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Abstract

The introduction of ABL Tyrosine Kinase Inhibitors (TKls) has significantly improved the outcome of Chronic Myeloid
Leukemia (CML) patients that, in large part, achieve satisfactory hematological, cytogenetic and molecular remissions.
However, approximately 15-20% fail to obtain optimal responses according to the current European Leukemia
Network recommendation because of drug intolerance or resistance.

Moreover, a plethora of evidence suggests that Leukemic Stem Cells (LSCs) show BCR-ABL1-independent survival.
Hence, they are unresponsive to TKIs, leading to disease relapse if pharmacological treatment is discontinued.

All together, these biological events generate a subpopulation of CML patients in need of alternative therapeutic
strategies to overcome TKI resistance or to eradicate LSCs in order to allow cure of the disease.

In this review we update the role of “non ABL-directed inhibitors” targeting signaling pathways downstream of the
BCR-ABL1 oncoprotein and describe immunological approaches activating specific T cell responses against CML cells.
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Background

Chronic Myeloid Leukemia (CML) is a myeloproliferative
disorder characterized by neoplastic transformation of the
Hematopoietic Stem Cell (HSC) which displays a cytogen-
etic marker derived from a reciprocal t9;22 translocation
[1]. The ensuing Philadelphia (Ph) chromosome leads to
the formation of the BCR-ABLI fusion oncogene encoding
for a multi-domain BCR-ABL1 oncoprotein [2, 3]. BCR-
ABL1 oncoprotein is the molecular hallmark of CML dis-
playing constitutive tyrosine kinase activity that induces
the activation of several intracellular pathways such as
phosphoinositide 3-kinase (PI3K)/murine thymoma viral
oncogene homolog (AKT)/mammalian target of rapamy-
cin (mTOR), Rat Sarcoma proto-oncogene (RAS)/extra-
cellular signal-regulated kinase (ERK) and Janus Kinases
(JAK)/Signal Transducer and Activators of Transcription
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(STATs). Furthermore, BCR-ABL1-dependent improper
signaling inhibits apoptosis and increases the proliferation
rate of leukemic cells [4-7].

In 2001 the introduction of Imatinib Mesylate (IM), a
semi-specific BCR-ABL1 tyrosine kinase inhibitor, im-
proved the outcome of CML patients in chronic phase,
generating unprecedented rates of hematologic, cytogenetic
and molecular response [8—10]. Indeed, patients receiving
IM 400 mg/daily in the IRIS (International Randomized
Study of Interferon and STI571) study, achieved 83.3% 10-
years survival [11]. Despite these excellent results, approxi-
mately 15-20% CML patients fail to achieve an optimal re-
sponse as defined by the current European Leukemia Net
(ELN) recommendations [11-14].

Several biological mechanisms responsible for IM failure
have been described including BCR-ABL1-dependent and
—independent mechanisms.

The former include: i) mutations in the ABL kinase
domain which prevent TKI binding [15]; i) amplification
of the BCR-ABL1 oncogene [16, 17]; iii) high expression
levels of the BCR-ABL1 mRNA [18].
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The latter comprise: i) up-regulation of drug efflux
pumps [19]; ii) down regulation of drug influx transporters
[20]; iii) Lyn overexpression (Src-family kinase protein) [21]
and iv) other BCR-ABL1-independent mechanisms [22].

To overcome IM-resistance, more potent second-
generation (2G i.e. Dasatinib - DAS, Nilotinib - NIL, Bosuti-
nib - BOS) and third-generation (3G ie. Ponatinib - PON)
TKIs have been developed and approved for the treatment
of the disease [23-26].

However, while 2G and 3G TKIs present higher BCR-
ABL1 inhibitory activity if compared to IM, they have failed
to generate meaningful survival advantages for CML pa-
tients [27-30]. Moreover, it is now apparent that, despite
complete inhibition of BCR-ABLI1 kinase activity, TKIs are
unable to eliminate quiescent Leukemic Stem Cells (LSCs)
[4, 31, 32], as these cells are not “oncogene addicted” and
therefore require alternative treatment strategies [32, 33].

In this review, we provide an update on the current know-
ledge of non ABL-directed inhibitors and immunological-
targeting approaches as treatment strategies for CML pa-
tients achieving unsatisfactory responses to TKIs. In detail,
we will focus on findings generated in primary CML cells,
CML murine models and clinical trials.

Farnesyl transferase inhibitors

Farnesyl Transferase Inhibitors (FT-Is) inhibit farnesyl
transferase activity preventing isoprenoid-group transfer on
different protein targets [34, 35]. Isoprenoid-group trasfer-
ring is a post-transcriptional modification that causes mem-
brane migration of different proteins, such as RAS,
resulting in their activation [36]. Activated RAS migrates in
cellular membranes forming RAS-GTP which actives ERK-
and AKT- dependent signaling modulating cell cycle
progression, survival and proliferation. Improper RAS acti-
vation is common in several cancer types including CML
[37], and different FT-Is were developed as anti-neoplastic
drugs [34, 38, 39].

In CML, constitutive RAS activation is promoted by BCR-
ABLI interaction with Grb2 (Growth factor receptor bound
protein), SOS (Son Of Sevenless) and Gab2 (Grb2-associated
binder 2) and plays a critical role in leukemogenesis [2, 40]
(Fig. 1a). Tipifarnib (R115777) and Lonafarnib (SCH66336)
are two potent and selective FT-Is with potential antileuke-
mic activity in CML patients [41].

Tipifarnib (R115777)

Clinical data obtained from twenty-two CML patients with
chronic or advanced disease that had failed Interferon-
alpha (INF«) treatment demonstrated that Tipifarnib, as a
single agent, induced complete or partial hematological re-
sponses and transient minor cytogenetic responses with a
median duration of only 9 weeks [42]. In Phase I trials
(NCT00040105), CML patients that had failed IM
(50% with ABL kinase domain mutations), were treated

Page 2 of 15

with Tipifarnib in combination with IM. Co-treatment
showed hematological and cytogenetic responses in 76%
and 36% of patients, respectively. Moreover, four patients
in cytogenetic remission (CyR) presented a BCR-ABL1
mutation (n =1 T315L, n = 2 M244V, n = 1 E255K) [43].

Lonafarnib (SCH66336)

A pilot study investigated Lonafarnib efficacy in CML patients
resistant or intolerant to IM. Only two of thirteen enrolled
subjects showed hematological responses [44]. However,
Lonafarnib administrated at different doses, showed greater
efficacy when used in combination with IM. In particular, a
Phase I study (NCT00047502) recruited CML patients who
had failed IM observing hematological and cytogenetic re-
sponses in 35% of patients [45].

In summary, these data demonstrate that FT-I monother-
apy showed little benefit for CML patients. However, their
combination with IM may prove useful for CML subjects
unresponsive to IM.

mTOR inhibitors

mTOR Inhibitors (mTOR-Is) target the mammalian Target
of Rapamycin (mTOR) [46], a serine/threonine kinase regu-
lating cellular proliferation and metabolism [47] (Fig. 1b).
Constitutive mTOR activation has been observed in different
leukemia types, including CML [48]. BCR-ABL1 induces the
PIBK/AKT pathway that results in mTOR phosphorylation,
favoring tumor transformation [2, 48]. Several manuscripts
have demonstrated the efficacy of mTOR-Is on primary and
immortalized BCR-ABL-positive cell lines alone or in com-
bination with TKIs [46, 49, 50].

Rapamycin (Sirolimus)

Rapamycin induces mTOR dephosphorylation resulting in
reduced CML cell viability [51] and increased IM efficacy in
resistant cells [52, 53]. To date, only one clinical trial is
underway to evaluate the therapeutic potentials of
Rapamycin in combination with DNA damaging agents such
as Cytarabine or Etoposide in the accelerated or blast phase
of CML (NCT00776373).

Everolimus (RAD001)
Everolimus blocks mTOR constitutive activation, redu-
cing CML proliferation and increasing IM sensitivity
[54, 55]. Interestingly, unlike Rapamycin, Everolimus can
overcome IM resistance in BCR-ABL-positive quiescent
cells transplanted in mouse recipients [56].

Everolimus therapeutic efficacy in CML patients, both
alone and in combination with IM, is being evaluated in
different clinical trials (NCT00081874), (NCT00093639).

BEZ235
BEZ235 is a dual PI3K-mTOR inhibitor tested on BCR-
ABLI1-positive cell lines. Published data demonstrated that
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Fig. 1 Schematic representation of the BCR-ABL1 signaling pathways targeted by non ABL-directed inhibitors. FT-Is (a) and mTOR-Is (b) inhibit
RAS and mTOR activation resulting in cell proliferation arrest; Smo-As (c) inhibit the Hedgeohg signaling and reduce self-renewal, survival and cell
proliferation; JAK-Is (d) suppress JAK2/STATs pathway reducing cell survival; Hsp-90-Is (e) reduce BCR-ABL1 half-life inducing its degradation;
HDACIs (f) modify the histone acetylation state regulating gene expression; Sirt-Is (g) suppress the deacetylation activity of SIRT1; BCL2-Is (h) block
the pro-survival activity of BCL-2 family members increasing apoptosis; AURK-Is (i) block the mitotic process by inhibiting of AURKs
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the combination of BEZ235 and NIL induces apoptosis,
inhibits tumor growth in CML xenograft models and im-
pairs NIL resistance [57, 58]. A Phase I dose-finding study
is being in patients with relapsed or refractory acute
leukemia and advanced CML (NCT01756118).

Temsirolimus

To date, Temsirolimus is being investigated in a clinical
trial in combination with IM (NCT00101088).

Even if the mTOR-Is have been thoroughly investi-
gated in primary CML cells and in CML murine models
recipient showing the ability to kill LSCs, to date, no
data on CML patients are available, hence their thera-

peutic efficacy remains to be established.

SMO antagonists

Smo Antagonists (Smo-As) inhibit Smoothend (Smo), a
putative seven-transmembrane domain receptor which is
a component of the Hedgeohg (Hh) pathway involved in
a broad number of cellular mechanisms such as stem cell
renewal, cell proliferation and survival (Fig. 1c). Binding of
Hh human ligands, (Sonic Hedgeohg SHh, Desert Hedge-
ohg DHh, Indian Hedgeohg IHh) with Ptch (seven-
transmembrane domain receptor Patched) causes a con-
formational change of Smo that actives the Glioma-
associated oncogene (Glil) transcription factor leading to
faster cellular division and reduced apoptosis [59]. Hence,
deregulation of the Hh pathway plays a critical role in
the tumorigenesis and cancer progression [60].
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CML patients showed higher Hh expression compared
to healthy donors and IM treatment did not reduce these
mRNA levels, suggesting that Hh over-expression was not
dependent on BCR-ABL1 kinase activity [59, 61].

Dierks et al. reported that Smo up-regulation improves
expansion of BCR-ABLI1-positive LSCs [62]. Moreover, in-
vivo experimental models using CML CD34-positive cells
demonstrated that Hh inhibition in Smo knock-out mice,
compromised both leukemic stem cell renewal and propa-
gation [63]. Hence, this pathway represents a potential
therapeutic target in BCR-ABL1-positive cells.

Smo-As have been investigated in ex-vivo studies as well
as in several clinical trials.

LDE225 (Sonidegib/Erismodegib/Odomzo)

LDE225 significantly reduced colony forming ability and
re-plating efficiency of CML CD34-positive cells and also
decreases their Long Term Culture - Initiating Cell
(LTC-IC) frequency. Furthermore, the combination of
LDE225 with NIL reduced the engraftment of CML
CD45-positive cells in NSG (NOD scid gamma) mice.
[64]. At the present time, the LDE225-NIL combination
is under investigation in a clinical trial enrolling patients
that have failed at least one TKI (NCT01456676).

BMS833923 (XL139)

Two clinical trials have evaluated the efficacy of BMS833923
in CML. In the first study (NCT01218477) CML and Ph +
Acute Lymphoblastic Leukemia (ALL) patients resistant to
IM or NIL were exposed to the combination of BMS833923
and DAS. Only 1 of 27 patients in chronic phase attained a
complete cytogenetic response while no patients with Ph +
ALL or advanced CML displayed any clinical benefit [65]. In
the second study (NCT01357655), newly diagnosed CP-CML
patients were enrolled but no participants received the
BMS8333923-DAS combination, as no recommended dose
of the Smo-A drug could be found.

PF-04449913 (Gasdegib)

In preclinical studies, PF-04449913 impaired the multi drug
resistance (MDR) mechanism in LSCs by down-regulating
the BCL2 (B-Cell Lymphoma 2) and/or ABCA2 (ATP-
Binding Cassette sub-family A member 2) oncogenes [66].
Furthermore, in CML xenograft models, treatment with
PF-04449913 reduced the expansion of the leukemic stem
cell suggesting a potential role for this compound in CML
[67]. A Phase I dose escalation protocol (NCT00953758)
investigated PF-04449913 safety in patients with different
mieloproliferative disorders including CML, finding good
tolerability at a dose which reduced Glil expression by Taqg-
man array cards [68]. However, additional investigations are
needed before this molecule can be considered for further
development.
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In conclusion, data obtained by ex-vivo studies or in
mouse models suggest that inhibition of the Hh pathway
interferes with both self-renewal and propagation of
pluripotent BCR-ABL1-positive hematopoietic cells. Un-
fortunately, the unsatisfactory results obtained in CML
patients currently preclude any significant role for these
drugs in CML treatment.

JAK2 inhibitors
JAK2 inhibitors (JAK2-Is) suppress JAK2 catalytic activ-
ity that modulates STATSs transcription factors regulating
the expression of genes involved in cell proliferation,
differentiation and apoptosis (Fig. 1d). Published data
report that JAK2 interacts with the ABL C-terminal
leading to its constitutive activation [69]. Neviani and
colleagues have demonstrated that, BCR-ABL1 induces
constitutive JAK2 activation in quiescent leukemic cells
in a kinase independent manner, reducing the activity of
the Protein Phosphatase 2A (PP2A) tumor suppressor.
Furthermore, PP2A reactivation by the small molecule
FTY720, reduced JAK2 activation impairing stem cell
self-renewal and overcoming TKI resistance [70].

JAK2 inhibitors (JAK2-Is) have also been combined
with IM, NIL and DAS killing CML cells and restoring
TKI-sensitivity in resistant CML cell lines [71-73].

Ruxolitinib

Using a combination of Ruxolitinib with NIL, Gallipoli
and colleagues observed an increased apoptotic rate in
CML cell lines and a reduction of the leukemic engraft-
ment in CML murine models [74]. These data were
supported by a Phase I study where CML patients ex-
posed to Ruxolitinb and NIL achieved >1-log reduction
in BCR-ABLI mRNA levels [75]. Several clinical trials
are presently ongoing with Ruxolitinb alone or in com-
bination with different TKIs in patients with advanced
or resistant disease (NCT01702064), (NCT02253277),
(NCT01751425), (NCT01914484), (NCT02973711).

BMS-911543

BMS-911543 displays cytotoxic effects in CML cell lines
when administrated in combination with TKIs. Specifically,
the exposure of BCR-ABLIl-positive CD34 cells to
BMS-911543 and DAS, eliminates TKI-insensitive leukemic
stem cells, suggesting that the dual targeting strategy
involving inhibition of both BCR-ABL1 and JAK2 may
reduce the risk of developing TKI resistance in CML
patients [76].

In conclusion, JAK2-Is combined with TKIs may rep-
resent a useful therapeutic approach for patients with
advanced or resistant CML and may also contribute to
the eradication of LSCs.
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Hsp90 inhibitors

Heat shock protein 90 (Hsp90) is a member of the Hsp
family that encompass several ATP-dependent molecular
chaperones constitutively expressed or induced by stress
conditions such as hypoxia or toxin exposure (proteotoxic
stress). They act preserving the correct folding of their cli-
ent proteins and blocking their proteosomal degradation.
Hsp90 shows high intratumoral expression and represents
a poor prognostic indicator in cancer patients. Hsp90 in-
hibitors (Hsp90-Is) represent compounds of great interest
as potential anti-leukemic agents [77-79].

Since, high Hsp90 expression inhibits BCR-ABL1 degrad-
ation, Hsp90-Is reduce BCR-ABL1 half-life (Fig. 1e) limiting
the expansion of the leukemic clone [78]. The efficacy of
four different Hsp90-Is has been evaluated in CML.

17-AAG (Tanespimycin)

In preclinical experiments, 17-allylamino-17-demethoxygel-
danamycin (17-AAG) showed low efficacy when used as
monotherapy but increased apoptotic rates when adminis-
trated in combination with Histone Deacetylase Inhibitors
(HDAC-Is) or IM [80, 81]. Two Phase I CML clinical trials
evaluated 17-AAG alone (NCTO00093821) or in combin-
ation with cytarabine (NCT00098423).

STA-9090 (Ganetespib)

Using in-vitro CML experimental models, Ying et al., com-
pared the anticancer properties of STA-9090 and 17-AAG.
STA-9090 was more potent than 17-AAG in reducing the
proliferation of CML cells, suggesting that it may be a useful
agent for CML patients [82]. Both Phase I and Phase II trials
are being STA-9090 efficacy in CML patients with advanced
(NCTO00964873) or relapsed (NCT00858572) disease.

BIIB021

BIIB021 reduces BCR-ABLI1 protein expression thereby
inducing significant growth inhibition in CML cell lines
both sensitive and resistant to TKIs. In addition, BIIB021
also triggers autophagy by repressing the AKT-mTOR
pathway and thus reactivating autophagy-inducer Ulk1l
(unc-51 like autophagy activating kinase 1) [83].

Novobiocin

Novobiocin is a potent inhibitor of CML cell proliferation,
with weak effects on CD34-positive cells derived from
healthy donors. Furthermore, co-treatment of Novobiocin
with IM reduced the proliferation of TKI-resistant cells,
suggesting that this combination may be useful to over-
come the mechanisms leading to IM failure [84].

In summary, Hsp90-Is generated promising results
against primary and immortalized CML cells and in
CML mouse models. However, the lack of data in CML
patients requires further studies to asses the effective-
ness of Hsp90-Is for CML treatment.
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Histone Deacetilase and Sirtuin inhibitors

Histone Deacetilase Inhibitors (HDAC-Is) are small-
molecules that block HDAC enzymes involved in epigenetic
modifications that regulate histone acetylation state. In gen-
eral, while histone acetylation carried by Histone Acetyl
Transferases (HATs) determines a chromatin permissive
state that favors gene expression, histone deacetylation per-
formed by HDAC:s, overturn this biological event inducing
gene repression [85] (Fig. 1f).

Different HDAC isoforms, belonging to three different
classes, are overexpressed in several cancer types. This
up-regulation is associated with a reduction in both
overall and disease-free survival suggesting a possible
role for HDAC-Is as antitumor drugs [86]. Although no
data support the involvement of HDAC in BCR-ABL1-
dependent transformation, many authors and several
clinical trials have evaluated HDAC-Is activity in CML.

S$B939 (Pracinostat)

One of the biological mechanisms responsible for TKI re-
sistance, is the intronic deletion polymorphism of the BIM
gene. SB939 restores IM sensitivity in CML CD34-positive
cells displaying the intronic deletion polymorphism of the
BIM gene by repairing its pre-mRNA splicing, suggesting
that patients presenting this polymorphism, may benefit
from the combination of SB939 and IM [87]. Okabe et al.
have associated two different HDAC-Is with Tozasertib
(Aurora Kinase Inhibitor) in both immortalized and
primary CML cells. They found that the synergic effect of
SB939 or Vorinostat in combination with Tozasertib
results in an increased apoptotic rate [88].

Vorinostat

Several manuscripts have found that the combination of
Vorinostat with aurora kinase inhibitors (AURK-Is) or
TKIs kills primary CML cells, Baf3 cells expressing differ-
ent BCR-ABL1 mutants and also shows antileukemic
properties in CML mouse models. [88, 89]. These data are
also supported by CML clinical trials of Vorinostat in
combination with the DNA damaging agent decitabine
(NCT00275080), DAS (NCT00816283) or with the cyclin-
dependent kinase inhibitor flavopiridol (NCT00278330).

LBH589 (Panobinostat)

LBH589 is an HDAC-I with potent antiproliferative activity
in several cancer cell lines [90]. LBH589 inhibits Hsp90
promoting the proteosomal degradation of Hsp90 client pro-
teins such as BCR-ABLI. Zaritskey et al. have investigated
the therapeutic efficacy of this drug in a Phase II study
(NCTO00451035) including CML patients resistant to at least
two previous TKIs. Of the twenty-nine recruited CML pa-
tients, only one showed a hematological remission with
eradication of a T315I-positive clone in the absence of any
CyR [91]. LBH589 has also been extensively studied as a
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potential anti-leukemic drug in combination with different
TKIs. Matsuda and colleagues reported that LBH589 in-
creased PON cytotoxicity in IM-resistant CML cell lines
[92]. LBH589 is also being evaluated in combination with
IM in CML patients in CyR with residual disease detectable
by Q-PCR (NCT00686218).

These results suggest that HDAC-Is have questionable
efficacy as single agents while they may be promising
therapeutic agents when administrated in combination
with additional anti-cancer drugs in patients failing TKIs.

Sirtuin Inhibitors (Sirt-Is) are a broad range of pharma-
ceutical agents inhibiting class III HDAC enzymes called
Sirtuins (SIRTs) (Fig. 1g). These proteins play a key role in
both healthy and cancer cells by mediating changes in the
activation of oxidative stress. In mammals, seven SIRTs
(SIRT1-SIRT7) have been identified which display a
conserved core NAD"-binding domain and exhibit deace-
tylation and ADP-ribosylation activities [93]. Among all
sirtuins, SIRT1 has been investigated in different
hematological malignances including CML [94]. SIRT1 is
overexpressed in primary and immortalized CML cells
and a SIRT1 knock-out represses BCR-ABL1 transforming
activity in mice recipients [95, 96]. Sirt-Is such as tenovin-6,
sirtinol and nicotinamide have been investigated in CML
experimental models.

Tenovin-6 (TV-6)

Is a small-molecule that inhibits SIRT1 and SIRT?2 resulting
in p53 acetylation and activation [94]. The combined
pharmacological inhibition of SIRT1 (by TV-6) and BCR-
ABL1 (by IM) decreases cell proliferation, promotes apop-
tosis of CML progenitors and impairs CML engraftment in
immunodeficient mice [95].

Sirtinol
Unlike TV-6, sirtinol is a SIRT1 specific inhibitor with
anti-cancer properties in different tumors [97]. Wang et
al. reported that SIRT1 overexpression promotes the ac-
quisition of genetic mutations that, in turn, cause TKI
resistance. Exposure to Sirtinol overcomes resistance to
IM, NIL and DAS. [98].

In conclusion, the ability of Sirt-Is to maintain gen-
omic stability and to reduce the LSCs pool, makes these
compounds promising tools for CML treatment.

BCL2 inhibitors
Studies of gene and protein expression have shown that
alternative splicing of multiple BCL2 family members fa-
cilitate the expansion of quiescent CML stem cells [99,
100] and reduce their apoptotic rate [101].

As BCL2 inhibitors (BCL2-Is) overturn these biological
effects (Fig. 1h), they have been considered for the treat-
ment of CML.
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Sabutoclax

Sabutoclax, a pan-BCL2 inhibitor, sensitizes LSCs in the bone
marrow niche to TKIs. A recent study has shown that expos-
ure of CML CD34-positive cells to Sabutoclax increases DAS
efficacy reducing engraftment of LSCs in mice [102].

Obatoclax

Preclinical evidence suggests that the pan-BCL2 inhibitor
Obatoclax reduces colony formation in Ph + CD34-posi-
tive progenitors [103]. A Phase I study has been designed
to evaluate the safety of Obatoclax in different myleoproli-
ferative disorders, including CML (NCT00438178).

Venetoclax (ABT-199)

Unlike Sabutoclax and Obatoclax, Venetoclax displays
BCL2-selective antagonism with modest activity against
CML progenitors when used as single agent. However,
Ko and colleagues have recently shown that Venetoclax
enhances IM cytotoxicity on CML progenitors [104].

In conclusion, although BCL2 inhibition may become
a useful strategy in the future, the lack of clinical data in
CML patients currently excludes this class of drugs from
CML therapy.

Aurora kinase inhibitors

Aurora kinase inhibitors (AURK-Is) suppress the serine-
threonine kinase activity of the AURK family that regulates
cell division [105-107] (Fig. 1i). Three isoforms of the Aur-
ora Kinases (AURORA-A -B and -C) modulate chromo-
some condensation and orientation playing a critical role in
the control of the mitotic machinery. Hence, dysregulation
of their activity generates chromosomal abnormalities driv-
ing DNA alterations responsible for cell transformation
[107]. On the basis of these considerations, the AURKs
have been considered potential therapeutic targets for the
development of anticancer drugs [106]. Although, to date,
the BCR-ABL1/AURK correlation with CML progression is
unclear, the role of AURK-Is in CML treatment has been
exstensively investigated [105].

MK-0457 (VX-680 or Tozasertib)

MK-0457 is active against immortalized CML cell lines and
has also shown the ability to revert advanced CML patients
expressing the T315I mutant to the chronic phase of the
disease [108, 109]. These promising data have resulted in
the design of a Phase II study (NCT00405054) that showed
cytogenetic and hematologic responses in advanced CML
patients [110]. Finally, a Phase I dose escalation study of
MK-0457 in combination with DAS is also ongoing
(NCT00500006).

PHA-739358 (Danusertib)
Unlike MK-0457, PHA-739358 is a dual inhibitor of AURK
and ABL (wild-type and mutated, including T315I), which
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showed promising activity both in leukemia and solid
tumors. In detail, Danusertib exerts growth inhibition in
immortalized BCR-ABL1-positive cells and in CML CD34-
positive progenitors derived from patients sensitive or
resistant to TKIs [111, 112]. In a Phase I study, used as a
single agent, PHA-739358 displayed acceptable toxicity and
induced hematologic and cytogenetic responses in patients
with advanced CML expressing the T315] mutant [113].

AK1603

AKI603 is an aurora kinase A inhibitor that exerts its anti-
proliferative activity by arresting CML cells sensitive or re-
sistant to IM in the G2/M phase of the cell cycle. [114].
AKI603 also abrogates the growth of xenografted BCR-
ABL1 T315I mutant cells in nude mice and restore IM
ability to reduce their colony forming potential [115].

MLN8237 (alisertib)

Like AKI603, MLN8237 is an Aurora Kinase A inhibitor
but it induces CML cell death by decreasing expression of
Apollon, a protein that modulates cell division and apop-
tosis. In-vitro CML experimental models showed that
MLN8273 induces apoptosis in cells expressing both wt
and mutant BCR-ABL1. Moreover, MLN8273 improves
NIL activity increasing CML CD34-positive cell death and
reducing tumor growth in recipient mice [116].

AT9283
This multitarget kinase inhibitor, shows activity against CML
cell lines and is able to reduce the engraftment of primary
BCR-ABL1-positive cells [117]. A Phase I/II study is being
the efficacy safety of AT9283 in patients with refractory
hematological malignancies including CML (NCT00522990).
All together, these data indicate a likely role for
AURK-Is as a useful therapeutic resource for patients
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Protein translation inhibitor - Omacetaxine

Omacetaxine binds the ribosome aminoacyl-tRNA ac-
ceptor site, thereby inhibiting the synthesis of different
oncoproteins including BCR-ABL1 [118] (Fig. 2). Experi-
mental data on primary BCR-ABL1-positive cells [119]
and different clinical trials have demonstrated the effi-
cacy of Omacetaxine as a therapeutic agent in CML.

Cortes and colleagues used Omacetaxine in CML pa-
tients resistant or intolerant to TKIs and obtained mean-
ingful hematological and cytogenetic remissions [120,
121]. Furthermore, the same data were obtained in a
Phase II study, (NCT00375219), enrolling patients with
the T315I mutation [122].

Following these clinical data, the FDA approved Oma-
cetaxine for the treatment of CML patients that do not
benefit from TKIs with specific attention to patients car-
rying the T315I substitution.

Clinical studies and results from non ABL-directed
Inhibitors are summarized in Table 1.

Immunological approaches

The immune response against cancer is impaired by an
immune escape of the tumor cells [123]. Over the past
decade, different investigators have studied vaccines ac-
tivity in CML patients using BCR-ABL1 as specific anti-
gen. Leukemia Associated Antigens (LAAs) and
Dendritic Cell Vaccines (DCs) have also been investi-
gated with the aim of inducing a T cell immune response
against BCR-ABL1-expressing cells [99]. Furthermore,
use of the immune-checkpoint blockade (ICB) has also
been assessed.

BCR-ABL1 as a specific antigen

Usually BCR-ABL1 immunogenic peptides are formed

by an amino acid sequence of the el3a2 or el4a2 break-

point region [124]. Different authors have investigated

the efficacy of BCR-ABL1 immune-peptides in CML.
The EPIC (Evaluation of Peptide Immunisation in

with advanced CML resistant to TKIs. CML) study accrued nineteen patients that were
2

Oncogene
Transcription

Fig. 2 Schematic representation of the mechanism of action of Omacetaxine. Oncogene transcription leads to mRNA translation that induce oncoprotein
synthesis. Omacetaxine reduces BCR-ABL1 expression levels by blocking the ribosome t-RNA aminoacil acceptor site that results in a protein elongation arrest
J

tRNA

> Oncoproteins
e.g. BCR-ABL1

Ribosome
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Table 1 Clinical studies and results from non ABL-directed Inhibitors
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Non ABL-directed Inhibitors Clinical Study Drugs Combination Patient Characteristics (pts) Results
FT-Is
Tipifarnib (42) - CP, AP, BP HR: 27% CP, 4% AP
(n=22) CyR: 18% CP
Phasel NCT00040105“) IM CP having ABL KD mutation HR: 76%
(n=25) CyR: 36%
Lonafarnib Pilot Study ¥ - CP, AP HR: 8% CP, 8% AP
IM resistant
(n=13)
Phasel NCT00047502”) IM CP, AP, BP HR: 9% CP, 17% AP/BP
(n=23) CyR: 4% CP, 4% AP/BP
mTOR-Is
Rapamycin Phasel/Il NCT00776373 Cytarabine Etoposide AP, BP NDP
Everolimus Phasel/Il NCT00081874 - BP NDP
Phasel/Il NCT00093639 IM CcpP NDP
BEZ235 Phasel NCT01756118 - AP, BP NDP
Temsirolimus Phasel NCT00101088 IM AP, BP NDP
Smo-As
LDE225 Phasel NCT01456676 NIL AP, BP NDP
BMS833923 Phasel NCT1218477¢ DAS CP, AP, BP CyR: 4% CP
(n=27) PA/BP: no responded
Phasel NCT01357655 DAS CcP No participants were enrolled
PF-04449913 Phase | NCT00953758 - cP Safety, Pharmacokinetics and
Pharmacodynamics study
JAK2-Is
Ruxolitinib Phasel NCT01702064 NIL cp ongoing
Phasel/Il NCT02253277 NIL CP, Ph +ALL ongoing
Phasel/Il NCTO1751425 - CP with MRD ongoing
Phasel/Il NCT01914484 NIL AP, BP, Ph+ALL ongoing
Phasel/Il NCT02973711 NIL cp ongoing
Hsp90-Is
17-AAG Phasel NCT00093821 - BP NDP
Phasel NCT00098423 Cytarabine BP NDP
STA-9090 Phasel NCT00964873 - BP NDP
Phasel NCT00858572 - refractory or relapsed CML NDP
HDACIs
Vorinostat Phasel NCT00275080 Decitabine BP NDP
Phasel NCT00816283 DAS AP, BP NDP
Phasel NCT00278330 Flavopiridol BP NDP
LBH589 Phase 11/l NCT00451035" - CML TKis resistant HR: 3%
(n=29)
Phasel NCT00686218 IM CP with MRD NDP
BCL2-Is
Obatoclax Phasel NCT00438178 - BP NDP
AURK-Is
MK-0457 Phase 1/11%® - AP, BP, Ph+ALL HR: 39% AP/BP

All with T315I
(n=18)

CyR: 5% Ph + ALL
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Table 1 Clinical studies and results from non ABL-directed Inhibitors (Continued)
Non ABL-directed Inhibitors Clinical Study Drugs Combination Patient Characteristics (pts) Results
Phasell NCT00405054” - AP, BP, Ph + ALL CyR: 8% CP, 6% AP/BP
All with T315] HR: 4% CP
(n=52)
Phasel NCT00500006 DAS (@3 No Data Results Posted
PHA-739358 Phasel ¥ - AP, BP HR: 7% AP/BP,
(n=29) 7% Ph + ALL
CyR: 3% AP/BP,
3% Ph+ ALL
MR: 3% Ph +ALL
AT9283 Phasel NCT00522990 - CP, AP, BP NDP
X1288 Phasel NCT00464113 - CP, AP, BP, Ph+ ALL NDP
PT-Is
Omacetaxine Phasell'2? - CP, TKIs resistant HR: 67%, CyR: 22
(n=46)
Phasel/lI'?" - CP, previously HR: 81%, CyR: 20%
exposed to TKls
(n=281)
Phasell NCT00375219%? - CP, BCR-ABLT HR: 77%, CyR: 22%
T3151 mutant
(n=62)

FT-Is Farnesyl Transferase Inhibitors, mTOR-Is mammalian Target of Rapamycin, Smo-As Smo Antagonists, JAK2-Is JAK2 Inhibitors, Hsp-90-Is Hsp-90 Inhibitors,
HDAC-Is HDAC Inhibitors, BCL2-Is BCL2 Inhibitors, AURK-Is Aurora Kinase Inhibitors, PT-Is Protein Translation Inhibitors, HR Hematological Remission, CyR Cytogenetic
Remission, CP Chronic Phase, AP Accelerated Phase, BP Blast Phase, NDP No Data Posted, MRD Minimal Residual Disease

vaccinated using el4a2 peptides. Thirteen patients, in
cytogenetic remission after IM, showed late T cell im-
mune response to BCR-ABL1 peptides and achieved a 1-
log decrease in BCR-ABLI transcripts [125].

Nitin and colleagues investigated the efficacy of a mix-
ture of immune-peptides in ten CML patients expressing
el3a2 or co-expressing el3a2/el4a2 BCR-ABL1 iso-
forms. Three patients achieved a 1-log reduction in
BCR-ABL1 mRNA levels and 3 additional patients devel-
oped a major molecular response. However, these re-
sponses have not been stable over time, suggesting that
this therapeutic approach may only transiently improve
molecular response in CML patients [126].

In a Phase 2 trial (NCT00267085), patients previously
exposed to IM and showing complete cytogenetic remis-
sion but not a major molecular response were subjected
to vaccination using the CMLVAXB2 or CMLVAXB3
peptides against the el3a2 and el4a2 BCR-ABLI iso-
forms, respectively. Three patients out of ten achieved a
1-log reduction in BCR-ABL1 mRNA levels.

An interim analysis of a Phase II Multicenter GIMEMA
CML Working Party trial reported that CML patients
with minimal residual disease during IM treatment ob-
tained a reduction of their disease burden after being
exposed to the peptide vaccine CMLVAX100 (derived
from BCR-ABL1 el4a2 isoform plus molgramostin, a
leucocyte growth factor and QS-21 as immunoadjuvant)
[127]. Furthermore, Bocchia et al. demonstrated that the
combination CMVAX100 with GMCSF induced 50% of
BCR-ABLI mRNA levels reduction in patients previously
exposed to IM and/or IFN [128].

The same group also described a patient that received
a vaccine based on the el3a2 BCR-ABLI isoform
(CMLb2a2-25mer), achieving undetectable BCR-ABLI
transcripts in both peripheral blood and bone marrow [129].

In summary, the vaccines against BCR-ABL1 break-
points have shown the ability to reduce residual disease
in TKI-treated patients achieving cytogenetic remission.
Several clinical trials are being this therapeutic approach
(NCT00428077), (NCT00466726), (NCT00004052).

Leukemia associated antigens (LAAs)
Leukemia Associated Antigens (LAAs) are overexpressed
in multiple leukemias including CML. Different LAAs have
been identified as potential targets for vaccine synthesis
and CML therapy [124, 130]. Among them, the most prom-
ising are: i. the immunopeptide against the Wilms tumor
oncogene (WT1), frequently overexpressed in CML pa-
tients. When this immunopeptide associated with IM, it
may induce deep molecular response [131]. Currently, one
clinical trial is evaluating the efficacy of this approach
(NCT00004918); ii. K562/GM-CSF (GVAX), a cell-based
vaccine derived from K562 cells genetically modified to
produce granulocyte-macrophage colony-stimulating factor
(GM-CSF) and a number of LAAs which recruit dendritic
cells and activate T cell-mediated CML-specific immune re-
sponses. GAVX has been shown to reduce BCR-ABLI tran-
script levels in CML patients [132].

Opverall, the data generated in CML preclinical models
and clinical report indicate a promising role for
immune-dependent therapies for CML treatment.
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DCs vaccine (dendritic cells)
DCs are antigen-presenting cells that induce humoral and
cellular immune responses. In CML, progenitor cells drive
the formation of both leukemic clones and DCs. Since 98%
of them express the BCR-ABL1 oncoprotein, these cells
represent a potential target for immunological therapy
[124]. Previous published data indicates that CML-DCs
present antigen-processing defects as a consequence of
their reduced capacity to capture antigens if compared with
normal DCs [133]. Furthermore, in two clinical trials, DCs
injections did not generate any response [134, 135].

In conclusion, DCs-based vaccines appear unlikely to
be of any meaningful value for CML treatment in the
foreseeable future.

Immune-checkpoint blockade (ICB)
Cancer immunotherapy based on immune-checkpoint
blockade (ICB) employs monoclonal antibodies against
negative immune-regulator checkpoints such as cyto-
toxic T-lymphocyte antigen 4 (CTLA-4), programmed
death 1 (PD-1) and its ligands (PD-L1, PD-L2) [136].
CML-specific cytotoxic T Lymphocytes (CTLs) show
high PD-1 levels, whereas CML cells express PD-L1. In

Table 2 Clinical studies and results from immune strategies
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murine CML models, abrogation of PD-1 expression in-
creases overall survival [137, 138] suggesting that block-
ing the PD-1/PD-L1 pathway may represent a new
therapeutic strategy for CML.

Recently, Schutz demonstrated a correlation between
CTLA-4-ligand CD86 expression and risk of disease re-
lapse after TKI discontinuation. Indeed of 122 patients
that had ceased TKIs, those expressing lower CD86
levels showed a 70% relapse-free survival suggesting that
CD86 expression may be an early indicator of poor
treatment-free remission probability [139].

A clinical trial (NCT01822509) is presently evaluating
the efficacy of the combination ipilimumab (anti-CTLA-4)
plus nivolumab (anti-PD-1) in patients with hematologic
malignancies, including CML, relapsed after allogeneic
hematopoietic cell transplantation.

Clinical studies and results from immune strategies
are summarized in Table 2.

Conclusion

TKIs that interfere with BCR-ABLI1 signaling currently
represent the first line and second line treatment of
choice for most CML patients [26].

Immune-peptide Clinical Study Drug Combinations Patient Characteristics (pts) Results (pts%)

BCR-ABL1 as specific antigen
el4a2 Phasel/II12 IM CPin CyR (n=19) 68%) < 1-log BA mRNA
el3a2, el4a2 Phasell'#® IM CPin CyR (n=10) 30%) < 1-log BA mRNA

CMLVAXB2 (e13a2) CMLVAXB3 (el4a2) Phasell NCT00267085 IM

CMLVAX100 (e14a2) Phasell'?” IM
IFN

CMLVAX100-GMCSF Phasell1?® IM
IFN

CMLb2a2-25 (e13a2) Case Study!"> -

el3a2, el4a2 Phasell NCT00428077 -

el3a? Phasell NCT00466726 IM
el3a2 Phasell -
NCT00004052
LAAs
WTT Case Study®" IM
Phasel/Il -
NCT00004918
GVAX (132) IM
ICB
Ipilimumab Phasel -
Nivolumab NCT01822509

(
(
(30%) MMR
(transient response)
CPin QYR (n=10) (

CP in SRD (all n=16)
IM (n=10); IFN (n=6)

30%) |< 1-log BA mRNA

IM: (50%) CyR and
(30%) BA UD
IFN: (83%) CyR

CPin MRD (51%) 150% BA mRNA
(n=43)

CPin CyR BA UD

MRD (100%) < 1-log BA mRNA
(n=4

CP in MRD NDP

CPin HR NDP

MRD | BA mRNA

cp NDP

CyR (n=19) (68%) | BA mRNA

CcpP ongoing

LAAs Leukemia Associated Antigens, ICB Immune-checkpoint blockade, HR Hematological Remission, CyR Cytogenetic Remission, CP Chronic Phase, AP Accelerated
Phase, BP Blast Phase, NDP No Data Posted, MRD Minimal Residual Disease, UD Undetectable, SRD Stable Residual Disease
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However, BCR-ABL1-dependent or —independent re-
sistance as well as BCR-ABL1-independent LSCs survival,
partially undermine TKIs efficacy. Hence, a subgroup of
CML patients is clearly in need of alternative therapeutic
approaches. In this review we focused our attention on a
range of pharmacological agents -non ABL-directed inhib-
itors- against different targets involved in BCR-ABL1-
dependent leukemic transformation.

We summarized data showing that FT-Is in combin-
ation with TKIs, Omacetaxine, AURK-Is and JAK2-Is
have demonstrated efficacy in CML patients. We have
also outlined clinical data demonstrating that vaccin-
ation against WT1 antigen, in combination with IM may
represent a potential strategy to reduce BCR-ABLI
mRNA levels or induce cytogenetic remissions. However,
with the exception of Omacetaxine, none of the above
indicated compounds have received approval for CML
treatment. Furthermore, while there are several ongoing
clinical trials evaluating the association of Ruxolitinib
with NIL, at the current time it appears unlikely that
other promising agents (i.e. FTY720, Hsp90-Is, AURK-Is
and anti-WT1 antibodies) will undergo clinical develop-
ment for the treatment of the disease.

The unsatisfactory results obtained with most of the
non ABL-direct inhibitors has fostered additional re-
search in the field that is currently investigating alter-
native strategies including: i) a WNT (homologus
wingless)-targeting drug to modulate stem cell survival
(PRI-724, clinical trial NCT01606579), ii) HDM?2
(known as mdm-2, mouse double minute-2) inhibition
to increase p53 half-life (RG7112, clinical trial
NCT00623870), iii) a CXCR4 (CXC-chemokine recep-
tor 4) antagonist as a hematopoiesis regulator (BL8040,
clinical trial NCT02115672), iv) an ABL allosteric
modulator (i.e. ABLOO1, clinical trial NCT02081378).

In summary, non ABL-directed inhibitors have often
showed ability to overcome TKI resistance in primary
CML cells or to eradicate the LSCs in mouse models.
However, they displayed questionable efficacy in CML
patients. Likewise, immunological approaches may be
useful to improve molecular response, but this effect is
often transient.

Finally, while the use of ICB may represent promising
approaches to eradicate LSCs and predict molecular re-
lapse of the disease after TKI discontinuation, these
immune-based strategies seem far from achieving clin-
ical relevance for CML therapy.
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