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Abstract

Background: The under-5 mortality rate (U5MR) is an important metric of child health and survival. Country-level
estimates of U5MR are readily available, but efforts to estimate U5MR subnationally have been limited, in part, due
to spatial misalignment of available data sources (e.g., use of different administrative levels, or as a result of
historical boundary changes).

Methods: We analyzed all available complete and summary birth history data in surveys and censuses in six
countries (Bangladesh, Cameroon, Chad, Mozambique, Uganda, and Zambia) at the finest geographic level available
in each data source. We then developed small area estimation models capable of incorporating spatially misaligned
data. These small area estimation models were applied to the birth history data in order to estimate trends in U5MR
from 1980 to 2015 at the second administrative level in Cameroon, Chad, Mozambique, Uganda, and Zambia and
at the third administrative level in Bangladesh.

Results: We found substantial variation in U5MR in all six countries: there was more than a two-fold difference in
U5MR between the area with the highest rate and the area with the lowest rate in every country. All areas in all
countries experienced declines in U5MR between 1980 and 2015, but the degree varied both within and between
countries. In Cameroon, Chad, Mozambique, and Zambia we found areas with U5MRs in 2015 that were higher
than in other parts of the same country in 1980. Comparing subnational U5MR to country-level targets for the
Millennium Development Goals (MDG), we find that 12.8% of areas in Bangladesh did not meet the country-level
target, although the country as whole did. A minority of areas in Chad, Mozambique, Uganda, and Zambia met the
country-level MDG targets while these countries as a whole did not.

Conclusions: Subnational estimates of U5MR reveal significant within-country variation. These estimates could be
used for identifying high-need areas and positive deviants, tracking trends in geographic inequalities, and
evaluating progress towards international development targets such as the Sustainable Development Goals.
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Background
A country’s under-5 mortality rate (U5MR) – the prob-
ability that a child will die before reaching his or her
fifth birthday – is a widely used measure of health and
development. The Millennium Development Goals [1]
(MDGs) and, more recently, the Sustainable Develop-
ment Goals [2] (SDGs) both include targets related to
child mortality: for the MDGs, a two-thirds reduction in
U5MR between 1990 and 2015, and for the SDGs a re-
duction in U5MR to less than 25 deaths per 1000 live
births by 2030. Country-level estimates of U5MR are
available globally from a number of sources [3, 4]; how-
ever, detailed subnational estimates (e.g., at the second
administrative level) are not widely available. This is un-
fortunate, as subnational estimates are essential for
measuring inequalities and are important for public
health planning and evaluation purposes. Furthermore,
subnational estimates could be used in monitoring pro-
gress towards development goals such as the SDGs and
MDGs to ensure that certain geographic regions are not
systematically left behind.
In developing countries, U5MR is usually estimated on

the basis of birth history data collected in surveys and
censuses, wherein women are interviewed about their
children’s survival. Methods for analyzing these data
have been available for decades [5, 6] and have been
widely applied at the country level. However, technical
challenges have prevented their widespread use for gen-
erating subnational estimates. In particular, the number
of child deaths in any given survey within a limited geo-
graphic area is generally quite small and estimates based
on a small number of events are subject to random
fluctuations.
In recent years, researchers have begun to apply small

area estimation methods – statistical methods specific-
ally designed to deal with the issues posed by small
numbers – to birth history data in order to estimate sub-
national U5MR [7–10]. These methods take advantage
of spatial and temporal correlation in U5MR and, where
appropriate, smooth estimates across adjacent areas and
time periods. These methods often allow for combining
multiple data sources, which can partially alleviate the
small numbers problem, and facilitate analyzing trends
over longer periods of time.
However, a major limitation of most existing small

area estimation methods is that they are only able to
make use of data sources that identify the precise geog-
raphies of interest. Data which are ‘spatially misaligned’
compared to the geographies of interest – e.g., data for
higher administrative units or for historical boundaries
no longer in effect – have typically been discarded. In
many cases, a large proportion of the available data fall
in this category, forcing researchers to choose between
analyzing at a more aggregate level or using only a

fraction of the available data. For example, due to fre-
quent changes in district boundaries in Uganda, re-
searchers have previously chosen to analyze U5MR and
other maternal and child health indicators at the much
coarser region level rather than the district level [9].
A recent analysis by Golding et al. [11] utilized

model-based geostatistics methods to estimate gridded
surfaces of U5MR in Africa using point data (i.e., data
associated with GPS coordinates). This method allows
for incorporation of data from arbitrary areas, including
spatially misaligned data, by re-assigning these data to a
series of point locations proportional to population
within the given area. While this approach allows for
utilizing spatially misaligned data, it essentially assumes
that the same U5MR was observed in all locations
within a given area described in the spatially misaligned
data. This assumption is likely unrealistic in some cases,
particularly for larger areas (e.g., provinces or regions).
For this analysis, we developed small area estimation

methods that are sufficiently flexible to incorporate data
for any geography that can be formed by combining one
or more of the areas of interest, allowing data at mul-
tiple geographic levels to be incorporated while still esti-
mating for the finest geographic level. We then applied
this method to all available data in Bangladesh,
Cameroon, Chad, Mozambique, Uganda, and Zambia in
order to generate annual subnational estimates of U5MR
at the second (and in the case of Bangladesh, third) ad-
ministrative level from 1980 to 2015. To demonstrate
the utility of geographically precise information on
U5MR, we use these estimates to explore spatial and
temporal patterns in U5MR, quantify within-country in-
equalities, and evaluate subnational progress towards
meeting MDG and SDG targets.

Methods
Unit of analysis
We estimated U5MR at the second administrative level
in Cameroon (departments), Chad (departments),
Mozambique (districts), Uganda (districts), and Zambia
(districts); and at the third administrative level in
Bangladesh (sub-districts). Table 1 describes the admin-
istrative hierarchy for each country.

Population counts
Annual under-5 population estimates were compiled for
each unit of analysis in each country from 1980 to 2015
from a combination of census microdata, census reports,
and existing population series (Table 2) with the primary
goal of describing the relative population size of different
areas within a country rather than the precise absolute
population size in any one area. For Bangladesh,
Mozambique, Uganda, and Zambia, we sought age-specific
census microdata or tabulations at the finest geographic
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level available. Where the appropriate level of geographic
detail was not available – either because census counts
were tabulated at a higher level (e.g., province or region) or
because administrative boundary definitions had changed
over time – the counts were split according to the propor-
tions observed in the next census year. When only total (all
ages combined) tabulations were available, these were
age-split according to the age patterns observed in the
closest census year with age-specific data available in the

same country. For Mozambique, we supplemented the
available census data with an existing district-level popula-
tion series available via the Spatial Data Repository [12].
Total and age-specific populations for each area were inter-
polated and projected from 1980 to 2015 assuming geomet-
ric growth and then age-specific populations were scaled to
match the total population in each year in each area. For
Cameroon and Chad, where less age- and area-specific
census data were readily available, we instead utilized the
gridded population estimates from WorldPop [13, 14]. We
overlaid the population grid on a current shapefile and then
aggregated the population within each area to generate
department-level population estimates for each country.
WorldPop estimates were available for 2000, 2005, 2010,
and 2015, and we utilized these four sets of estimates for
1980–2000, 2001–2005, 2006–2010, and 2011–2015, re-
spectively, holding the population constant within each
time period.

Birth history data
For this analysis, we identified surveys and censuses in
all six countries which contained summary birth history
(SBH) or complete birth history (CBH) data (Table 3).
For surveys that contained the latitude and longitude of
each survey cluster, we overlaid these coordinates with a
current district, department, or sub-district (depending
on the country) shape file and identified the area each
survey cluster belonged to. In all other surveys, as well
as in censuses, we extracted the finest geographic level

Table 1 Administrative units

Country Admin. level 1 Admin. level 2 Admin. level 3

Bangladesh Division (7) District (64) Sub-district (484)a

Cameroon Region (10) Department (58) –

Chad Region (23)b Department (62)b, c –

Mozambique Province (11)d District (148)d –

Uganda Region (4) District (112) –

Zambia Province (9)e District (72)e –
aSome highly urbanized areas of Bangladesh are classified as city corporations
which we treat as equivalent to sub-districts for this analysis
bIn Chad, the capital city is considered equivalent to both a region and
a department
cChad currently has 68 departments. However, the most detailed data source
identified used the 62 departments in effect until 2011, so we have carried out
the analysis at this level
dIn Mozambique, the capital city is considered equivalent to a province while
the provincial capital cities are considered equivalent to districts
eZambia currently has 10 provinces and 103 districts. However, district
boundary changes in recent years have not been well documented. We
therefore carry out this analysis on the 9 provinces and 72 districts that were
in effect until approximately 2010

Table 2 Population data sources

Years Geographic level Age detail Source

Bangladesh

1974, 1981 National Total Census tabulation

1991, 2001 Upazilaa Age-specific Census tabulation

2011 Upazila Age-specific Census tabulation

Cameroon

2000, 2005, 2010, 2015 1-km grid Age-specific WorldPop

Chad

2000, 2005, 2010, 2015 1-km grid Age-specific WorldPop

Mozambique

1980 Province Age-specific Census tabulation

2000–2015 District Age-specific Spatial Data Repository

Uganda

1980, 1991, 2002 District Total Census tabulation

1991, 2002 Districta Age-specific Census microdata

2014 District Age-specific Census tabulation

Zambia

1990 Districta Age-specific Census microdata

2000, 2010 District Age-specific Census microdata
aHistorical administrative boundary sets which require splitting to match current administrative boundaries
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Table 3 Birth history data sources

Surveya Geographic levelb Spatially aligned?c Complete birth history Summary birth history

Bangladesh

1993–1994 DHS District (64) No x

1996–1997 DHS District (64) No x

1999–2000 DHS Sub-district (484) Yes x

2001 DHS District (64) No x

2004 DHS Sub-district (484) Yes x

2007 DHS Sub-district (484) Yes x

2010 MMHCS District (64) No x

2011–2012 DHS Sub-district (484) Yes x

2012–2013 MICS District (64) No x

2014 DHS Sub-district (484) Yes x

Cameroon

1991 DHS Department (58) Yes x

1998 DHS Region (10) No x

2000 MICS Region (10) No x

2004 DHS Department (58) Yes x

2011 DHS Department (58) Yes x

2014 MICS Region (10) No x

Chadd

1996–1997 DHS Region (15) No x

2000 MICS Region (15) No x

2004 DHS DHS Region (9) No x

2010 MICS Department (62) Yes x

2014–2015 DHS Department (62) Yes x

Mozambique

1997 Census District (146) No x

1997 DHS Province (11) No x

2003 DHS Province (11) No x

2007 Census District (148) Yes x

2008 MICS Province (11) No x

2009 AIS District (148) Yes x

2011 DHS District (148) Yes x

Uganda

1991 Census District (38) No x

1992–1993 UNIHS District (38) No x

1995 DHS District (38) No x

2000–2001 DHS District (112) Yes x

2002 Census District (56) No x

2006 DHS District (112) Yes x

2009–2010 MIS District (112) Yes x

2009–2010 UNPS District (87) No x

2010–2011 UNPS District (112) Yes x

2011 AIS District (112) Yes x

2011 DHS District (112) Yes x
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identified in the available data. Birth history data for
each geographic area included in a given survey or
census were analyzed independently using the complete
or summary birth history methods described below.
When both complete and summary birth history data
were available from a single survey, only complete birth
history data were analyzed and included in the analysis.

Analysis of complete birth histories
We extracted child-level data on date of birth, survival
status, age at death (if applicable), and sampling weights
from surveys with complete birth histories. The data for
each child were expanded to encompass each month
that the child started alive prior to reaching age 5 or the
date of the survey, whichever occurred first. All
child-months were subdivided by calendar year and into
six age groups (month 0, months 1–11, year 1, year 2,
year 3, and year 4) and the monthly probability of death
in each age-year group was calculated as the weighted
proportion of child months which ended in death, where
the weights were the survey sample weights. We then
derived U5MR for each calendar year as:

U5MR CBHð Þ
j;t;s ¼ 1−

Y
a

1−q j;t;s;a

� �na

where qj, t, s, a is the monthly probability of death in area
j, year t, age group a, source s; and na is the number of
months in age group a.

We estimated N ðCBHÞ
j;t;s , the number of births associated

with a given U5MRðCBHÞ
j;t;s estimate based on the number of

child months contributing to that estimate. Specifically, the
number of child months in area j, year t, and source s
(summed across the six age groups) was divided by the
mean number of months children in source s lived prior to
death, reaching age 5, or the time of survey, whichever oc-

curred first. We then estimated Y ðCBHÞ
j;t;s , the number of

deaths associated with each U5MR estimate, by multiplying
the estimated number of births by the estimated U5MR:

Y CBHð Þ
j;t;s ¼ U5MR CBHð Þ

j;t;s � N CBHð Þ
j;t;s

Analysis of summary birth histories
We extracted woman-level data on the number of children
ever born and the number of children died from surveys
and censuses with summary birth histories. We then ap-
plied the combined summary birth history method de-
scribed by Rajaratnam et al. [15] in order to generate
preliminary estimates of U5MR by area and year from each
survey. This method requires several inputs, indexed by
mother’s age or reported time since first birth, including:
number of women, total children ever born, total children
died, and mean children born (per woman). Women-level
sample weights were used to generate weighted estimates
of all input parameters. The output of these summary birth
history methods are annual estimates of U5MR for approxi-
mately 25 years preceding the date of the survey or census.
As an intermediate step in applying the summary birth

history methods described by Rajaratnam et al. [15], all
reported births are distributed on an annual basis to the
years preceding the survey or census using empirical

Table 3 Birth history data sources (Continued)

Surveya Geographic levelb Spatially aligned?c Complete birth history Summary birth history

2011–2012 UNPS District (112) Yes x

2014–2015 MIS District (112) Yes x

Zambia

1990 Census District (57) No x

1992 DHS District (57) No x

1996–1997 DHS District (57) No x

2000 Census District (72) Yes x

2001–2002 DHS Province (9) No x

2007 DHS District (72) Yes x

2010 Census District (72) Yes x

2013–2014 DHS District (72) Yes x
aAIS AIDS Indicator Survey, DHS Demographic and Health Survey, MICS Multiple Indicator Cluster Survey, MMHCS Maternal Mortality and Healthcare Survey, MIS
Malaria Indicator Survey, UNIHS Uganda National Integrated Household Survey, UNPS Uganda National Panel Survey
bNumbers shown in parentheses indicate the number of areas in a given set of administrative boundaries. This is to distinguish between current and historical
sets of areas that go by the same name
cSources that could be analyzed at the current second administrative level (third, in Bangladesh only), as described in Table 1, are considered spatially aligned
while all other data sources are considered spatially misaligned
dChad previously had prefectures which are roughly equivalent to regions. For simplicity, both regions and prefectures are listed as regions in this table. ‘DHS
region’ are an alternate set of regions defined for statistical purposes in the 2004 Demographic and Health Survey
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distributions of time since birth indexed by mother’s age
and the reported number of children at the time of sur-

vey. The resulting annual estimates of births (N�ðSBHÞ
j;t;s )

were taken as the starting point for estimating an effect-
ive sample size for each summary birth history estimate.
Summary birth history estimates are subject to both

sampling error and model error, and we wanted to reflect
this in our estimates of the effective number of births and
deaths associated with each U5MR estimate derived from
a summary birth history. To approximate the sampling

variance of U5MRðSBHÞ
j;t;s , we assumed the number of chil-

dren that die is approximately binomially distributed:

σ2j;t;s sampling½ � ¼
U5MR SBHð Þ

j;t;s � 1� U5MR SBHð Þ
j;t;s

� �

N� SBHð Þ
j;t;s

To approximate the model variance, we utilized the re-
sults of the validation exercise reported by Rajaratnam et
al. [15] Five-fold cross-validation was used to assess the
performance of the summary birth history methods in re-
producing estimates derived from complete birth histories.
We calculated the variance of the residuals from this
comparison for each year prior to survey – i.e., the
difference between the summary birth history estimate
and corresponding complete birth history estimate, on a
probability scale – as an approximation of the error intro-
duced by using the summary birth history data and
methods compared to the complete birth history data and

methods. For each estimate of U5MRðSBHÞ
j;t;s , we used this

variance, matched for appropriate number of years prior
to survey, as σ2j;t;s ½model�. We assumed that the model error

and sample error were independent, and calculated the

total variance for each estimate of U5MRðSBHÞ
j;t;s as

σ2j;t;s total½ � ¼ σ2j;t;s sampling½ � þ σ2j;t;s model½ �;

and calculated the corresponding effective sample size

N ðSBHÞ
j;t;s again assuming that the number of children who

die is approximately binomially distributed:

N SBHð Þ
j;t;s ¼

U5MR SBHð Þ
j;t;s � 1� U5MR SBHð Þ

j;t;s

� �
σ2j;t;s total½ �

This procedure was carried out both at the national level
as well as each subnational area at the finest level available
in given survey or census, and the resulting values of

N ðSBHÞ
j;t;s for all subnational areas were scaled to sum to the

estimated value of N ðSBHÞ
j;t;s for the country as a whole.

Finally, we calculated the effective number of deaths by
multiplying the estimated U5MR by the effective number
of births:

Y SBHð Þ
j;t;s ¼ U5MR SBHð Þ

j;t;s � N SBHð Þ
j;t;s

Small area models
We started with the following hierarchical generalized linear
model defined for data stratified by area (department, dis-
trict, or sub-district, depending on the country), year, and
data source (a single survey or census in a particular area):

Y j;t;s∼Binomial pj;t;s;N j;t;s

� �
logit pj;t;s

� �
¼ β0 þ u0; j þ

X5

i¼1
βi þ ui; j
� � � Si tð Þ þ γs

where
Nj, t, s and Yj, t, s are the number of births and deaths re-

spectively in area j, year t, and source s (equivalent to

N ðCBHÞ
j;t;s and Y ðCBHÞ

j;t;s or N ðSBHÞ
j;t;s and Y ðSBHÞ

j;t;s , depending on

the birth history method used to analyze source s);
pj, t, s is the underlying U5MR in area j, year t, and

source s;
β0 and u0, j are the country-level fixed intercept and

the area-level random intercept, respectively;
Si(t) is basis i of a natural cubic spline [16] with four

equally-spaced interior knots evaluated at time t;
βi and ui, j are the country-level fixed slopes and

area-level random slopes on Si(t), respectively;
and γs is a source-level random intercept.
We then added a second component which allows us

to incorporate data defined for other geographic levels
(i.e., higher level or historical administrative units):

Yk;t;s∼Binomial pk;t;s;Nk;t;s

� �

logit pk;t;s
� �

¼ logit
X

j∈k

P j;t

Pk;t
� p j;t

� �
þ γs ¼ logit pk;t

� �
þ γs

Where pk, t, s, Nk, t, s, Yk, t, s are defined analogously to
pj, t, s, Nj, t, s, Yj, t, s but for some area k made up of mul-
tiple area j’s (e.g., a province, containing multiple dis-
tricts). pj, t, the underlying U5MR in area j and year t is
defined analogously to pj, t, s above, but with γs set to 0,
and pk, t, the true prevalence in area k and year t, is
given by the population (P) weighted average of pj, t

across all areas j contained within area k.
The random effect terms u0, j and ui, j (i = 1–5) were

assigned conditional autoregressive priors as described
by Leroux et al. [17] These priors allow for spatial
smoothing based on the neighborhood structure of the
areas being modeled, specifically by assuming that the
prior mean for a given area is a function of the values in
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neighboring areas. The full conditional distribution im-
plied by this prior is:

uj j u− j; σ2; ρ � Normal
ρ
P

m� jum
njρþ 1−ρ

;
σ2

njρþ 1−ρ

� �

where m~j indicates that area m is a neighbor of (i.e.,
shares a boarder with) area j and nj is the number of
neighbors of area j. The two hyperparameters for each
random effect were estimated as part of the model fitting
process: σ2 determines the overall amount of variation and
ρ, which varies between 0 and 1, determines the degree of
spatial autocorrelation. Lower values of ρ indicate less
spatial relatedness, while higher values of ρ indicate a high
degree of spatial relatedness; at the extremes, this prior re-
duces to a Normal(0, 1) prior when ρ is 0 and to an intrin-
sic conditional autoregressive prior [18] where the prior
mean is equal to the mean of all neighbors when ρ is 1.
Normal(0, 10) hyper-priors were specified for logit-
transformed ρ and half-Normal(0, 1) hyper-priors were
specified for σ for all random effects. Common σ2 and ρ
parameters were estimated for all random effects on the
spline bases, ui, j (i = 1–5). Posterior estimates of these
hyperparameters are listed in Additional file 1.
Models were estimated separately for each country. All

models were fit using the TMB package [19] in R version
3.2.4 [20]. We extracted point estimates and the
variance-covariance matrix for logit(pj, t) and used these
to generate 1000 draws of pj, t by drawing from a multi-
variate normal distribution and then inverse-logit trans-
forming each draw. These draws were scaled to match
existing national-level estimates of U5MR from the Global
Burden of Disease (GBD) Study: [3] for each year t and
each draw, we calculated the ratio of the national estimate
from the GBD to the national estimate derived from
population-weighting pj, t and multiplied pj, t by this ratio.
Finally, we calculated point estimates of pj, t from the
mean of these draws and the lower and upper bounds of
the 95% uncertainty interval from the 2.5th and 97.5th
percentiles, respectively. Relative change in pj, t over time
was also calculated for each draw, and 95% uncertainty in-
tervals were derived from the 2.5th and 97.5th percentiles.

Results
Spatial patterns in U5MR
Figure 1 shows birth history and small area estimates for
four example areas. Figures 2, 3, 4, 5, 6 and 7 show the pre-
dicted U5MR for each country in 2015 and the relative
change from 1980 to 2015. Results for all years with associ-
ated uncertainty intervals are provided in Additional file 2.
We found significant variation in U5MR at the second (or
third, in Bangladesh) administrative level in all six countries.

In 2015, U5MR in Bangladesh was 36 (95% uncertainty
interval: 33, 41) deaths per 1000 live births; however,
U5MR varied among sub-districts from 23 (10, 44) in
Barisal sub-district to 74 (32, 141) in Derai sub-district.
In general, the highest U5MRs were found in northeast-
ern sub-districts, while the lowest were found in eastern
and central-western sub-districts. Between 1980 and
2015, U5MR improved in all sub-districts, with relative
declines ranging from 70% (43, 87) in Jhikargachha
sub-district to 87% (75, 94) in Barisal sub-district.
U5MR in Cameroon in 2015 was 91 (74, 112) deaths

per 1000 live births. At the department level, there was a
more than two-fold difference between U5MR in Hauts
Plateauxand (57 [34, 87]) and Mayo Louti (150 [99,
218]). Overall, the highest mortality rates were found in
northern departments while departments in the central
and eastern parts of the country experienced more inter-
mediate U5MRs, and departments in the northwest ex-
perienced the lowest U5MRs. U5MR declined in all
departments in Cameroon between 1980 and 2015, but
the magnitude of these declines varied widely, from 39%
(12, 60) in Diamare to 52% (31, 69) in Mayo Danay.
Chad experienced an U5MR of 117 (103, 136) deaths

per 1000 live births in 2015. At the department level,
U5MR ranged from 54 (29, 91) in Kobe to 180 (121,
260) in Loug Chari. Departments in the southwest gen-
erally had the highest mortality rates while departments
with relatively low mortality rates were concentrated in
the northeast and northwest. Declines in U5MR between
1980 and 2015 ranged from 33% (8, 53) in Loug Chari to
63% (45, 76) in Guera.
U5MR in Mozambique was 81 (70, 93) deaths per

1000 live births in 2015. At the district level, U5MR var-
ied from 45 (20, 94) in Cidade de Lichinga in Niassa
province to 144 (79, 232) in Angonia in Tete province.
In general, the lowest U5MRs were found in northern
districts while the highest U5MRs were found in
central-western districts. U5MR improved in all districts
between 1980 and 2015, with declines ranging from 42%
(− 27, 78) in Distrito Urbano 7 in Maputo to 77% (65,
86) in Mueda in Cabo Delgado province. There were
distinct regional patterns in the decline in U5MR be-
tween 1980 and 2015, with the largest improvements
found in northern districts and the smallest improve-
ments found in central-western and southern districts.
In 2015, U5MR in Uganda was 66 (58, 75) deaths per

1000 live births; however, U5MR varied among districts
from 42 (28, 62) in Kampala to 92 (60, 135) in Moroto.
Large-scale spatial patterns in U5MR in 2015 were less
prominent in Uganda compared to other countries.
However, there were clusters of districts with higher
than average U5MR in the northeast and southwest, and
clusters of districts with lower than average U5MR in
the central part of the country. Between 1980 and 2015,
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U5MR declined in all districts in Uganda. The rate of
decline was more uniform in Uganda than the other
countries considered, varying between 64% (48, 76) in
Kaabong and 70% (57, 80) in Kampala.
Zambia experienced a U5MR of 62 (49, 76) deaths per

1000 in 2015. U5MR varied among districts by more
than a factor of three, with the lowest rate found in Cha-
vuma (39 [21, 66]) and the highest in Chiengi (134 [87,
190]). In general, lower mortality rates were found in the
Copperbelt region and in more central districts, while
higher mortality rates were found in districts in the east,
north, and southwest. U5MR declined in all districts in
Zambia between 1980 and 2015, with declines ranging
from 53% (34, 68) in Chiengi to 66% (56, 76) in Kasama.

Temporal and cross-country comparisons of the
subnational distribution of U5MR
Figure 8 depicts how the distribution of U5MR at the
second (or third) administrative level changed over time
in each country. In Bangladesh, Chad, Mozambique, and
Uganda, the distribution shifted downwards over the

course of each decade in our analysis. In contrast, this
distribution shifted upwards slightly in Cameroon be-
tween 1990 and 2000 and in Zambia between 1980 and
1990, though over the analysis period as a whole the
same downwards shift was observed.
Among these six countries, only Bangladesh and

Uganda have no overlap between the distribution of
U5MR in 1980 and in 2015. In each of the remaining
countries – Cameroon, Chad, Mozambique, and Zambia
– there are areas where U5MR was higher in 2015 than
in other areas of the same country three and half de-
cades earlier. The comparison between 1980 and 2015 is
particularly extreme in Cameroon, where the highest
U5MR observed in any department in 2015 was similar
to the median observed among departments in 1980.
Figure 8 shows the MDG target for each country as a

solid black line. Among the six countries considered,
only Bangladesh achieved the goal of a two-thirds reduc-
tion overall in U5MR between 1990 and 2015; most
(87.2%), but not all, sub-districts in Bangladesh had
U5MR below the country-wide MDG target in 2015

A B

C D

Fig. 1 Data and estimates for selected areas. a Amtali, Bangladesh (sub-district); b Bamboutos, Cameroon (department); c Batha Est, Chad
(department); d Kalangala, Uganda (district)
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A B

Fig. 2 Under-5 mortality rate by sub-district in Bangladesh. a Under-5 mortality rate in 2015 and (b) relative change in the under-5 mortality rate
between 1980 and 2015

A B

Fig. 3 Under-5 mortality rate by department in Cameroon. a Under-5 mortality rate in 2015 and (b) relative change in the under-5 mortality rate
between 1980 and 2015
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A B

Fig. 4 Under-5 mortality rate by department in Chad. a Under-5 mortality rate in 2015 and (b) relative change in the under-5 mortality rate
between 1980 and 2015

A B

Fig. 5 Under-5 mortality rate by district in Mozambique. a Under-5 mortality rate in 2015 and (b) relative change in the under-5 mortality rate
between 1980 and 2015
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A B

Fig. 6 Under-5 mortality rate by district in Uganda. a Under-5 mortality rate in 2015 and (b) relative change in the under-5 mortality rate
between 1980 and 2015

A B

Fig. 7 Under-5 mortality rate by district in Zambia. a Under-5 mortality rate in 2015 and (b) relative change in the under-5 mortality rate
between 1980 and 2015
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(based on the point estimates of U5MR in each area). In
Chad, Mozambique, Uganda, and Zambia, a minority of
areas reached the country-wide MDG target (6.5, 37.8, 16.1,
and 48.6%, respectively). No department in Cameroon
achieved the country-level MDG target in 2015.
Figure 8 also shows the Sustainable Development Goal

(SDG) target for 2030 (25 deaths per 1000 for all coun-
tries). As of 2015, there was no district or department in
Cameroon, Chad, Mozambique, Uganda, or Zambia
where U5MR was below this threshold, while in
Bangladesh four sub-districts had U5MR just below this
threshold. Moreover, in all six countries there were areas
where U5MR in 2015 was many times higher than the
SDG target: e.g., in every country other than Bangladesh,
a large majority (76.4–100%) of districts and depart-
ments had U5MR at least twice the SDG target.

Comparison to alternate estimates
A comparison of U5MR estimates from this analysis to
those in Golding et al. [11] is shown in Additional file 3.
The point estimates from these two analyses are reason-
ably consistent for most countries in most years. How-
ever, there are important differences, particularly in
Chad and Mozambique in 2015. The estimates from
both analyses are associated with considerable uncer-
tainty as indicated by wide uncertainty intervals; in
nearly all cases (95.5% of area-years) these uncertainty
intervals overlap between the two analyses.

Discussion
Previous analyses of U5MR for small subnational areas
(e.g., the second or third administrative level) are rare,

largely due to the statistical challenge of estimating rates
based on small sample sizes. The few analyses of this nature
that do exist have generally attempted to overcome the
challenge posed by small numbers by utilizing small area
estimation techniques and where possible, incorporating
multiple data sources. However, these small area estimation
methods have not been able to handle spatially misaligned
data; for example, data where the geographies identified
were more aggregate (e.g., first instead of second adminis-
trative level) or referred to historical administrative units
that have since split. In this analysis, we described methods
that built on these previous analyses but are capable of in-
corporating spatially misaligned data, increasing the
amount of data available for analysis. We applied these
methods to six countries to demonstrate the utility of this
methodology and the results it produces. Among the six
countries we considered, between 38% (Uganda) and 60%
(Chad) of the available data sources did not include suffi-
cient geographic information to identify the areas of inter-
est. We were nonetheless able to incorporate all of these
data, making estimation of time trends at the second (or
third, in Bangladesh) administrative level possible.
These estimates exposed a high degree of spatial hetero-

geneity in all six countries. In 2015, there was more (some-
times much more) than a two-fold difference between the
highest and lowest U5MR found in each country. The rela-
tive change in U5MR over the past three and half decades
was also highly variable in most countries, highlighting
within-country differences in trajectory in addition to level.
As countries consider how to reduce U5MR, these types of
geographically precise estimates can be used to identify
areas where attention and resources are most needed, or to

Fig. 8 Subnational under-5 mortality rates compared to international targets, 1980–2015. Within each boxplot vertical lines indicate the range,
boxes indicate the interquartile range, horizontal lines indicate the median, and dot indicates the national rate. The solid black lines indicate the
country-level Millennium Development Goal target (i.e., a two-thirds reduction of the 1990 U5MR by 2015) and the black dashed line indicates
the Sustainable Development Goal target (25 deaths per 1000 by 2030)
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highlight areas that have done well and might be mined for
effective strategies.
These results also suggest that subnational estimates

should be considered when tracking progress towards the
SDGs. The MDGs and SDGs have increased attention
paid to improving child survival; however, focusing on
country-level metrics when evaluating progress towards
these targets may mean that the benefits of this extra at-
tention are not felt everywhere. Indeed, it is possible for
improvements overall to be accompanied by increasing ra-
ther than decreasing inequalities [21]. Subnational esti-
mates can be used to proactively identify areas where
achieving the SDG target will take the most work but also
the areas where there is the most room for improvement.
Paying special attention to these areas will help ensure
that they get the help they need while also contributing to
improvements for the country as a whole.
There are likely many factors contributing to the

spatial and temporal trends in U5MR described in this
study. While attributing these trends to specific drivers
is outside the scope of this analysis, factors such as pov-
erty, urbanicity, malaria endemicity, and conflict and
armed violence likely play an important role both in de-
termining country-wide temporal trends in U5MR as
well as regional differences within each country. More-
over, during the time period considered, all six countries
have instituted numerous programs and policies to spe-
cifically combat common causes of child death and more
generally expand and strengthen the health system. For
example, in Bangladesh, the Expanded Program on
Immunization (EPI) launched in 1979 led to a rapid in-
crease in childhood vaccination rates; Bangladesh later
introduced the Integrated Management of Childhood Ill-
ness (IMCI) program in 2002 to combat major causes of
child mortality [22]. In Cameroon, 2010 updates to the
Health Sector Strategy established programs to combat
endemic diseases like malaria; improve reproductive
health; expand immunization coverage via the EPI; and
promote development of human resources, infrastruc-
ture, and technology within the health system. In Chad,
increased oil revenues since 2003 have allowed the gov-
ernment to significantly increase spending on health
programs and the number of health facilities and
personnel. In Mozambique, the government and inter-
national response to the HIV crisis in the late 1990s has
ultimately resulted in expanded access to HIV preven-
tion and treatment services and buttressed the health
system to deliver general health services [23]. Uganda
has implemented a series of policies and programs tar-
geting common causes of child death, including adopt-
ing IMCI guidelines in the late 1990s; introducing
pentavalent vaccine in 2002; introducing Artemisinin
Combination Therapy (ACTs) as the first line treatment
for malaria in 2004; introducing pneumococcal vaccine

in 2012; and mass distribution of insecticide treated nets
(ITNs) in 2013 and 2014. Zambia similarly began imple-
menting IMCI guidelines in some districts in 1996;
adopted ACTs as the first-line treatment for malaria in
2004; and introduced the pentavalent vaccine in 2005
and the pneumococcal and rotavirus vaccines in 2013.
However, in all six countries, the benefits of these vari-
ous policies and programs have likely not been evenly
distributed geographically [9, 24, 25].

Limitations
This analysis is subject to a number of limitations. First,
the birth history data we used as the primary source of in-
formation on U5MR are subject to misreporting and sur-
vival biases [26, 27]. Previous research has suggested that
the impact of survival bias can be significant in popula-
tions with high HIV prevalence. Several methods have
been proposed for correcting for this bias, and additional
research is warranted to investigate integrating these
methods alongside small area estimation methodologies
[28–30]. Second, surveys that include GPS coordinates
generally have these coordinates displaced to some degree
to protect respondent’s confidentiality (for example,
Demographic and Health Surveys randomly displace GPS
coordinates up to 1 km in urban areas, up to 5 km in rural
areas, and up to 10 km in a random 1% subset of survey
clusters [31]). This displacement is not accounted for
when mapping GPS data to administrative boundaries, po-
tentially leading to some misclassification in areas near ad-
ministrative borders. Third, the population data which we
used to inform how different levels of geographic aggrega-
tion relate to each other in the small area estimation
models are also subject to error, both due to errors in the
underlying census data (e.g., omissions or age misreport-
ing) as well as potential violation of the assumptions used
to interpolate these data (e.g., due to migration). Fourth,
the methods used to account for both sampling and model
error and estimate the effective number of births associ-
ated with U5MR estimates from summary birth histories
require a number of assumptions and approximations that
may not be appropriate in all cases. Fifth, the small area
estimation models smooth over space and time by making
assumptions about the temporal and spatial structure of
U5MR that may not always hold. Sixth, the small area
models assume that the estimated deaths from the birth
history data are binomially distributed for all areas, and
this assumption may not be valid in all cases. Future re-
search, potentially including simulation studies, should ex-
plore the implications of these assumptions as well as
possible alternatives. Seventh, while the methods devel-
oped here allow for including spatially misaligned data,
they do require that this spatial misalignment is of a par-
ticular type: specifically, that all larger areas are composed
of simple combinations of the smaller areas of interest.
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Eighth, the estimates we derive are uncertain, as reflected
by the uncertainty intervals that are often quite wide.
Given this uncertainty, the results must be interpreted
with caution. Ninth, we make a number of cross-country
comparisons of the distribution of U5MR within each
country, but this distribution is likely sensitive to how a
given country is partitioned (i.e., the modifiable areal unit
problem) [32]. Finally, it is difficult to assess the accuracy
of these estimates, which may be compromised due either
to violations of the modeling assumptions or quality issues
in the underlying data sources. The estimates from this
study generally have high face-validity given existing
knowledge of the social and health context of each coun-
try. However, there are exceptions. In particular, estimates
for recent years in Mozambique are difficult to explain, as
some districts with relatively high and others with rela-
tively low estimated U5MR are similar with regards to hu-
man and financial resource inputs (e.g., Macanga and
Nangande). Future research should focus on formally val-
idating these methods and comparing them to available
alternatives.

Conclusions
The methods described in this analysis provide a frame-
work for efficiently utilizing all available data sources to
estimate U5MR at a fine geographic level. Subnational
estimates of U5MR based on this methodology reveal
significant within-country variation. These estimates
could be used for identifying high-need areas, tracking
trends in geographic inequalities, and evaluating pro-
gress towards international development targets such as
the Sustainable Development Goals.
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