly affect these neural
networks producing indirect significant changes on them
(e.g. oscillatory activity). Since no significant differences
were found with regard to which frequency band produced
better decoding performance, we suggest that one plausible
approach for future BMI designs could be to have a prede-
fined and wide frequency range (e.g., 7–30 Hz), and to use
an automatic algorithm to identify the most reactive fre-
quencies during movement attempts [52].
There is a large variety of classifiers that have been

employed in the context of BMI [17, 18]. The choice of
the classifier can have a significant impact on the BMI
performance, although there is evidence suggesting that
the features extracted to characterize the brain states to
be classified might have a higher relevance than the clas-
sifier itself [19]. In BMI interventions requiring several
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sessions, adaptation or recalibration of the classifiers can
be important to deal with the inherent non-stationarities
of the EEG [47]. Our results showed how an adaptive
SVM classifier outperformed the simple linear classifier
that was used during the actual intervention with the
patients. This suggests that future BMI rehabilitative
interventions with stroke patients might benefit from
the use of this type of classifier, although it should still
be demonstrated if the improvement in performance
would also entail higher motor recovery in the patients.
Further research could also be conducted to evaluate
other classification algorithms and measure how they
affect BMI performance and subsequent recovery.
The results of BMI performance, measured as TP-FP,

were generally around 0.2. For a non-biased classifier,
this would correspond to values of around 60% of TP
and 40% of FP. Although it may seem a low accuracy,
notice that these values correspond to a continuous (i.e.,
pseudo-online) decoding, and not to the detection of
single trials or onsets of movement. These values,
although slightly lower, are not very dissimilar to values
previously reported with healthy subjects [53]. This is in
line with our previous results showing that the move-
ment executions with the healthy limb of stroke patients
can be decoded with higher accuracies than the attempts
of movements with the paretic limb [16, 44], probably
due to the low SNR of the activity of the ipsilesional cor-
tex. It is important to note that most of the BMI clinical
studies conducted with stroke patients do not report
values about the performance of the BMI, which hinders
comparisons. Recent works have proposed the classifica-
tion of different types of movements with EEG only (e.g.,
different reaching directions [54] or different grasping
types [55]), although the applicability of these approaches
has not been demonstrated in online applications with
patients.
Our results comparing EMG and EEG decoding

emphasize the usefulness of an EEG-based BMI to learn
the association between brain activity and movements.
EMG, even if considering the best decoding accuracy
offline, resulted in significantly worse outcome than
EEG activity decoding. Although some patients present
residual EMG activity that can be decoded with accept-
able accuracy during several movements [24], EEG data
yields superior movement intention decoding. We ob-
served better EMG-based movement intention decoding
in only 7 of 37 patients (patient IDs 2, 8, 10, 24, 32, 36,
27). Five of these patients had cFMA values higher than
10 (i.e., less impairment; patients 2, 24, 32, 36, 37),
meaning more residual EMG activity. However, the
other two had low cFMA values below 10, meaning that,
despite not having much residual EMG activity, the de-
coding based on EEG was lower, probably due to a poor
brain activation during the movement attempts [16]. In

less handicapped stroke survivors, EMG decoding should
result in equal or superior accuracy than EEG. However,
the majority of patients with no or minimal residual
movement do not show normal EMG amplitudes and
may benefit better from EEG-based or even hybrid
EEG-EMG interventions [22]. Nevertheless, if we use ipsi-
lesional activity only, the EEG decoding might be poor
compared to EMG motion intention decoding, and they
might be representing different processes [56].
Operant conditioning depends on and directly affects

every part of the BMI design, not only the BMI signal
processing pipeline (electrode, spatial filter, frequency,
EEG features to be used and classifier) but also the ex-
perimental protocol and feedback modality (motor task,
visual, auditory and haptic feedback) and this might be a
confounding factor of the here presented results. As an
online testing of all these factors is not practical and the
brain oscillatory activity used for the BMI depends on
multiple neural networks directly and indirectly influ-
enced by the operant conditioning, we consider the brain
activity variability significantly larger than the one due to
BMI design and therefore assume the above-mentioned
confounding effects to be negligible. In this manuscript
we limit our analyses to improve BMI performance and
thus BMI control and we do not analyze the operant con-
ditioning effect or BMI learning as we use all sessions of
each patient to compute mean performance results and
these effects might be even out in this analysis.
Note that all our analyses were conducted offline,

simulating the online use of a BMI, on a dataset re-
corded during an actual closed-loop BMI intervention.
Therefore, there are some factors that cannot be obvi-
ated and that might have an influence on our results.
Firstly, the patients received proprioceptive stimulation
by means of robotic orthoses that mobilized the arm/
hand, and this generates afferent volleys that can mod-
ify the EEG activity [49]. Secondly, the patients were
divided in three groups and received different types of
association between the brain activity and the move-
ment of the orthoses (i.e., contingent positive, contin-
gent negative and sham). We believe that both of these
factors do not have a big influence on our main conclu-
sions, since all the analyses were equally applied to all
the subjects. Note that the intervention group factor
had an influence on performance when including the
contingency as a factor in the ANOVA (p < 0.00001).
Post-hoc analyses revealed a significant difference between
experimental and contingent negative group (C+ vs C-;
p < 0.00001) and between sham and contingent negative
group (C- vs sham; p < 0.00001), while there was no sig-
nificant difference between experimental and sham
groups. The experimental and sham group resulted in
similar BMI performance, while the performance in the
contingent negative group (C-) was significantly lower
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than C+ or sham. This is reasonable, as they were
rewarded (although not instructed) with exactly the
opposite oscillatory changes that were trained in the
control and faked in the sham groups. Although inter-
vention group has an effect on performance, this factor
does not influence our conclusion regarding what elec-
trodes/spatial filter/frequency/classifier are optimal, be-
cause in the ANOVA the subject was modeled as one
factor. As one subject only belonged to one group, the
factor group is implicitly modelled in this case and
therefore the factor group does not influence the re-
sults regarding what methods are optimal and their
statistical significance.
None of the patients in the sham group reported any

confusion or any perception of inconsistency throughout
the whole treatment. Placebo effects were tested and did
not result in significance difference between patients
groups [2]. Finally, it is important to note that the con-
clusions extracted from our analyses can only be applied
to the population of patients studied: i.e., chronic stroke
with complete hand paralysis. However, stroke patients
with different degree of affection might obtain different
results, and further research should be conducted to ex-
tend our results to other typologies of patients.

Conclusions
This work validated different methodologies to design
decoders of movement intentions for completely para-
lyzed stroke patients. Using a clinically-relevant dataset
of 37 patients, we provide strong evidence of the rele-
vance of different parameters for designing clinical
brain machine interfaces (BMI). The design with the
highest performance was found to be the use of bihemi-
spheric beta activity, applying a common average refer-
ence (CAR) and an adaptive SVM classifier. The EMG
activity provided significantly lower decoding results
than the EMG activity to identify movement intention.
We proposed several methodological recommendations
to optimize SMR-based BMI performance for stroke
patients. Further investigation should be conducted to
evaluate to what extent the approaches leading to
higher accuracies also induce higher motor recovery in
paralyzed stroke patients.
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