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Abstract

Hypomethylating agents (HMAs) have been widely used over the last decade, approved for use in myelodysplastic
syndrome (MDS), chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML). The proposed
central mechanism of action of HMAs, is the reversal of aberrant methylation in tumor cells, thus reactivating
CpG-island promoters and leading to (re)expression of tumor suppressor genes. Recent investigations into the
mode of action of azacitidine (AZA) and decitabine (DAC) have revealed new molecular mechanisms that impinge
on tumor immunity via induction of an interferon response, through activation of endogenous retroviral elements
(ERVs) that are normally epigenetically silenced. Although the global demethylation of DNA by HMAs can induce
anti-tumor effects, it can also upregulate the expression of inhibitory immune checkpoint receptors and their
ligands, resulting in secondary resistance to HMAs. Recent studies have, however, suggested that this could be
exploited to prime or (re)sensitize tumors to immune checkpoint inhibitor therapies. In recent years, immune
checkpoints have been targeted by novel therapies, with the aim of (re)activating the host immune system to
specifically eliminate malignant cells. Antibodies blocking checkpoint receptors have been FDA-approved for some
solid tumors and a plethora of clinical trials testing these and other checkpoint inhibitors are under way. This
review will discuss AZA and DAC novel mechanisms of action resulting from the re-expression of pathologically
hypermethylated promoters of gene sets that are related to interferon signaling, antigen presentation and
inflammation. We also review new insights into the molecular mechanisms of action of transient, low-dose HMAs
on various tumor types and discuss the potential of new treatment options and combinations.
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Background

Introduction to hypomethylating agents (HMAs)

DNA methylation refers to the stable and reversible
addition of a methyl group to position 5 of the cytidine
ring within cytosine-phosphate-guanine (CpG) dinucleo-
tides in DNA [1]. Methylcytosine has been termed the
fifth base [2]. Enzymes that recognize, alter and maintain
CpG methylation have been intensively investigated in
recent years; and advances in array-based and next-
generation sequencing technologies have made it possible
to analyze changes in DNA methylation at different stages
of disease. Consequently our understanding of CpG
methylation and its entanglement with other epigenetic
pathways (ie. histone modifications and short regulatory
RNAs), as well as their roles in disease initiation and
propagation, has broadened considerably [3, 4].

Global changes in DNA methylation patterns have been
linked to the onset and progression of malignant trans-
formation; tumor cells can exhibit aberrant genome-wide
hypomethylation and hypermethylation of CpG island
promoters [5]. Aberrant hypomethylation supports
genome instability and can activate proto-oncogenes
[6, 7], whereas hypermethylation of CpG island pro-
moters can silence tumor suppressor genes (TSGs)
(Fig. 1) [8]. It has thus been proposed that methyla-
tion of genes involved in disease etiopathogenesis may
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act as biomarkers in several diseases including solid
tumors and AML [9-13].

Improved understanding of epigenetic mechanisms in
cell biology and tumor pathogenesis has fueled the
development of therapies with the primary goal of re-
versing aberrant epigenetic signaturesand undermining
tumor cell immunity. Hypomethylating agents, such as
the two nucleoside analogs 2'-deoxy-5-azacitidine/deci-
tabine (DAC) and 5-azacitidine/azacitine (AZA), target
the aberrant methylation of DNA to reverse epigenetic
silencing and reactivate tumor suppressor genes (TSGs).
When given at low doses, DAC and AZA (Fig. 2) induce
global demethylation in tumor cells (reviewed in [14]).
Global demethylation upon HMA exposure is explained
by mechanisms that deplete and/or destabilize the DNA
methyltransferase DNMTT in cells.

DNMT1 is responsible for the maintenance of estab-
lished DNA methylation patterns on newly synthesized
DNA strands during replication. Blocking this enzyme
results in passive DNA-replication-dependent demethyl-
ation during cell division. Upon triphosphorylation by
cytosolic kinases, DAC 1is directly incorporated into
DNA during the S-phase of the cell cycle whereas AZA
is mainly integrated into RNA. However, 10 to 20% of
AZA is converted by ribonucleotide reductase to its de-
oxyribose form, thus converting AZA into DAC (Fig. 2).

-

/Normal cell A
// - Nucleus g .
’ \\
y \
4 \
y > : \
] Target gene (i.e. tumor suppressor) \
'\ I Normal gene expression
\ CpG island ,’
\
\ //
) /4
A ’
N 7’
% -
A J
/Leukemic cell h
/,/’ Nucleus \\\
N
y Target gene (i.e. tumor suppressor) 9 Condensed chromatin
; )
y CpG island \\ Development of leukemia
1 \
: AZA treatment |
! i
) 1
\ |_> . 1 Incorporation of AZA nucleosides
\\ Target gene (i.e. tumor suppressor) /, reduces methylation
‘\ / Activation of tumor-suppressor genes
7 " )
. CpG island s Anti-leukemic effects
o -
A oo oT - J
Fig. 1 Methylation patterns in MDS/AML and mechanisms of action of AZA and DAC. 1) In normal human cells, CpG islands in the promoter
region of tumor suppressor genes are unmethylated (indicated by green dots), allowing transcription of these genes. 2) Hypermethylation of
tumor suppressor genes (indicated as red dots) in the pathogenesis of MDS leads to silencing of tumor suppressor genes and development of a
leukemic phenotype. 3) Treatment with AZA nucleosides causes demethylation of the hypermethylated CpG islands in MDS/AML leading to
reactivation of tumor suppressor genes and anti-leukemic effects
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Fig. 2 Structure of azanucleosides. Structure of deoxycitidine and the two azanucleosides azacitidine (AZA) and decitabine (DAC). DAC is the
2'didesoxy form of AZA, incorporated into DNA upon triphosphorylation. AZA is primarily incorporated into RNA. Upon triphosphorylation and
reduction by the enzyme ribonucleotide reductase it is also incorporated into DNA. The red circles highlight structural differences between
deoxycytidine and the two azanucleosides AZA and DAC. The purple circle highlights the structural difference between AZA and DAC

This reduced and triphosphorylated form of AZA is
incorporated into genomic DNA and covalently traps
DNMT1 at DAC-guanine dinucleotides at the replica-
tion fork [15]. Other replication-independent mecha-
nisms have been proposed as well and are reviewed
elsewhere [14].

Both AZA and DAC have been thoroughly investi-
gated in clinical trials [16—20] and their clinical efficacy
supported through real-world registry data [21-24]. Both
are approved for the treatment of MDS, AML and
CMML (Table 1). Current National Cancer Center
Network (NCCN) guidelines recommend both AZA and
DAC as front-line treatment for elderly patients with

Table 1 Approval status of hypomethylating agents (HMAs)

MDS, CMML or AML who are ineligible for allogeneic
stem cell transplantation [25, 26]. Current clinical trials
are testing AZA and DAC in various solid tumors,
mainly as drug combination partners (Table 2).
Demethylation of aberrantly methylated CpG-rich
gene promoters was initially the central explanation for
the anti-tumor activity of HMAs [27-29]. At high doses
HMAss are cytotoxic, whereas at low doses HMAs reacti-
vate silenced genes and cellular differentiation [30].
Clinical trials for the treatment of MDS and AML used
high cytotoxic doses (several grams per m?) of HMAs
[31], but subsequently, prolonged repetitive exposure
schedules at lower-doses (20 mg/m* for DAC and

AZA DAC
FDA EMA FDA EMA
MDS
- low-risk Yes? (19.05.2004) No Yes(02.05.2006) No
- high risk Yes? (19.05.2004) YesP (17.12.2008) Yes© (02.05.2006) No
CMML-FAB
- CMML-MD Yes (19.05.2004) YesP (17.12.2008) Yes(02.05.2006) No
- CMML-MP Yes (19.05.2004) No Yes© (02.05.2006) No
CMML-WHO
- CMML-I Yes (19.05.2004) No Yes(02.05.2006) No
- CMML-I Yes (19.05.2004) YesP (17.12.2008) Yes© (02.05.2006) No
AML

- 20-30% BM blasts
>30% BM blasts

Yes (19.05.2004)
No

Yes?d (17.12.2008)
Yes (30.10.2015)

Yes®® (02.05.2006)
No

Yes®© (20.09.2012)
Yes®® (20.09.2012)

%if accompanied by neutropenia or thrombocytopenia requiring transfusions

Pnot eligible to allo-SCT

Sincluding previously treated and untreated de novo and secondary MDS of all FAB-subtypes
4AML with 20-30% BM blasts and multilineage dysplasia, formerly RAEB-t
€ > 65a, not eligible for intensive CTX, de novo or secondary, newly diagnosed AML
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75 mg/m? over 7 days for AZA) were found to improve
clinical efficacy, with reduced and usually mild non-
hematological toxicities [16, 18, 32—36]. Recent investi-
gations into the concentration-dependent effects of
demethylation mediated by HMAs on the immune
response will be discussed further on.

Introduction to viral defense mechanisms and interferon
(IFN) signaling
Pathogen (e.g. virus) detection in infected cells occurs
via pathogen-sensing pattern-recognition receptors
(PRRs). PRRs are proteins expressed by cells of the in-
nate immune system to identify pathogen-associated
molecular patterns (PAMPs) and damage-associated mo-
lecular patterns (DAMPs) [37]. They can be classified into
membrane-bound PRRs (including Toll-like receptors
(TLRs)), cytoplasmic PRRs (including NOD-like receptors
(NLRs), RIG-1-like receptors (RLRs)), and secreted PRRs.
Detection of viral double-stranded RNA (dsRNA) within
the cell occurs via the endosomal membrane-bound TLR-
3 receptor. On binding dsRNA, TLR-3 signals through the
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signal adaptor protein TIR-domain-containing adapter-
inducing interferon-p (TRIF) to activate the transcription
factors interferon response factor (IRF)-5 and -7, resulting
in the expression of type 1 interferons (IFN), mainly IFNf
(Fig. 3 (4, 5)). In contrast, endosomal membrane-bound
TLR-7 and -8 detect GU-rich viral single-stranded RNA
and signal via the signal adaptor protein myeloid differen-
tiation primary response gene 88 protein to activate the
transcription factors nuclear-factor kappa B and IRF-3
and -7, resulting in the expression of proinflammatory
cytokines such as TNFq, IL-1 and IL-12 [38-40] . The
cytosolic RLRs retinoid acid inducible gene 1 (RIG-1) and
melanoma differentiation associated gene 5 (MDAS5) de-
tect viral dsRNA in the cytosol and utilize the adaptor
protein mitochondrial antiviral signaling protein (MAVYS)
to activate downstream signaling via the activation of the
transcription factors IRF-3 and -7 and NFkB to induce
IEN-I and IFN-III [41-44] (Fig. 3 (3)). Thus, viral infec-
tion leads to the production and release of proinflam-
matory cytokines and IFN-I and -III, which in turn
alerts both neighboring cells, as well as cells of the
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Fig. 3 Proposed mechanism of HMA-induced IFN response. The figure shows an epithelial tumor cell where the ERV promoters are methylated.
Therapy with AZA/DAC leads to demethylation of ERV promoters (1), resulting in transcription of ERV genes, ssSRNA and dsRNA (2). In the cytoplasm,
ERV dsRNA is sensed by the pathogen recognition receptor (PRR) RIGT and MDADS, which activate the transcription factors NFkB and IRF3 after binding
to the adapter protein MAVS (3). The endosomal membrane-bound TLR-7 and -8 recognize endosomal ssRNA, and activate the transcription factors
NFkB and IRF3 after binding to the adapter molecule MyD88 (4). The endosomal membrane-bound TLR-3 recognizes endosomal dsRNA, and activates
the transcription factors IRF-5 and -7 after binding to the adapter molecule TRIF (5). These three pathways all drive the expression and secretion of
interferon type 1 and 3 (INFI/IIl) (6). IFNI and Il signal back via an autocrine feedback loop and the INF-receptor (IFNR), which signals via JAK/STAT (7).
This results in the up-regulation and secretion of the chemokines CXCL9 and 10, which attract tumor-specific CTLs (8). In addition, AIM and 1SGs are
upregulated, which also aid in reactivation of dormant anti-tumor immunity (9). Furthermore, TAAs are upregulated (10), as are MHC-| molecules (11),
which together enhance the immunologic visibility of the tumor cells and enable them to be recognized by the TCR of tumor-specific CTLs. Treatment
with HMAs also results in the unwanted up-regulation of inhibitory immune checkpoint receptors (PD-1, CTLA-4) (12) and their ligands (PD-L1, PD-L2,
CD80, CD86) (13), which can result in secondary resistance to HMAs, but may also be exploited as a sensitizing or priming strategy for targeted
treatment with immune checkpoint modulators
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innate and adaptive immune system, and also activates
intracellular antimicrobial programs via an autocrine
feedback loop (Fig. 3 (6)).

Type I IFNs (eg. IFNa and [ that bind to IFNa-
receptor (IFNAR)) are expressed as a first line of defense
against viral infections, play a central role in the regula-
tion of innate immunity to limit viral spread during the
first days of infection, and also activate multifaceted an-
titumor immunity. Type 2 IEN (IFNy, binds to the IFNy-
receptor (IFNGR)) also displays some of the anti-viral
and anti-tumoral properties of type 1 IFNs and potentiates
their effects, but predominantly stimulates the adaptive
immune system, primarily T-cells [45]. Type 3 IFNs in-
clude IFNA1, A2 and A3 (also known as interleukin (IL) 29,
IL-28A, and IL-28B, respectively) which signal through a
heterodimeric signaling complex composed of IL10R2 and
IL28RA and induce a type 1 IFN-like response, and are
likewise induced by viral infections [45, 46].

On binding to their respective membrane-bound
receptor, IFNs induce the Janus kinase (JAK)/signal
transducer and activator of transcription (STAT) signal-
ing, activating transcription of so-called IFN-stimulated
genes (ISGs) (Fig. 3 (6,8)). This process is also regulated
by epigenetic mechanisms, such as microRNAs that
suppress STAT1 expression or chromatin remodeling
processes required to initiate transcription of ISGs
[45, 47]. ISGs activate intracellular antimicrobial pro-
grams, stall the expression of viral genes, can degrade viral
nucleic acids, and importantly inhibit cellular prolifera-
tion. These events contribute to the containment of viral
spread [48] and are also associated with anticancer im-
munity [49] (Fig. 3 (7-10)).

Introduction to retrotransposons and endogenous
retroviruses (ERVs)

Around 45% of the human genome is composed of
sequences derived from transposable elements [50].
Transposons are DNA sequences able to change their
position within the genome (i.e. move from one part to
another). There are two categories: Class I transposons
(~42% of genome) are referred to as retrotransposons and
require RNA intermediates and reverse transcription,wher-
eas Class II transposons (~2-3% of the genome) move via
DNA intermediates. In brief, class I retrotransposons can
be grouped into long terminal repeat (LTR) and non-LTR
retrotransposons (Fig. 4). Non-LTR retrotransposons con-
sist of two subtypes, long interspersed elements (LINEs)
[51] and short interspersed elements (SINEs) [52] (Fig. 4).
The most common LINEs are LINE-1 and LINE-2, and
the most common SINEs are Alu-elements and mamma-
lian wide interspersed repeats (MIR) Fig. 4). The largest
group of LTR-containing retrotransposons are endogenous
retrovirus transposons (ERVs) and constitute ~8% of the
human genome [53] Fig. 4). Full-length ERVs contain LTRs
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v H_J

Autonomous Non-autonomous

retrotransposition retrotransposition
(requires L1 proteins)

Fig. 4 Taxonomy of retrotransposons. The so-called retrotransposons
or class | transposons as opposed to class Il (DNA) transposons (not
depicted) can be grouped into long terminal repeat (LTR) containing
and non-LTR transposons. The best investigated LTR retrotransposons
are the human endogenous retroviral elements (ERV). Together with
the non-LTR retrotransposons LINE (long interspersed nuclear elements),
human ERVs are capable of retrotransposition in an autonomous
manner. In contrast, short interspersed nuclear elements (SINEs)
like ALU or MIR (mammalian-wide interspersed repeats) sequences
cannot perform autonomous retrotransposition. Nevertheless, ALU
sequences may be able to move with the help of active LINE elements

that flank non-repetitive sequences. The non-repetitive
sequences contain several protein-coding sequences neces-
sary for transcription, reverse transcription, and integration
of the viral genome as well as sequences coding for viral
envelope proteins (Gag, Pol and Env). ERVs together with
LINEs are autonomously capable of retrotransposition,
whereas SINEs do not encode a functional reverse tran-
scriptase and require the LINE machinery, thus functioning
as non-autonomous retro-elements (Fig. 4).

The abundance of endogenous ERVs in the human
genome can be explained by the integration of exogen-
ous retroviruses that have infected germ-line cells and
integrated viral DNA into the human genome [54-56]
[57]. Most of these retroviral insertions are evolutionar-
ily ancient, and have been inactivated by mutation and
disintegration of the viral genome, so are considered to
be junk’ DNA with no function. Some ERVs are, how-
ever, able to be transcribed and reintegrated into the
host genome [58]. These elements play relevant roles in
shaping the genome, gene expression and regulation [59],
and cell fusion processes during placentogenesis and em-
bryogenesis [60—62]. Furthermore, LTR-containing ERVs
may act as alternate promoters or enhancers that result in
tissue-specific gene expression [53, 63]. This observation
is of particular interest with respect to the recent dis-
covery that gene regulatory networks have evolved
through co-option of endogenous ERV regulatory se-
quences [64—66]. ERV-derived regulatory sequences
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within a network share common tissue-specific epigenetic
makeups [67] and this might explain concerted reactiva-
tion upon epigenetic modulation. It has also been shown
that non-LTR retrotransposons can be incorporated into
novel genes and evolve new functionality [68, 69]. Inter-
estingly, it was recently found that specific LINE-1 retro-
transposons in the human genome are actively transcribed
and that the associated LINE-1 RNAs are tightly
bound to nucleosomes and are essential in the estab-
lishment of the local chromatin environment [70].
However, during adulthood such mobile elements are
silenced primarily via CpG methylation [71]. For ex-
ample, LINE-1 retrotransposons retain ~80—100 copies
throughout the human genome that remain capable of
retrotransposition, but are epigenetically silenced in nor-
mal cells. LINE-1 demethylation has thus been used as a
control measure for the induction of global hypomethyla-
tion by HMAs in a given experimental setting [72-74].

Both LINE-1 and ERVs have been associated with
tumorigenesis, and somatic insertions of these transpo-
sons have been found to confer a selective growth advan-
tage to tumor cells [75, 76]. It has also been suggested that
younger ERVs (i.e. more recently integrated ERVs) may
play a role in human diseases including neurologic
diseases (reviewed in [77]) and cancer [78]. ERVs may
not only be directly disease causing, but may also
modulate immunity, and evidence exists indicating a
general role for ERVs in the regulation of interferon
(gamma) responses [79].

HMAs (RE)Induce expression of genes associated
with antitumor immune responses

Tumor associated antigens (TAAs)

Several reports have described an upregulation of TAAs
by AZA in MDS and AML cells, such as the cancer-testis
antigen (CTA) and New York Esophageal Squamous Cell
Carcinoma-1 antigen [80, 81]. This is in-line with observa-
tions of AZA effects in other malignancies [82—84] and is
attributable to demethylation of hypermethylated CpG
islands located at gene promoters [85]. The upregulation
of TAA expression resulted in an increased induction of
tumor-specific cytotoxic T-lymphocytes (CTLs) in 15
MDS and AML patients treated with AZA and the
HDAC-inhibitor valproate sodium [86]. Of clinical
interest, 8/11 patients with a documented TAA-specific
CTL response achieved a major clinical response to AZA,
including 4 patients with complete remission. Induction
of TAA-specific CTL response also correlated tempor-
ally with a reduction in the percentage of bone marrow
blasts [86].

Increased TAA expression induced by AZA might also
be partly supported by improved TAA presentation on
the cell surface to CTLs, as data from solid malignancies
suggest that AZA can lead to increased HLA class I
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expression [87]. Treatment of AML cell lines in vitro
with DAC in combination with the HDAC-inhibitor chi-
damide increased the expression of preferentially
expressed antigen of melanoma (PRAME), a known
TAA in AML. Pretreatment of AML cells with DAC
and/or chidamide led to increased killing by PRAME-
specific CTLs in vitro [88].

The AZA immune gene set (AIM)

A series of recent studies have aimed to investigate the
effects of low-dose HMAs (<500nM) on immune regula-
tion and alterations in the immune response in the
setting of (mainly) epithelial tumors [89-93]. Initial tran-
sient exposure of cancer cell lines to HMAs (24 h or
72 h), followed by cultivation in the absence of HMAs
has given new insights into the mechanisms of HMA-
mediated anti-tumor effects. Tsai et al. demonstrated
that transient exposure of AML and breast cancer cell
lines to DAC and AZA induces delayed (with respect to
drug removal from cell culture), prolonged gene
promoter demethylation; and sustained changes in gene
expression [89]. Transcriptional changes included the up
regulation of several central TSGs (such as cyclin
dependent kinase inhibitor 14, 1C, 24, 2B; and alternate
reading frame protein pl4) [89]. These transcriptome
and methylome changes were accompanied by reduced
tumorigenicity and self-renewal capacities in both cell
lines and primary samples from AML and breast cancer
patients [89]. Such time-delayed, sustained responses to
HMAs at the molecular level provides a possible explan-
ation for why most patients require 3—6 treatment cycles
before achieving a clinical response, and why continuous
treatment every 4 weeks is necessary to sustain these
responses [16-21, 23, 24].

Other groups have analyzed mRNA expression and DNA
methylation profiles upon low-dose AZA treatment of sev-
eral solid tumor cell lines, including breast-, colorectal-,
ovarian- and non-small cell lung cancer [90, 91]. Li et al.
defined an ‘AZA immune gene set’ that is comprised of 317
genes that were at least two-fold upregulated after AZA
treatment [91]. This ‘AZA immune gene set’ includes genes
associated with IFN and cytokine signaling, antigen presen-
tation, and inflammation [91]. Furthermore, analyzing gene
expression data from the cancer genome atlas (TCGA) and
the gene expression omnibus revealed that the AZA
immune gene set’ can cluster several solid tumor types
including ovarian, breast, colorectal, non-small cell lung
cancer and melanoma - into low and high expressing
cancer subtypes [91]. These in vitro observations
could also be recapitulated in primary tumor samples
from patients with triple -negative breast cancer
(NCT01349959) or colorectal cancer (NCT01105377). In
these studies, combination treatment with AZA and the
HDAC-inhibitor entinostat led to an upregulation of the



Wolff et al. Cell Communication and Signaling (2017) 15:13

‘AZA immune gene set’. This upregulation could still be
observed in a biopsy taken 6 months after initiation of
therapy in one breast cancer patient [91, 94].

The expression of C-X-C motif chemokine ligands
(CXCL) 9 and 10 in ovarian and colon cancer cell lines
has been shown to be regulated by epigenetic enzymes,
including the histone methyltransferase enhancer of
zeste 2 polycomb repressive complex 2 and DNMT1
[95, 96]. Both chemokines are within the AZA immune
gene set and are upregulated in response to AZA treat-
ment. DAC has also been shown to induce expression of
CXCL9 and 10 in several epithelial cancer cell lines and
in primary ovarian cancer cells [91, 95]. CXCL9 and -10
have also been reported to attract tumor-infiltrating lym-
phocytes and immunological infiltrates, positively linked
with better clinical outcomes in human serous ovarian
cancer [95, 97-99].

Taken together these in vitro and in vivo investigations
demonstrate that upregulation of immunomodulatory
pathways induced by low-dose AZA treatment, may re-
verse an immune-evasion phenotype and subsequently
may (re)sensitize the tumor for immunotherapy [90, 91].

Endogenous retroviral elements (ERVs)

As discussed, the AZA immune gene set’ includes genes
that are associated with interferon signaling and that
participate in immune responses to viral infections. These
include viral response genes (such as TLR-3, MDAS5, RIG-
1, MAVS, IRFs, NF«B and ISGs), with important roles in
the detection and abrogation of viral infections and estab-
lishing effective antitumor immunity [47, 100]. Interest-
ingly, some human tumors have been reported to exhibit
elevated ERV transcript levels [101-103]. In one study,
primary ovarian tumor samples from 19 patients showed
a high correlation between ERV transcript levels and the
expression of viral defense genes (p < 0.0001) [92], indicat-
ing that ERV transcript upregulation was accompanied by
a viral defense gene expression signature.

Recently, Chiappinelli et al. and Roulois et al. uncov-
ered a new molecular mechanism of action of transient
low-dose treatment of tumor cell lines with HMAs. The
authors showed that global hypomethylation was accom-
panied by the demethylation of ERV sequences [92, 93].
The observed increase (up to several thousand-fold over
control cells) of dsRNA viral transcripts in the cytoplasm
of the cancer cells activated innate PRRs, as well as tran-
scription factor IRF-7, resulting in the induction and se-
cretion of IFN-I/III [92, 93]. As discussed above, these
IFNs signal back (in an auto- and paracrine manner) and
via activation of STATs induce the transcription of ISGs
that mediate anti-tumor effects. This HMA-induced
upregulation of ERV transcripts has been termed ‘viral
mimicry’ and may result in the induction of effective
anti-tumor immunity.
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Chiappinelli et al. reported that low-dose AZA treat-
ment of human ovarian cancer cell lines led to demeth-
ylation of the ERV-Fc2 gene promoter, with subsequent
upregulation of intracellular dsRNA transcripts of the
viral envelope genes Fc2 and syncytin-1 [92]. Further-
more, the authors showed that both AZA and DAC in-
creased the expression of several other ERV transcripts
[92]. Following HMA withdrawal, activation of ERVs
peaked at day 7 and resulted in the upregulation of
several viral defense genes including IFNy-inducible
protein 16 (IFI16), IFN-induced protein 44 (IFI44) and
IFN-induced protein 44-like (IFI44L), in an IFNp- and
JAK/STAT-dependent manner. This confirmed that
AZA induces an IEN type 1 response with subsequent
upregulation of ISGs [92].

Similar observations were made in colorectal cancer
cell lines by Roulois et al. The authors showed that tran-
sient low-dose treatment (0.3 pM) with DAC, followed
by cultivation for 42 days without the drug, resulted in
two distinct groups of gene expression-change patterns:
early and late response genes. Early response genes were
defined as genes whose expression level changed within
5 days of DAC treatment [93], and subsequently
returned to baseline levels after 37 days. In contrast,
late-response genes showed significant upregulation that
peaked 24 days after DAC treatment and was sustained
for a further 18 days. The late-response group was
enriched in genes required for the innate RNA-sensing
pathway and IFN response signaling components [93].
Furthermore, the IFN type 3 receptor genes IL29 and
[L.28a and several ISGs were induced by low-dose DAC
treatment in a JAK/STAT dependent manner [93].
Further analysis of the late-response genes revealed that
the majority were direct targets of the IRF7 transcription
factor. Knock-down of IRF7 and/or targeting of the cyto-
solic RNA sensing pathway (RIG-1, MDA5 and MAVS) by
short hairpin (sh)RNAs was sufficient to block DAC-
induced upregulation of IFN response genes. Furthermore,
knock-down of MAVS also abolished the observed DAC-
mediated reduction in frequency of cancer-initiating cells
in colorectal cancer cell lines and in primary colorectal
cancer cells [93].

Since MDAS5 recognizes dsRNAs of viral origin [39], the
authors investigated whether DAC upregulates dsRNA ex-
pression. The colorectal cancer cell line LIM1215 showed
an increase in cytosolic dsRNA expression upon treatment
with DAC, and RT-PCR revealed a strong increase in 10
selected ERV transcripts [93]. These experiments showed
for the first time that transient low-dose DAC treat-
ment of colorectal cancer cells induces a type 3 IFN re-
sponse via the induction of dsERV transcripts [93],
which in turn induces apoptosis and reduces cellular
proliferative capacity. In this seminal work the authors
showed that the diminishing effect of DAC on the
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growth and self-renewal capacity of colorectal cancer
cells is very much dependent on DAC-induced upregu-
lation of viral dsRNAs. This upregulation activates the
MDAS5/MAVS/IRF7 pathway and subsequently induces
an interferon response [93]. All the above indicates that
the MDA5/MAVS/IRF7 signaling pathway is a novel
therapeutic target in (colorectal) cancer.

As discussed above (section B: The AZA immune gene
set (AIM)), cancer samples from the TCGA (melanoma,
ovarian, colorectal, breast and lung) could be clustered
into high and low immune groups according to the
levels of AZA-induced expression of IFN viral defense
genes (IRF7, IFI27, RIG-1, IFI44, IFI44L, IFl16, STATI,
IFNBI, DDX41, MX1, OASL, TMEM173, MB21D1, IFI6)
[91, 92]. This is compelling when considering other
studies showing that high expression of the viral defense
gene signature appears to correlate with improved re-
sponse and long-term benefit in patients with melanoma
when treated with immune checkpoint inhibitors
ipilimumab or tremelimumab. Both ipilimumab and tre-
melimumab target cytotoxic T lymphocyte associated
molecule 4 (CTLA-4) and activate CTLs [92, 104].
Therefore, as HMAs have been shown to induce both
ERVs and viral defense genes, we hypothesize that these
drugs may be able to alter oncogenic signaling circuitry
in several ways that may render tumor cells more sus-
ceptible to immune therapy .

The discussed work on new molecular mechanisms of
HMA demonstrates the induction of ERV transcripts,
the upregulation of genes involved in effective antitumor
immunity, and the induction of IFNI/III responses in a
wide variety of solid and hematologic cancers. This
greatly extends the possible therapeutic rationale for the
use of HMAs in solid tumors. However, it has to be
mentioned that the reactivation of ERVs by HMA treat-
ment might increase genomic instability, resulting in ac-
quisition of new mutations, disease progression, immune
evasion, and development of drug resistance [105].

HMAs (RE)Induce expression of genes associated
with tumor immune evasion

Inhibitory immune checkpoint receptors

Immune checkpoint blockade therapy has gained consid-
erable attention in recent years. Different monoclonal
antibodies targeting CTLA-4, programmed death recep-
tor 1 (PD-1) or programmed death ligand 1 (PD-L1)
have been FDA approved in metastatic melanoma,
advanced metastatic non-small cell lung cancer, renal
cell carcinoma and urothelial carcinoma [106]. Although
these therapies have been very successful in a large pro-
portion of patients, there remain a number of patients
who do not respond to immune checkpoint blockade
therapy [107-109].
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There is an increasing body of evidence explaining re-
sistance mechanisms, with the tumor microenvironment
thought to be key to primary and/or secondary resist-
ance to therapeutic immune checkpoint modulators
[106]. Factors that contribute to primary resistance to
immune checkpoint blockade therapy are: low numbers
of tumor infiltrating lymphocytes; epigenetic silencing of
chemokines; type one immunity (T-helper 1 mediated-
immunity); and low expression of specific immune
signaling molecules like PD-L1, type 1 IFN, and major
histocompatibility complex (MHC) 1 molecules [106].

It has been noted that successful anti-tumor T-cell prim-
ing requires a critical number of tumor infiltrating type 1
IFN-producing dendritic cells [110, 111]. It was recently
shown that facilitating T-cell infiltration into the tumor
microenvironment, by targeting the tumor necrosis factor
superfamily member LIGHT (also known as TNFSF14,
tumor necrosis factor superfamily member 14), can over-
come resistance to PD-L1 blockade therapy in a xenograft
mouse model of colon cancer and fibrosarcoma [112].
Furthermore, activation of type 1 IFN responses in murine
melanomas with low numbers of tumor-infiltrating lym-
phocytes was associated with prolonged survival in PD-L1
immune-checkpoint blockade therapy [113].

Yang et al. investigated the expression of PD-1, PD-L1,
PD-L2, PD-1 and CTLA-4 after HMA treatment in 124
patients with MDS, AML and CMML [114]. An increase
in HMA-induced expression of these checkpoint mole-
cules was observed and correlated with dose-dependent
(partial) promoter demethylation. The authors therefore
proposed that checkpoint gene reactivation may be more
dependent on demethylation level than on baseline
methylation level [114]. Upregulation of molecules of
the PD/PD-L axis as well as CTLA-4 was associated
with resistance to HMA treatment, disease progression,
and shorter overall survival (OS). This observation is
likely due to T-cell exhaustion and resulting tumor im-
mune evasion [114]. Similar results were also reported
in another study by Orskov et al. AZA treatment of 27
patients with MDS, AML and CMML resulted in the
upregulation of PD-1 in peripheral blood T-cells of pa-
tients with MDS; and this occurred via PD-1 promoter
demethylation [115]. Of note, patients that did not show
PD-1 promoter demethylation after HMA treatment had
a better objective response rate and OS [115].

Upregulation of inhibitory checkpoint molecules due
to HMA-induced demethylation is an unwanted side-
effect that can result in drug resistance and loss of re-
sponse. However, this could be therapeutically exploited,
as it may render tumor cells susceptible to immune
checkpoint blockade therapy. This is an interesting and
promising therapeutic strategy that is currently being
tested in clinical trials (Table 2). Further details on this
topic are reviewed by Greil et al. [116].
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Ligands for inhibitory immune checkpoint receptors
CD80 and CD86 are usually present on antigen pre-
senting cells and act as ligands for both the activating
immune checkpoint receptor CD28 and inhibitory
checkpoint receptor CTLA-4. The affinity and avidity
are greater for CTLA-4 enabling it to outcompete
CD28 for its ligands [117].

DAC has been shown to induce tumor-specific CTLs
in a murine tumor model via upregulation of CD80 on
the thymoma cell line EL4 [118], resulting in enhanced
immunological co-stimulation via CD80, increased
CTL infiltration of tumors, and ultimately tumor rejec-
tion after DAC treatment of mice [118]. HMAs have
also been shown to induce the expression of the co-
stimulatory molecule CD86 on AML cells, which was
assumed to be responsible for increased CTL-mediated
killing of AML cells [88]. Therefore HMAs not only
increase the ‘immunologic visibility’ of the target cells
for CTLs, leading to more effective CTL Kkilling, but
also activate more tumor-specific CTLs.

HMAs as sensitizers of immune checkpoint
modulators

HMA-induced upregulation of inhibitory immune check-
point molecules on malignant cells and T-cells could be
exploited to prime or (re)sensitize cancer cells with pri-
mary resistance to immune checkpoint blocking therapies.
Recent work has demonstrated that combinatorial treat-
ment with anti-CTLA-4 antibodies and low-dose AZA or
DAC results in significantly decreased tumor growth of
melanoma cells in a murine xenograft setting, compared
with CTLA-4 therapy alone [92]. This preclinical rationale
supports exploring HMAs as combination partners to
prime or sensitize patients to immune-checkpoint block-
ade therapy in clinical trials.

Several clinical trials testing various combinations of
HMAs with checkpoint modulators are currently being
planned or are under way (summarized in Table 2).
Within these trials it will be of important to define
predictive biomarkers to identify patients who will
benefit the most from such combination regimens and
to further define the role of HMAs as ‘checkpoint-
inhibitor sensitizers’. It should also be addressed
whether, and to what extent, HMAs may induce ERV
expression in non-malignant cells and whether this
influences side-effects and/or toxicity. Additionally, it
will be of considerable interest to investigate whether
LINEs also contribute to the HMA-induced increase
of dsRNA species in the cytosol of malignant and/or
non-malignant cells. Future genome/epigenome-wide
investigations into the molecular mechanism of epigenetic
therapies should consider viral repetitive sequences in
their analysis.
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Another line of investigation is the effect of vitamin C
administration on the efficacy of HMAs. Recently, vita-
min C was reported to augment the induction of ERVs
and the induction of viral defense pathways by DAC in
in vitro models of human colon, breast, and hepatocellu-
lar carcinoma, as well as AML [119]. In immune check-
point therapy, many cancer patients are deficient in
vitamin C; therefore, incorporation of vitamin C into
treatment protocols may further increase the clinical
efficacy of HMAs.

Conclusions

HMAs were initially synthesized in the 1960s, and since
then their effects on mammalian cells as well as their
clinical applicability have been explored considerably
[120]. The main mechanism of action thought to be
central to the anti-tumor effects of AZA and DAC is
the reactivation of aberrantly silenced TSGs and subse-
quent induction of apoptosis or differentiation, both
hindering tumor cell viability. This review has discussed
new evidence that suggests a novel mode of action,
where HMAs influence tumor interaction with the host
immune system. However, HMAs represent a double-
edged sword because HMA-induced up-regulation of
immune checkpoint molecules during therapy could re-
duce immunogenicity of the tumor and can also explain
resistance arising during therapy.

HMAs exert several immunological effects: (a) HMA-
induced IEN signaling blocks proliferation and lowers
the apoptotic threshold of cancer cells [92]; (b) low-dose
treatment with HMAs promotes expression of genes
that are deregulated in tumors allowing immune evasion
(MHC class I, cancer testis antigens, IFN type 1 and 3,
ISGs) [90-93]; (¢) HMAs induce secretion of CXCL-9
and -10 with subsequent recruitment of lymphocytes to
the tumor site and thus increase the immunological visi-
bility of the tumor [95, 121].

Finally, the data discussed in this review strongly imply
that HMAs may have the potential to counteract factors
that contribute to primary resistance to immune check-
point blockade therapy, and thus may (re)sensitize tu-
mors with (a) low numbers of tumor infiltrating T-cells,
(b) low expression of the IFN-response gene expression
signature, and/or (c) high expression levels of inhibitory
immune checkpoint molecules to targeted immune
checkpoint modulation.
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