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Abstract 

Background:  In several years ago, infection with human papillomaviruses (HPVs), have been prevalent in the worlds 
especially HPV type 18, can lead to cervical cancer. Therefore, rapid, accurate, and early diagnosis of HPV for success-
ful treatment is essential. The present study describes the development of a selective and sensitive electrochemical 
biosensor base on DNA, for early detection of HPV-18. For this purpose, a nanocomposite of reduced graphene oxide 
(rGO) and multiwalled carbon nanotubes (MWCNTs) were electrodeposited on a screen-printed carbon electrode 
(SPCE). Then, Au nanoparticles (AuNPs) were dropped on a modified SPCE. Subsequently, single strand DNA (ssDNA) 
probe was immobilized on the modified electrode. The link attached between AuNPs and probe ssDNA provided 
by l-cysteine via functionalizing AuNPs (Cys-AuNPs). The differential pulse voltammetry (DPV) assay was also used to 
electrochemical measurement. The measurement was based on the oxidation signals of anthraquninone-2-sulfonic 
acid monohydrate sodium salt (AQMS) before and after hybridization between the probe and target DNA.

Results:  The calibration curve showed a linear range between 0.01 fM to 0.01 nM with a limit of detection 0.05 fM. 
The results showed that the optimum concentration for DNA probe was 5 µM. The good performance of the pro-
posed biosensor was achieved through hybridization of DNA probe-modified SPCE with extracted DNA from clinical 
samples.

Conclusions:  According to the investigated results, this biosensor can be introduced as a proprietary, accurate, sensi-
tive, and rapid diagnostic method of HPV 18 in the polymerase chain reaction (PCR) of real samples.
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Introduction
Several studies demonstrated that HPV is commonly 
spread by sexual activity. HPVs are classified according to 
their risk of cancer infection into two groups (high risk 

and low-risk). Among the high-risk HPVs, the most dan-
gerous types are HPV-16 and HPV-18 that are responsi-
ble for almost more than half of cervical cancers. Also, 
the high-risk HPVs are responsible for 36% of penile 
cancers, 51% of vulvar cancer, 63% of oropharyngeal 
carcinomas, 64% of vaginal cancers, 93% of anal cancers 
and 96% of cervical cancers [1]. Double-stranded DNA 
genomes of HPVs encode eight genes, which among 
them, E6 and E7 by having transforming properties, 
are necessary for malignant conversion [2]. Traditional 
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methods for detection of HPVs are Pap smear and visual 
inspection with acetic acid. These methods have their 
own limitations such as poor specificity and sensitivity 
[3]. However, due to recent advances in molecular meth-
ods, this method is used to detect and also identify the 
types of HPV. For example, COBAS®4800, digene HC2 
High-Risk HPV DNA, linear array®, PapilloCheck®, 
INNO-LiPA, clinical arrays®HPV, CLART​®human papil-
lomavirus 2 and others are the assays that showed a high 
sensitivity for the diagnosis of HPVs and pre-cancerous 
lesions. Nevertheless, the methods mentioned have limi-
tations such as high cost, long response time, requirment 
of trained personnel as well as advanced equipment and 
the need for PCR products [4, 5]. Therefore, considering 
many disadvantages of the existing diagnostic methods, 
the development of an appropriate diagnostic method for 
identifying HPV is essential. In recent years, DNA bio-
sensors are introduced as a new appropriate device for 
rapid, simple, economical, sensitive, specific and early 
detection of pathogens [5–7]. They are diagnostic devices 
that are designed for detection of DNA target among 
million-fold excess of non-target species, by hybridized 
complementary DNA probes immobilized on the surface 
of various types of electrodes [8]. Until now, different 
biosensors for HPVs assays were reported, but electro-
chemical biosensors have more advantageous due to their 
portability, cost-effectiveness, small sample volume, small 
size, and ease of use [9–11]. In order to improve the per-
formance of the biosensor, various materials are used to 
modify the surface of the electrode. Research conducted 
in recent years shows that rGO is a suitable candidate for 
improving the performance of electrochemical activities 
in biosensors. The structure of rGO honeycomb pro-
duces significant either chemical or physical properties, 
such as high surface area, high electrical conductivity and 
high chemical stability. Furthermore, the introduction of 
MWCNTs into the matrix of rGO-based materials not 
only improves electron transfer but also provides more 
porous structure, which is a very effective way to increase 
sensitivity and improve biosensor performance [12–14]. 
Moreover, recent advances in biosensors indicate that the 
use of Au nanoparticles increases electrical conductiv-
ity and provides the immobilization passages of DNA on 
the electrode surface [15]. Many of the amino acids have 
special properties that make it possible to use as an effec-
tive ingredient to immobilize biomolecules on the sur-
face of the electrode. They have special groups that are 
capable of binding with biomolecules. This improves the 
immobilization of DNA [16]. The amino acid l-Cysteine 
is an effective ingredient for electrode surface modifica-
tion. It has a thiol group, which can bond strongly to Ag 
or Au electrodes through bonding of amino groups to 

DNA [17–19]. Due to the high prevalence of HPV and 
the lack of appropriate diagnostic methods in the pri-
mary stages of infection, in this investigation a sensitive 
and accurate diagnostic method for the specific identifi-
cation of HPV 18 is introduced. It is well known that the 
development of the novel sensing nanomaterials such as 
rGO, MWCNT and AuNPs has been proven as an effec-
tive method to fabricate electrochemical DNA biosen-
sors for diagnosis of cancer markers. To the best of our 
knowledge, this is the first report of functionalized elec-
trochemical DNA-biosensor for HPV-18 detection based 
on rGO-MWCNT/l-Cys-AuNPs nanocomposite in the 
real samples.

Materials and method
Reagents and materials
All chemicals and reagents were of analytical rea-
gent grade. All aqueous solutions were prepared using 
deionized water with resistivity of ∼ 18 MΩ cm. Anth-
raquninone-2-sulfonic acid monohydrate sodium salt 
(AQMS), l-cysteine and sodium chloride were pur-
chased from Merck (Germany). Multi-walled carbon 
Nano tube (MWCNT), gold nanoparticles (AuNPs) 
and sulfuric acid were purchased from Sigma Aldrich 
(USA). The potassium permanganate and graphite 
flakes were purchased from R & M Chemicals (U.K). 
The applied solvents throughout the experiments such 
as ethanol, sulphuric acid, phosphoric acid, hydro-
chloric acid, and hydrogen peroxide were in analytical 
grade and purchased from Merck (Germany). All sin-
gle-stranded DNA (ssDNA) was purchased from TAG 
Copenhagen Company (Denmark). Screen-printed car-
bon electrodes were supplied by DropSens (Asturias).

Apparatus
The electrochemical measurement was carried out with 
a Galvanostat–Potentiostat; (Autolab PG-STAT-204). 
The voltammetry measurements were performed on a 
three-electrode system. The working electrode was a 
screen printed carbon electrode (4 mm OD). Ag/AgCl, 
3  M KCl, RE-5B (7.5  cm × 6  mm OD) and platinum 
wire electrode (BASi®, USA) were used as a reference 
and auxiliary electrodes, respectively. Electrochemical 
impedance spectroscopy (EIS) analysis was conducted 
using a Galvanostat-Potentiostat, Autolab 302  N with 
FRA2 impedance module controlled by Nova 1.11 soft-
ware, Metrohm, Switzerland. The ultrasonic  homog-
enizer (Sonopuls, HD 3200) was applied throughout the 
experiments for homogenizing and breakdown of nan-
oparticles. All hybridization experiments were carried 
out in a water bath (Memmert, WNB 14).
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Human papillomavirus synthetic DNA oligonucleotides
All oligonucleotide stock solutions were diluted with 
phosphate-buffer (0.05  M, pH = 7.0) and kept frozen at 
− 20 °C when not used. The following three oligonucleo-
tide sequences were used in this study (Table 1).

DNA extraction, PCR method and HPV genotyping
For extracting DNA from endocervical of patients 
infected with HPV 18, the High Pure Viral Nucleic Acid 
Kit (Roche Life Science, Mannheim Germany) was 
used. For HPV testing, a DNA-based liquid-crystal dis-
play (LCD)-array kit (Chipron GmbH, Berlin, Germany) 
was applied as described previously [20, 21]. The PCR 
program is presented in Table  2. In total, the PCR was 
accomplished in Veriti® 96-Well Thermal Cycler (Thermo 
Fisher Scientific; Applied Biosystems, USA).

The positive control had DNA from a HPV 18 case 
while the negative control had no DNA. According to the 
manufacturer’s protocol (Chipron GmbH) PCR, hybridi-
zation, labeling, and staining were carried out. The slide 
was scanned by SlideReader Software v2.0 (Chipron 
GmbH), followed by gel electrophoresis.

Preparation of the modified SPCE
For this purpose, DI water was used for washing the 
bare SPCE and then the electrode was electrochemi-
cal polished using cyclic voltammetry (CV) in 0.1  M 
H2SO4, ranging from (0.5 to 1.5 V) with a scan rate of 50 
mVs−1. The modified Hummer’s method was applied for 
the synthesis of GO based on our previous work. Prior 

to deposition, the solution of GO and MWCNT was 
prepared by dispersing 5.0  mg of GO and 11.0  mg of 
MWCNT into 0.2 M PBS, pH 6.5 after 2 h of sonication. 
Electrodeposition of rGO-MWCNT nanocomposite on 
a SPCE in a one-step approach was performed by CV 
method through scanning between (− 1.0 and 0  V) at a 
scan rate of 50 mVs−1 until 10 cycles (Fig. 1a).

The AuNP colloidal solution was made by dissolving 
1  mg of the powder in 300  µl mixture of DI water and 
ethanol (1:1) followed by 1  h sonication and then drop 
cast onto the surface of SPCE. l-cysteine (10  mM) in 
0.1  M PBS, pH 7.4 was electrochemically deposited on 
the modified SPCE through CV scanning between (−0.2 
and 1.5 V); 10 cycles; scan rate of 50 mV s−1 (Fig. 1b).

As illustrated in Fig.  1a, MWCNT was deposited on 
the SPCE in the potential range of − 0.6 to − 0.8 V. Elec-
trodeposition of GO on SPCE in the potential range from 
− 0.8 to − 1.0 V led to slightly reduce oxygen functional 
groups which resulted to increase the access to carbon 
groups and its efficiency. Also, according to Fig. 1a, it can 
be seen that in with increasing the number of cycles, the 
cathodic peak current increased due to the increment in 
the amount of rGO-MWCNTs deposited on the surface 
of SPCE during each cycle, and enhance the electrical 
conductivity [12, 22, 23].

Figure  1b shows the CV curves of electrodeposition 
of l-cysteine in the potential range of − 0.2 V to + 1.5 V 
with a scan rate of 50 mV s−1. A reduction peak occurs at 
0.43 V during the reduction scan and related to the SH 
group. The reduction peak current increased with the 
increment of the cycle number. The reaction indicated 
in Scheme  1, occurs during the electrodeposition pro-
cess [24–26]. The electrodeposition of rGO-MWCNT 
on SPCE at variable scan rates revealed a capacitive 
improvement with decreasing the rate of scans from 100 
to 50 mV/S (see Fig. 1c; 314 < 316 < 324 µF). The capaci-
tance was calculated based on the following equations 
[27]:

where, I and ∆V/∆t are the measured current and voltage 
scan rate, respectively.

As illustrated, the electrodeposition of rGO-
MWCNT with a scan rate of 50  mV/S on SPCE has a 
large integrated CV area indicating of higher capaci-
tance (324  µF). Figure  1d report the Raman spec-
tra of synthesized GO, GO with MWCNT and 
rGO-MWCNT nanocomposite which shows the 
prominent peaks of D band at ~ 1358 cm−1 and G band 
at ~ 1587  cm−1, respectively. It is well known that, the 

(1)C ′
= I

/

(�V /�t)

(2)C = C ′
/

Area or C ′
/

mass

Table 1  The oligonucleotide-based DNA sequences used 
in the current study

DNA Base sequences

DNA probe 5′-CCG GTG CAG CAT CC-3′

Complementary DNA 5′-GGA TGC TGC ACC GG-3′

One mismatch DNA 5′-GCT AGA GGT GTA TG-3′

Three mismatch DNA 5′-GCT AGA GAT GCA TG-3′

Non-complementary DNA 5′-CAC ATC CAC CCG CA-3′

Table 2  The PCR cycling conditions

Steps Temp. (°C) Time (min) Cycles

Initial denaturation 95 10 1

Denaturation 94 1 42

Annealing 45 1.5

Extension 72 1.5

Final extension 72 3 1
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D band arising from structural disorder, while G band 
arising from in-plane C–C bond stretches [27–30]. The 
2D mode is also contribute to the double resonance of 
sp2 carbon domains and occurs at 2550 to 2800 cm−1. 
As seen in Fig.  1d the existence of MWCNT demon-
strated a broad 2D peak. The 2D band in the Raman 
spectrum of the rGO-MWCNT becomes more intense, 
indicating that the graphene sheets are well separated 
due to reducing the carboxylic groups after electro-
deposition process. The intensity ratio of D band to G 
band (ID/IG) is taken as a measure of disorder. It is obvi-
ous from Fig. 1d that the ID/IG for the rGO-MWCNT 
nanocomposite is lower than GO-MWCNT which indi-
cates the disordered carbon structure. The ratio of 2D 
to D + G in GO-MWCNT and rGO-MWCNT is higher 
than GO due to its broad 2D peak. The Raman spec-
troscopy results revealed that the resulting morphology 
well incorporates both rGO and MWCNT in the nano-
composite during the electrodeposition process.
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Fig. 1  Cyclic voltammograms of electrodeposition of (a) rGO-MWCNT nanocompoite on a bare SPCE (in 0.2 M PBS, pH 6.5 and Scan rate: 50 mVs−1), 
b of l-cysteine (10 mM) on a modified SPCE (in 0.1 M PBS, pH 7.4; Scan rate: 50 mVs−1), c the effect of different scan rates on electrodeposition CV 
curves of rGO-MWCNT nanocompoite in 1 × 10−3 M [Fe(CN)6]−3/[Fe(CN)6]−4 (1:1) containing 0.1 M KCl solution and d Raman spectra of GO, GO 
with MWCNT and rGO-MWCNT nanocompoite

Scheme 1  Immobilization mechanism for l-cysteine onto SPCE
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Immobilization of HPV‑18 DNA probe
In order to immobilize ssDNA probe on the modi-
fied SPCE by the dip-coating method, the electrode 
was placed in the solution of HPV-18 DNA (1  µM) in 
0.05  M PBS, pH 7.0 for 24  h at 25  °C. Then, to remove 
the unbound oligonucleotides, the electrode was washed 
with 0.05  M PBS, pH 7.0. The development of DNA 
microarrays was provided by bounding the negatively 
charged phosphate backbone of the DNA probes with 
a positively charged from amine groups of l-cysteine. 
The stability of the probe through the ionic attraction 
achieved via applying the potential during immobiliza-
tion process [31, 32].

DNA hybridization
Most of electrochemical DNA biosensor was developed 
based on separate processing of DNA hybridization and 
indicator intercalation. In the current study, the proposed 
DNA biosensor was preformed according to the one-
step of DNA hybridization and indicator intercalation 
detection.

Hybridization and labeling event was performed by 
soaking the immobilized HPV18 DNA probe into the 
solution containing the complementary DNA (cDNA) 
and AQMS in 0.05 M PBS (pH 7.0) for 15 min at 42 °C. 
The 0.05 M PBS pH 7.0 was used to remove the nonhy-
bridized oligonucleotides. For the interaction of HPV18 
probe with noncomplementary DNA, the same process 
was applied. In order to the hybridization of the genomic 
DNA with HPV18 DNA probe on the modified SPCE, 
the extracted DNA from the real sample was denatured 
by heating in a water bath (95  °C) for 10  min and then 
placed at room temperature to obtain denatured ss-
DNA. The SPCE was washed with 0.05  M PBS, pH 7.0 
to remove the nonhybridized sequences. The schematic 
process of designing the proposed HPV 18 DNA biosen-
sor including the immobilization and hybridization of 
DNA oligomers is illustrated in Fig. 2.

Electrochemical measurements
The Electrochemical analysis were studied by DPV 
method. The electrochemical measurement of ssDNA 
probes immobilized l-cys-AuNPs composite SPCE with 
AQMS immobilized in cDNA was performed in 0.05 M 
PBS, pH 7.0, under the potential sweep between − 0.7 
and − 0.2 V with a scan rate of 50 mV s−1.

Results and discussion
Preliminary studies
In this study, the hybridization of DNA probe and tar-
get DNA was studied by UV–Vis spectroscopy and elec-
trochemical oxidation of AQMS. One of the common 

methods for detection of nucleic acid is an absorbance 
measurement via UV–Vis spectroscopy. AQMS as an ani-
onic redox intercalator usually used for determination of 
DNA hybridization [33, 34]. In this study, the mechanism 
of HPV 18 DNA biosensor based on DNA hybridization 
sensing was studied through the AQMS electrostatic 
adsorbtion onto the sensing element of double-stranded 
DNA.

For the UV–Vis study, the modified SPCE was soaked 
in a solution contained AQMS redox-active and cDNA. 
After a period of time, the UV–Vis technique was 
applied to the modified SPCE to investigate the surface 
species. As illustrated in Fig.  3, the AQMS showed a 
strong absorption spectra at 295 nm as well as a weakly 
absorption spectra at 225  nm of DNA associated with 
n → π* and π → π* transition state. A high absorb-
ance signal with a slightly red-shift of spectra would be 
observed from the dsDNA modified electrode. This is 
confirmed by the action of AQMS as an intercalator in 
the redox signal enhancement through inserting between 

Fig. 2  The proposed HPV 18 DNA biosensor design based on the 
immobilization of the ssDNA probe, DNA hybridization, and indicator 
intercalation detection

200 250 300 350 400

A
bs

or
na

ce
 (a

.u
.)

Wavelength (nm)

Probe DNA
Target DNA
Mixed probe with cDNA

1.1

1.6

280 300 320
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hybridization containing 1 mM AQMS in 0.05 M PBS at pH 7.0
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the double-helix structures of the dsDNA based on the 
help of its planar aromatic ring. Moreover, no DNA peak 
absorption at 225 nm, which indicated that the DNA was 
hybridized successfully.

The oxidation and reduction products of two hydrogen 
ions and two electron transfers from AQMS reagent can 
easily carry throughout the elongated and rigid structure 
of double-stranded DNA which can be measure as a cur-
rent charge by DPV method [35, 36] (Scheme 2).

The electrodynamic characteristics of modified SPCE 
with l-cysteine-AuNPs and rGO-MWCNTs were 
obtained by means of differential pulls voltammetric 
method in PBS containing AQMS. The potential differ-
ence of oxidation/reduction of AQMS (Ep) and electrical 
current flow (ip) were determined based on Nicholson-
Shain and Randles–Sevcik equations, respectively as fol-
lows [37]:

Where, k is the electron transfer rate constant, C* is the 
bulk concentration of reductive/oxidative species, ʋ is the 
scan rate, DR and DO are the diffusion coefficient of the 
reduced and oxidized species, respectively.

As it is obvious in several reports, a sharp current peak 
at ≈ − 0.43 V resulted from measuring the DPV response 
of proposed HPV 18 biosensor was noticed.

Figure  4 shows the DPV voltammograms for the 
AQMS electrochemical oxidation of bare SPCE (a), 
modified electrode with l-cysteine-AuNPs (b), modified 
electrode with l-cysteine-AuNPs and rGO (c), modified 
electrode with l-cysteine-AuNPs and rGO-MWCNTs (d) 
in 0.05 M PBS (pH 6.5) with a scan rate of 50 mV s−1. As 
seen in Fig. 4, it was observed that the bare SPCE showed 
the lowest current peak which represents a poor elec-
tron transfer [19]. In contrast, modifying the SPCE with 
l-cysteine-AuNPs showed a slight increase in the cur-
rent signal rate of about 2 μA due to AQMS oxidation at 
SPCE-solution interface via offering catalytic properties 

(3)

EP = Eo
−

(

RT

3nF

)

ln

[

4.78Π3DO

2DR

]

−

(

RT

3nF

)

ln

(

α

kC∗

O

)

(4)ip = (2.69× 10
5)n3/ 2.A.C∗

.D1/ 2.v1/ 2

and excellent conductivity of AuNPs [38]. The highest 
current peak is related to SPCE modified with l-cysteine-
AuNPs and rGO-MWCNTs. This is confirmed that rGO-
MWCNT nanocomposite has a remarkable effect on the 
sensitivity of the modified electrode due to its excellent 
conductivity and high surface-to-volume ratio via pro-
moting and possessing the electron transfer and rapid 
electrode kinetics, respectively [39, 40]. In addition, the 
obtained results proved that the AuNPs as excellent elec-
tric conductive materials provide a suitable surface for 
immobilization of thiolated molecules through chem-
isorptions. The electric conductive molecules such as 
MWCNTs and rGO containing both thiol (supplied by 
l-cysteine) and carboxyl groups can be used as linkers 
for functionalized AuNPs. The solubility of rGO in aque-
ous solutions provides its wide application in biological 
samples.

Optimization and characterization of HPV 18 DNA 
biosensor
Effect of DNA probe
In this study, the electrochemical behavior of the probe 
concentration on the modified SPCE through AQMS 

Scheme 2  The proposed mechanism for electrochemical reaction of AQMS
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Fig. 4  Differential pulse voltammograms for the AQMS 
electrochemical oxidation of bare SPCE (a), a modified electrode with 
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rGO-MWCNTs (d). The DPV analysis was conducted in 0.05 M PBS (PH 
6.5) with a scan rate of 50 mV s−1 versus Ag/AgCl reference electrode
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electrochemical oxidation was investigated. As shown in 
Fig. 5a, the effect of probe concentration was obtained by 
using DPV technique in 0.05 M PBS (pH = 7). The results 
demonstrated that the concentrations of 0.01  μM and 
0.1 μM indicate the lowest signals due to the low amount 
of DNA probe immobilized on the surface of modified 
SPCE. The concentration of 5  μM showed the highest 
current peak which resulted in the most hybridization 
of target cDNA. Also, no increase in signal strength was 
observed for a concentration of 10 μM or higher. It can 
be explained by the lower availability of the intercalator 
AQMS and massive probe accumulation on the surface 
of SPCE that causes probe overloading. As a result, the 
concentration of 5  μM was determined as the optimal 
concentration for DNA probes [41, 42].

Effect of hybridization for synthetic HPV 18 DNA target
The DNA target was detected through the DPV 
responses of the modified biosensor to the electrochemi-
cal oxidation of AQMS. For determining the selectiv-
ity of biosensor response, the DNA probe hybridization 
with nil DNA target, DNA target, DNA one mismatch, 
DNA three mismatch and DNA non-complementary 
was investigated. In Fig.  5b, the highest current peak is 
related to the hybridization of the probe-modified elec-
trode and cDNA but unlike that, the lower current is due 
to the use of non-complementary DNA. Also, the use of 
one mismatch DNA and three mismatch DNA results in 
lower signal flow, due to the lack of complete hybridiza-
tion. This can be explained due to more AQMS accumu-
lation on the ds-DNA caused by the affinity of AQMS to 
the double-helix structure of the dsDNA.

Calibration curve
To identify the conditions of optimized HPV-18 DNA 
biosensor, the oxidation of AQMS was measured dur-
ing hybridization of DNA probes with different concen-
trations of synthetic DNA targets (0.01fM to 0.01  nM) 
by the DPV method. Figure  6 shows that with increas-
ing concentration of DNA target, an increasing trend in 
the current signal was observed. It is thus believed that 
by increasing the concentration of DNA target and sub-
sequently increasing their hybridization with the DNA 
probe, AQMS reduction increases peak current. A cali-
bration curve of the current signals (ΔI) various the con-
centrations of targets DNA in from the DPV analysis was 
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plotted. As it is obvious from Fig. 6, the calibration curve 
exhibited a linear dynamic range in a concentration range 
of 0.01  fM to 0.01  nM with a correlation coefficient of 
0.994. Moreover, the DPV peak potential shows a slightly 
negative shifts by about 10  mV with the increase of the 
DNA target concentration in the studied concentration 
range. Presumably, this shift is due to the Donnan equi-
libria in the nanocomposite film [43, 44].

The derived limit of quantitation (LOQ) (at 10SD/α) 
and limit of detection (LOD) (at 3SD/α) [16, 45] of the 
proposed HPV-18 DNA biosensor were calculated to be 
0.16 and 0.05 fM, respectively. In these equations, SD is 
defined as the standard deviation of the intercept and α 
is defined as the slope of the linear regression. The sta-
bility and repeatability of the proposed biosensor were 
also examined. The relative standard deviation of the five 
repetitive measurements was 1.30%, which is less than 
20%, demonstrating the good reusability and stability of 
the proposed biosensor.

FTIR‑ATR analysis
The FTIR-ATR spectra of functional groups of modified 
SPCE with (a) l-cysteine-AuNPs and rGO-MWCNTs (b) 
ssDNA probe and (c) dsDNA exhibits a peak series in the 
region of 4000–500  cm−1 (Fig.  7). The FTIR-ATR spec-
tra of rGO-MWCNT/L-Cys-AuNPs composite shows 
important peaks at 3370  cm−1, 2974  cm−1, 1452  cm−1 
and 750-665  cm−1 for (O–H stretch), (S–H stretch), 
(C = O stretch) and (C-S; Au–S stretches), respectively 
(a). The formation of self-assembled monolayer modi-
fied SPCE (l-Cys/Au SAMs) was obtained through com-
bining the l-Cys onto AuNPs by taking advantage of 
strong Au–S interaction. The immobilization of ssDNA 
probe onto a modified SPCE with rGO-MWCNT/l-
Cys-AuNPs lead to a decrease in peak intensity related 
to Au–S, C–S and O–H stretching (b). A FT-IR spec-
trum of ssDNA HPV-18 after hybridization with genomic 
DNA exhibits similar peaks of different bases at the same 
position with an increase in peak intensity (c). The N–H 
bending and stretching of purine and pyrimidine ring as 
DNA bases, is corresponded to the presented peaks at 
3355 cm−1 [35]. The presented results show the success-
ful process of immobilization and hybridization of the 
ssDNA probe with genomic DNA.

FESEM analysis
To confirm the rGO-MWCNT/AuNPs composites stabi-
lization on the surface of SPCE, the field-emission scan-
ning electron microscopy (FESEM) examination was used 
[12]. Figure  8a, b, and c are FESEM nano-graphs of the 
bare SPCE, rGO-MWCNT/AuNPs composite modified 
SPCE with and without l-cysteine, respectively. As it is 
shown in Fig. 8a, the graphitic carbon powder is respon-
sible for the small particles dispersed throughout the 
bare SPCE which assigned the sheet-like structures. After 
modifying the SPCE with rGO-MWCNT composite, 
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Fig. 7  FT-IR spectra of (a) modified SPCE with l-cysteine-AuNPs and 
rGO-MWCNTs (b) ssDNA HPV-18 probe immobilized SPCE and (c) 
ssDNA hybridized SPCE

Fig. 8  FESEM image of (a) bare SPCE (scale 1000 nm), (b) modified SPCE with rGO-MWCNTs/AuNPs (scale 200 nm) and (c) modified SPCE with 
rGO-MWCNTs/AuNPs-l-cysteine (scale 500 nm)
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the presence of MWCNTs which bridge and covered the 
rGO sheets and small particles of graphitic powder were 
observed. The presence of AuNps which improves the 
electrocatalytic activity by enhancing the conductivity for 
fast electron transfer, is seen that distributed on the rGO-
MWCNT network in Fig.  8b, c. Moreover, as shown in 
Fig. 8b, when AuNPs are deposited on the SPCE surface 
modified with rGO-MWCNT, a partial accumulation of 
them is observed which is partly due to the strong Van 
der Waals force between the nanomaterial. In the follow-
ing, after electrodeposition of l-cysteine on the modified 
SPCE, the accumulation of AuNPs decreases and the par-
ticle size increases (Fig. 8c) [24].

EIS analysis
In this section, the EIS was applied as an effective 
technique for investigation of the proposed electrode 
behavior after each assembly steps. The EIS recorded 
in 1 × 10−3 M [Fe(CN)6]−3/[Fe(CN)6]−4 (1:1) con-
taining 0.1  M KCl solution in the frequency range of 
0.1–100 kHz followed by applying a signal amplitude of 
the open circuit potential. As it is obvious in Fig. 9, the 
Nyquist plots of SPCE modified with (a) rGO-MWCNTs, 
(b) rGO-MWCNTs/AuNPs, (c) rGO-MWCNTs/AuNPs-
l-cysteine-ssDNA probe and (d) rGO-MWCNTs/
AuNPs-l-cysteine-ssDNA probe with DNA target. The 
SPCE modified with rGO-MWCNTs showed a resistance 
(14.8  kΩ), which indicated that rGO-MWCNTs was an 
electric conducting material and accelerated the electron 
transfer. The Rct decreased evidently (797  Ω) because 
AuNPs loaded on the surface of SPCE/rGO-MWCNTs 
modified electrode formed an excellent carrier and accel-
erated the further electron transfer. The loading of the 
ssDNA probe on the modified SPCE led to the enhance-
ment in Rct up to 800  Ω. Significant enhancement Rct 
(37.2 kΩ) by hybridization of ssDNA probe with ssDNA 
target formed a barrier and further prevented the redox 
probe to the electrode surface (Fig. 9).

Performance of proposed biosensor in the analysis of HPV 
in real sample
The performance of proposed HPV-18 DNA biosensor 
was investigated via applying it in the extracted DNA 
samples from human patient. For this purpose, the PCR 
was performed and the amplification products were run 
in the gel electrophoresis [46, 47]. As shown in Fig.  10, 
the results obtained from the positive DNA HPV-18 
patient samples extracted from the real samples were 
consistent with the results of synthesized DNA. An 
increment in signal strength was observed with increas-
ing target DNA concentration. In addition, the DPV sig-
nal of hybridization of the probe modified-SPCE with 
negative HPV-18 patient sample decreased in compare to 

the positive forms, indicating that there is a poor hybridi-
zation signal in the negative patient sample.

These data demonstrated that the proposed HPV-18 
DNA electrochemical biosensor able to detect the HPV 
type 18 in PCR real samples.

Standard synthesized target ssDNA HPV18 has been 
spiked into the negative cervical samples within the cali-
bration concentration range of the biosensor for recov-
ery of target ssDNA HPV18 in the cervical samples, and 
0.05  M PBS (pH 7.0) was used to stabilize the pH level 
of the samples. From the results tabulated in Table  3, 
satisfactory recoveries between 101.8 and 128% were 
obtained through applying the proposed DNA biosensor 
for accurate and reliable target DNA HPV18 determina-
tion in the cervical samples.

Comparison of proposed HPV‑18 DNA biosensor with other 
studies
The analytical performance of current biosensor was 
compared with previous published HPV-18 DNA elec-
trochemical biosensors and the results were listed in 
Table 4. The proposed DNA biosensor based on a SPCE 
modified with a nanocomposite of rGO-MWCNT/
AuNPs showed an improvement in the linearity response 
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range in compare to previous works. It is also compared 
favorably with other reported HPV-18 DNA biosensors 
in terms of the lower detection limit. Therefore, rGO-
MWCNT/AuNPs modified SPE was confirmed to be an 
efficient platform for the electrochemical sensor. It might 
be mainly ascribed to the large specific surface area of the 
rGO-MWCNT/AuNPs nanocomposite that improved 
the immobilization amount of ssDNA probes and the fine 
electronic conduction ability of AQMS that improved the 
detection signals [13]. Moreover, the formation of self-
assembled monolayer modified SPCE (l-Cys/Au SAMs) 
enhanced the electrochemical responses towards DNA 
targets and also provides the less prone of DNA probe 
to nonspecific adsorption onto the SPE surface [48]. A 
detailed comparison of electrochemical HPV-18 DNA 
biosensor reported in the literature is shown in Table 4.

a
b

Fig. 10  a DNA extracted from clinical sample and presence of DNA of HPV type 18 virus on gel electrophoresis; b the differential pulse 
voltammograms for the AQMS electrochemical reduction after hybridization with DNA extract from the real sample. The electrochemical analysis 
was studied by DPV method in the following conditions: initial potential − 0.7 V, end potential − 0.1 V, modulation amplitude 50 mV and scan rate 
50 mVs−1

Table 3  Recovery of  synthesized target DNA HPV18 
in the real samples

Synthesized target DNA 
HPV18 concentration spiked 
into the negative cervical 
samples (fM)

Synthesized 
target DNA HPV18 
concentration 
determined by DNA 
biosensor (fM)

Recovery (%)

0.05 0.064 128

0.1 0.121 121

1 1.15 115

20 20.5 102.5

50 57 114

250 268 107.2

500 519 103.8

1000 1018 101.8

Table 4  Comparison of  HPV-18 DNA electrochemical biosensor with  other previous reported electrochemical HPV-18 
DNA biosensors

SWV square wave voltammetry, HRP horseradish peroxide, AQMS anthraquninone-2-sulfonic acid monohydrate sodium salt

Ref. Method Sensor platform Label Detection limit Detection range

[49] CV Gold surface/oligoethylene glycol-terminated 
bipodal thiol

HRP 170 pM 0.1 nM–50 nM

[50] SWV GCE/car-boxyphenyl layer Hg(II) 1.2·10–5 nM –

This study DPV SPE/rGO,MWCNT, Au nanoparticle, L-cysteine AQMS 0.05 fM 0.01 fM–0.01 nM
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Conclusion
In this study, we designed an electrochemical biosensor 
to detect HPV-18, one of the most hazardous types of 
HPVs. The performance of this biosensor was evaluated 
using synthetic DNA and DNA extracted from HPV 18 
patients. The proposed biosensor demonstrated success-
ful performance in identifying the HPV extracted from 
real samples. The biosensor was also able to detect very 
small quantities and a large range of analytes due to the 
use of rGO/MWCNT, Au nanoparticle, l-cysteine to 
modify the surface of the electrode. The specific response 
of the biosensor was examined by a test and showed a 
very good result. Therefore, the designed biosensor can 
be used as a successful tool for rapid, accurate, easy, and 
early detection of HPV 18 and alternative traditional and 
current methods.
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