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Abstract

Tumor heterogeneity represents an ongoing challenge in the field of cancer therapy. Heterogeneity is evident
between cancers from different patients (inter-tumor heterogeneity) and within a single tumor (intra-tumor
heterogeneity). The latter includes phenotypic diversity such as cell surface markers, (epi)genetic abnormality,
growth rate, apoptosis and other hallmarks of cancer that eventually drive disease progression and treatment
failure. Cancer stem cells (CSCs) have been put forward to be one of the determining factors that contribute to
intra-tumor heterogeneity. However, recent findings have shown that the stem-like state in a given tumor cell is a
plastic quality. A corollary to this view is that stemness traits can be acquired via (epi)genetic modification and/or
interaction with the tumor microenvironment (TME). Here we discuss factors contributing to this CSC heterogeneity
and the potential implications for cancer therapy.
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Background
A tumor is a heterogeneous population of cells, containing
transformed cancer cells, supportive cells and tumor-
infiltrating cells. This intra-tumor heterogeneity is further
enhanced by clonal variation and microenvironmental
influences on cancer cells, which also do not represent a
homogeneous set of cells. Early observations showed that
tumors contain subclones that differ in respect to karyo-
type and sensitivity to chemotherapy [1, 2]. More recent
profiling endeavours, using in-depth sequencing and
methylation profiling of various tumor regions, revealed
multiple clones with both distinct genetic mutations and
promoter hypermethylation within a single tumor [3, 4].
Importantly, the nature of this heterogeneity is not limited
to the malignant cancer cell population only as a tumor is
a complex ecosystem containing tumor cells and other cell
types, such as endothelial cells, infiltrating immune cells,
stromal cells as well as a complex network of extracellular
matrix (ECM), which defines spatiotemporal differences
in the tumor microenvironment [5, 6]. Conceivably, both

tumor and microenvironment heterogeneity determine
the fitness of the tumor and as such, are likely to be
crucial factors in treatment success.
Two models have been proposed to account for hetero-

geneity within a tumor. In the clonal evolution model,
stochastic mutations in individual tumor cells serve as
a platform for adaptation and selection for the fittest
clones of a tumor. As such, this model explains intra-
tumor heterogeneity as a result of natural selection.
The clones that acquire growth advantage will expand
while the clones with less fitness will be competed out
and may eventually become extinct. Importantly, such
clonal advantages may differ in time and space as dif-
ferent requirements may be present in different areas of
the tumor. Certain areas may select for “hypoxia-fit”
clones, while other more nutrient dense regions may
select for fast-growing clones. During the course of the
disease, these clones may change spatially and tempor-
ally resulting in a complex sub-clonal architecture,
which is further enhanced by the application of therapy
[7–9]. The second model that is proposed to install
intra-tumor heterogeneity is the cancer stem cell (CSC)
model. This model suggests that only a subset of cancer
cells possess indefinite self-renewal ability to initiate
and maintain tumor growth. Therefore, tumors are
organized in a hierarchical fashion, equivalent to the
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normal tissue hierarchy supported by healthy stem
cells. Accordingly, CSCs generate cellular heterogeneity
by installing a differentiation hierarchy leading to a
range of distinct cell types present within the tumor
[10]. It should be noted however, that this hierarchy is
not a one-way route, but can be reversible or plastic
whereby the terminally differentiated cells can also de-
differentiate and gain CSCs properties under specific
conditions [11, 12]. The concept of cell plasticity has
partly reconciled both stochastic and CSC models. For
instance, mutation in a differentiated cell can endow
self-renewal capacity and establish a new hierarchical
CSC clone, adding the functional diversity within a
tumor [13, 14].
Below we provide the overview on how stemness fea-

tures are installed in (cancer) cells and hence, influence
plasticity of this population. We first zoom in on intrin-
sic factors, like genetic and epigenetic factors, which we
consider to be the inherent properties contributing to
self-renewal capacities. Secondly, we will discuss extrinsic
factors, like the tumor microenvironment and therapy,
that can influence cellular phenotypes. Exploring the
mechanism of self-renewal and plasticity competency
may allow researchers to interfere with these processes
and ultimately, improve cancer management.

Main text
CSC model
The concept of cancer stem cells was first formally
tested in hematological malignancies. Lapidot and co-
workers showed that the CD34+/CD38− subpopulation
from acute myeloid leukemia (AML) was able to form
leukemia after transplantation into NOD/SCID mice
[15]. Since this seminal publication, cell purification
using distinct surface markers followed by transplant-
ation in immunocompromised mice has been used as
gold standard to identify functional CSC populations.
With this method, CSCs can be purified from diverse
types of haematological and solid malignancies such as
breast, glioma, colon, pancreas and liver [11, 16]. These
efforts, however, were faced with a strong scepticism, as
the purification of CSCs requires dissociation of human
tumor material into a single-cell suspension followed by
transplantation in immune-deficient mice. This proced-
ure releases cancer cells from their natural environment
and exposes them to a hostile new environment, which
may change their behaviour. Hence, it is unclear whether
the purified cells will also function as CSCs in an intact
tumor setting and importantly, whether the nature of
such CSCs is clinically relevant. The first clear evidence
to support a role for CSC activity in intact tumors is
provided by three independent studies in brain, skin and
intestinal tumor mouse models. Using the genetically
engineered lineage-tracing technologies, these studies

provided clear evidence that CSCs arise de novo and
drive tumor growth [17–19]. These studies seem to re-
solve the debate whether CSCs do exist or are merely a
xenotransplantation artefact. However, formally these
studies do not exclude the possibility that more differ-
entiated cells can also fuel cancer growth, potentially
under conditions of stress or specific therapy. Although
one of these studies did reveal that CSCs were essential
for repopulation of the tumor after drug treatment and
that this could be prevented by the addition of a CSC-
specific drug [19]. Similarly, targeting of intestinal CSCs
using LGR5 antibodies displayed a dependency on
CSCs for tumor survival [20]. In addition, a handful of
preclinical and clinical observations demonstrated that
CSCs selectively resist therapy and can be responsible
for tumor relapse [21], suggesting that eradication of a
cancer would require killing of CSCs. Nevertheless, the
key question is whether targeting of CSCs alone is suffi-
cient or whether non-CSCs could take their place after
de-differentiation.
Unfortunately, the efficacy of CSC targeting and the

capacity to revert to the CSC state has been difficult to
study due to the limited characterization of CSC
markers. Several markers, such as CD133, CD44,
CD166, CD24, and ALDH1 activity, have proven useful
for prospective isolation of CSCs in multiple solid tu-
mors [11]. However, CSC marker expression is not uni-
form between tumor types. For instance, while CD133
has been used as a marker to identify CSCs in glioblast-
oma [22] and CRC [23], it is not a reliable marker in
breast cancer where CD44+CD24− is commonly used to
enrich for CSCs [24]. CSC markers expression also var-
ies between cancer subtypes and even, between patients
in the same subtype [16]. For instance, CD44highCD24low

fails to efficiently enrich CSCs in triple negative breast
cancer [25] and CD133 has been debated in colon can-
cer. Furthermore, the lack of consistency has generated
confusion in the field of CSC identification and ques-
tioned the functionality of CSC markers [26–28]. A
possible explanation could be that purified populations
may remain heterogeneous and may require additional
markers to allow optimal CSC enrichment. Indeed, the
combination of CD44, EpCam and CD166 could
identify CSCs in CRC more robustly than CD133 alone
[29]. Adding another layer of complexity, the genetic
and epigenetic changes influence CD133 surface
marker expression as well as modify the detection with
the commonly used antibodies [30, 31]. Consequently,
the absence of CD133 expression may actually reflect
the detection limit and give a false-negative rate in
identifying CSCs. These observations indicate that
the phenotype of CSCs is not as well defined as would
be required for optimal detection in clinical material.
Instead, CSC markers can be viewed as a property of
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cells that is highly context dependent. Furthermore,
accumulating evidence suggest that self-renewal traits
of CSCs can be acquired and dynamic rather than fixed
in a defined cell population. In this concept, the CSC
model is not necessarily rigid and unidirectional as
non-CSCs can regain CSC characteristics depending
on various intrinsic and extrinsic factors. These fac-
tors influence stemness properties and thereby con-
tribute to the functional diversity of a single tumor
(Fig. 1).

Intrinsic features: genetic and epigenetic
Cancer arises through accumulation of mutations that
install a malignant phenotype [32]. As neoplastic lesions
develop, mutant clones expand and are subjected to
further (epi)genetic alterations and microenvironmental
pressure [33] resulting in clones that have acquired the
different “hallmarks of cancer” [34]. Whether these
oncogenic mutations are required to occur in specific
cell populations, such as stem cells or progenitor cells,
remains a subject of debate. The propensity of cells to
undergo transformation and initiate tumorigenesis could
be either a stochastic process or be predefined by the
cell of origin (stem cell vs non stem cell compartment).
It is plausible that CSCs originate from normal stem
cells and exploit the molecular machinery already
present in these healthy stem cells, such as self-renewal
and tissue regeneration, to perpetuate indefinitely [35].
A contemporary mathematical model supports this
view by demonstrating a nearly perfect correlation
between cancer risk and the rate of stem cell division,
suggesting highly replicative stem cells as alleged target
for mutation and hence, neoplastic transformation [36].
Recently an elegant study by Zhu and colleagues
provided direct evidence that mutations in stem cells

dictate cancer risk. Using lineage tracing of CD133+

cells, they showed that stem cells, particularly in adult
tissue, were inherently susceptible to neoplastic trans-
formation and produced tumors upon activation of
oncogenic mutations [37]. Such oncogenic transform-
ation of stem cells can cause disturbance in cell division
or a block in differentiation leading to stem cell expan-
sion. For example, introduction of NRAS(G12D) in
normal hematopoietic stem cells (HSC) reprogramed
transcriptional response and cell-cycle kinetics. This
signal alone increased the proliferation and resulted in
a clonal advantage over normal HSC in serial trans-
plantation assays [38]. Furthermore, transformed stem
cells highly expressed genes for immune regulators,
such as CTLA4 and CD274 (PD-L1) [37]. This observa-
tion suggests that in the earliest stage of tumorigenesis,
transformed stem cells not only propagate mutations,
but importantly also install a protection of the tumor
from immunosurveillance.
While it may be intuitive that CSCs originate from

transformation of healthy stem cells, several studies
have pointed out that stem cells and differentiated cells
represent an equally permissive pool for tumorigenesis
(reviewed in [11]). An initial report suggested that
oncogene expression in terminally differentiated cor-
tical astrocytes and neurons initiated glioblastoma
[39]. The genetically acquired plasticity drives cancer
progression and is even able to facilitate transdifferentia-
tion into blood vessels, further sustaining the malignancy
[40]. Similarly, specific dysregulation of signaling path-
ways in differentiated cells can also dictate the emer-
gence of neoplastic cells. For instance, in a mouse
model for intestinal tumor formation, aberration of
Wnt and NFkB pathways in non-stem cells initiated
tumorigenesis [41]. The above describes how CSCs can

Fig. 1 The original CSC model (unidirectional hierarchy) assumes that only CSCs are able to generate the bulk of tumor via symmetric division
(to self-renew) or asymmetric division (to generate differentiated cells). In this case, the hierarchy is strictly unidirectional and precludes the concept of
cell fate reversibility from the progenitor cells. In contrast, accumulating evidence demonstrate that the hierarchy is more fluid than originally thought.
In the CSCs plasticity model, (cancer) cell posses the dynamic ability of bidirectional conversion from a non-CSC state to a CSC state and vice versa. In
this model, the stemness and CSCs plasticity are determined by diverse intrinsic and extrinsic cues that work simultaneously or independently
overtime. Consequently, non-CSCs can serve as reservoir to create CSC populations throughout tumorigenesis. In the figure this is indicated
with a lightning bolt and can be the result of a microenvironmental cue or a (epi-)genetic change
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be induced by genetic perturbation. It is however im-
portant to realize that the CSC hierarchy in cancers
also appears to be more fluid than originally thought.
That is, under the right genetic or epigenetic alter-
ations, non-CSCs can dedifferentiate and acquire CSC
features.
Although proof for plasticity in both healthy and can-

cerous tissue has accumulated tremendously in recent
years, the knowledge on how this plasticity is orches-
trated is still in its infancy. The different models indicate
that genetic perturbations can play a prominent role in
installing self-renewal capacity, but genetic change alone
is not sufficient to induce all phenotypes. It is clear that
cancer initiation and progression induced by oncogenic
mutations are accompanied by significant epigenetic
alterations as well, including genome wide changes in
DNA methylation (hypomethylation), CpG islands pro-
moter hypermethylation, histone modification patterns
and nucleosome remodelling [42]. Genetic and epigen-
etic alterations can be considered two sides of the same
coin. Both processes are intertwined and benefit from
each other in driving tumorigenesis. As such, alterations
in the epigenome can lead to mutations, while mutation
of epigenetic regulators can induce epigenetic chain re-
actions. For instance, promoter methylation of critical
genes, such as DNA repair genes, may predispose
normal cells to genetic lesions. A clear example of this is
silencing of mismatch repair genes causing an accumula-
tion of mutations and instability of microsatellites [43].
Alternatively, epigenetic alterations can deregulate fun-
damental signalling pathways controlling self-renewal
and differentiation, including Wnt, Notch, Myc and
Hedgehog pathways (reviewed in [44]). An example of
such pro-tumorigenic event is the silencing of Wnt
inhibitors, which leads to proliferative advantages that
may expand the pool of cells that are eligible for onco-
genic mutation and thereby increases cancer risk [45].
Conversely, there is emerging evidence that genetic mu-
tations may also directly lead to epigenetic alterations
that control cellular fate. One meaningful example is
provided by a recent study on the role of DNA methyl-
transferase 3A (DNMT3a) mutation in hematological
malignancy, which cooperates with RAS mutation to
produce AML [46]. Although RAS mutation alone in-
duces hyper-proliferation, it is not sufficient to support
self-renewal and induce malignancy [47]. DNMT3a mu-
tations occur frequently in AML. Mechanistically, mu-
tated DNMT3a activates distinct enhancers to induce
focal DNA methylation and histone acetylation leading
to deregulations of stemness pathways. Especially the
Meis1-Mn1-Hoxa gene clusters are shown to be critical
for DNMT3a mediated AML progression. As a result,
DNMT3a mutation can confer aberrant self-renewal and
block differentiation, but is not sufficient to induce

hyper-proliferation. Combination of DNMT3a and RAS
mutation therefore results in a highly penetrant AML
and exemplifies the synergism between genetic and epi-
genetic alteration in initiating a self-renewing prolifera-
tive CSC population and thereby malignancy [46]
Next to a role in the onset of cancer, it has been pro-

posed that epigenetic modifications dictate the pheno-
type of CSCs in established tumors. An example of how
epigenetic plays a role in modulating CSC properties is
represented by the epithelial-mesenchymal transition
(EMT) process. Studies in breast cancer link EMT with
acquisition of CSC features, such as the expression of
surface markers associated with breast CSCs
(CD44highCD24low) and increased self-renewal plus
tumor initiating capacity [48–50]. Recent studies provide
clear cues that EMT relies on various epigenetic modifi-
cations that impact on the expression of the mesenchy-
mal transcription factor ZEB1, providing a direct link
between epigenetics and CSCs [51, 52]. Unlike gene
mutation that can affect gene expression in a straight-
forward manner, stable epigenetic marks may require a
complex fine-tuning modification of chromatin. For
example, certain gene promoters can contain both a
permissive (H3K4me3) and a repressive histone mark
(H3K27me3). The co-existence of both antagonistic
marks has been referred as ‘bivalent chromatin’ and
can be found in many developmental regulatory genes
[53, 54]. Ultimately, the genes with bivalent state are
poised for transcriptional activation or silencing upon
the correct incoming cues [55]. In the case of breast
cancer, CD44low subpopulation maintain the ZEB1 pro-
moter in the bivalent state, which allow it to be activated
into an active chromatin configuration upon stimulation
with transforming growth factor-beta (TGF-β). Conse-
quently, ZEB1 transcription increases and CD44low cells
convert into CD44high cells along with the acquisition of
CSC functional traits [51]. In another example, hypoxia
is shown to induce EMT via an epigenetic mechanism
that involves inhibition of oxygen-dependent H3K27me3
demethylases, which results in silencing of the DICER
promoter, the enzyme involved in microRNA processing.
This leads to decreased production of miRNAs of the
mir200 family and subsequently, de-repression of mir200
family target including ZEB1. As a result, ZEB1 expres-
sion increases and eventually leads to the acquisition of
a CSCs phenotype [52]. Taken together, genetic and
epigenetic alterations are deterministic in the establish-
ment of stemness traits. Importantly, there is a growing
body of evidence pointing out that a favourable envir-
onment is essential in the dedifferentiation of tumor
cells into CSCs. Further identification of more detailed
microenvironmental signals that support or determine
the stemness is of paramount importance to allow for
better intervention strategies.
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Extrinsic features: the tumor microenvironment
Tumor cells are under constant selection pressure,
which is a result of the changing conditions within the
microenvironment or due to applied therapy. From a
CSC perspective there are several possible mecha-
nisms by which cancer therapy can change tumor
intra-heterogeneity. First, therapy acts as selection
mechanism that shapes tumor evolution. As CSCs are
thought to be inherently (more) refractory to chemo-
therapy, this population can be selected for upon
therapy, changing the intra-tumor heterogeneity [21].
However, within the CSC population there is room for
clonal variation as well, i.e. distinct CSC-driven clones
that differ in their growth speed or therapy resistance.
Consistent with therapy acting as a selective force,
chemotherapy resulted in the outgrowth of slowly pro-
liferating cell populations and/or previously dormant
CRC clones [56]. In addition, clonal diversity was
shown to be reduced in breast cancer [57, 58], sug-
gesting that intra-tumor heterogeneity is changed,
mostly reduced, upon therapy. A second means by
which therapy can change intra-tumor heterogeneity
is by inducing phenotypic plasticity. For instance, it

has been reported that therapy induces de novo gener-
ation of cells with CSC properties. For example, study
in breast cancer demonstrated that taxane induces
transition of differentiated cells into a CSC state
(CD44highCD24high) and further contributed to the
therapeutic resistance [59].
The role of the microenvironment in this selection

process and (Fig. 2) on fate determination and the be-
haviour of cells is considered to be major [60]. A clear
example as to how the microenvironment can influence
cancer initiation is shown by the chronic inflammation
induced by Helicobacter pylori which is strongly is
linked to increased risk of developing stomach cancer.
Similarly, patients with inflammatory bowel disease
(IBD) have an associated increased risk for colon cancer
[61]. Indeed, an inflammatory microenvironment has
been suggested to induce proliferation of pre-cancerous
lesions, thereby facilitating tumorigenesis [62]. However,
the mechanism as to how inflammatory signals exacer-
bate tumor development is poorly understood. More re-
cently, it is shown that induction of mutations in CD133+

cells in normal adult liver does not lead to tumor forma-
tion unless local tissue damage is induced [37], leading

Fig. 2 Next to intrinsic factors, the tumor microenvironment plays a crucial role in influencing cell state. The tumor microenvironment, in
addition to hosting the tumor cells, possess a dynamic topography within the tumor involving diverse supportive ECM scaffolds, growth
factors, a vascular bed and immune cell interactions [6]. The right combination of microenvironment components, for example inflammation,
hypoxia, vascularized niche or rigid matrix, potentially contribute to stemness and enhanced tumorigenicity [52, 62, 68, 87, 91]. Multiple (distinct)
niches may co-exist within a tumor, leading to cellular diversity
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to a speculative model in which an inflammatory envir-
onment provides an advantage to mutated stem cells. In
agreement, it was shown that intestinal stem cells with a
p53 mutation do not have a competitive advantage over
untransformed stem cells under normal conditions, but
in the presence of inflammation outcompete their nor-
mal neighbors likely facilitating further tumorigenesis to
occur [63]. Therefore, the combined effects of genetic
lesions in (stem) cells with epigenetic alterations and
microenvironment components can initiate tumor de-
velopment by favoring a competitive advantage for the
transformed (cancer) stem cell.
How then does the microenvironment stimulate stem

cell expansion? In the case of inflammation, immune
cells release a range of inflammatory cytokines, such as
interleukin (IL)-1, IL-6, and IL-8 [60]. These all activate
Stat3/NF-κB in both stromal and tumor cells, creating
a positive feedback loop to maintain a chronic inflam-
matory state in tumor cells. These cytokines, particu-
larly IL-6, have been shown to cause differentiated
tumor cells to dedifferentiate into CSCs [64]. Next to
inflammatory mediators, the tumor microenvironment
is known to direct tumor growth in other ways. The
unique composition of the microenvironment, both in
terms of the extra cellular matrix (ECM) and the cells
surrounding the cancer cells, such as cancer associated
fibroblasts (CAF), endothelial and immune cells, plays
an important role in tumor maintenance. Stromal cells
have been reported to mediated paracrine signaling,
which can modulate the CSC phenotype. For instance,
high expression of nuclear β-catenin, which is associ-
ated with active Wnt signaling and defines the colon
CSCs, is detected within the colon cancer cells that
reside close to stromal myofibroblasts. In fact, we re-
ported that hepatocytes growth factor (HGF) secreted
by myofibroblasts can facilitate Wnt signaling, which is
not only important for CSC maintenance but can also
induce de-differentiation of non-CSCs into CSCs [65].
Microvasculature surrounding the tumor is another
relevant example of a microenvironment component
that supports cancer growth. Many studies have pro-
posed that vasculature could provide a specialized
niche for CSCs, since leukemic, brain, colon and skin
CSCs are often found to reside next to a vascular bed
[34]. Subsequent discoveries supported this model and
showed that endothelial cells promote CSCs proper-
ties. For instance, endothelial cells have been shown to
induce a CSC phenotype in colon cancer via produc-
tion of Notch-ligand DLL4 [66]. In line with this find-
ing, our group showed that secreted growth factors
from endothelial cells support and induce stem cells
features in glioblastoma [67, 68]. Apparently, tumor cells
hijack the normal tissue machinery and utilize growth fac-
tor present in the tumor microenvironment. In several

cases this is an active process where tumor cells either
instruct the microenvironment attracting for instance
CAFs [69] or endothelial cells through VEGF secretion
[70]. Alternatively, CSCs can even create their own niche
via transdifferentiation into for instance endothelial pro-
genitor cells [71, 72], which then provide essential
growth factors to the CSC population. Intriguingly, this
later process was not prevented by administration of
angiogenesis inhibitors [70, 71]. A better insight into this
mechanism may thus provide a potential novel approach
to eradicate such tumors.
Another aspect of the microenvironment that pos-

sesses the power to influence cancer cell behavior is the
ECM [73]. For instance, slight changes in matrix com-
position affect the phenotype of breast cancer [74, 75].
The ECM exerts its effect through so called mechano-
transduction. Differential matrix stiffness and geometry
are transmitted through cell-matrix contact and cell-to-
cell-adhesion sites. Changes in mechanical forces are
rapidly detected by the cellular cytoskeleton, creating
tension within the cytoskeleton. Subsequently, cells re-
spond to such mechanical stimuli by changing their
shape and behavior [76]. Changes in the ECM have
been shown to precede tumor development, favor neo-
plastic growth and contribute to metastasis [77, 78]. For
instance, increased collagen content in the ECM enhances
mammary tumor formation [79]. More recently, YAP/
TAZ, transcriptional co-activators of the Hippo pathway,
were shown to function as sensor and mediator of ECM
mechanical cues [80]. In cancerous tissue, YAP/TAZ activ-
ity is increased specifically within tissue regions exhibiting
higher collagen crosslinking [81]. Importantly, the role of
YAP/TAZ in sustaining CSC features has emerged in sev-
eral cancer types [82]. TAZ has been shown to install self-
renewal capacity in non-CSCs and expands the pool of
CSCs [83]. Similarly, YAP expression marks CSCs and
maintains CSCs features through SOX2-Hippo signaling
pathway [84]. Combined these observations suggest a
direct role for the ECM in CSC maintenance through
the activation of YAP/TAZ. Next to YAP/TAZ, Integrin-
linked kinase (ILK) has recently emerged as a key actor
of the cell-ECM cross-talk. Its expression has been asso-
ciated with advanced tumor [85, 86] and through its
interaction with β1-integrin, ILK responds to matrix
stiffness activating an ILK/PI3K/Akt pathway, leading to
up-regulation of self-renewal capacity in CSCs. This
activation is further increased by hypoxic microenviron-
ment [87]. Altogether, mechanical signals and physical
features from the microenvironment influence many
fundamental traits of CSCs. Future work on means to
manipulate the mechano-stimuli from ECM, either
through genetic perturbations or carefully designed ex-
perimental approaches are therefore crucial to provide
new insights in CSCs biology.
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Conclusion and perspective
Cancer is an exceptionally complex and robust disease.
The diverse genetic and epigenetic alterations, along
with the interaction between cancer and the surrounding
microenvironment mark the tumor heterogeneity. In this
review, we discussed various features that install self-
renewal in CSCs and how CSC plasticity fuels intra-
tumor heterogeneity. Delineating features surrounding
these processes will enable researchers to understand
the complex signaling mechanisms that underlie the CSC
state. Although we have come to understand important
aspects of CSC biology there is still a tremendous gap in
our knowledge, particularly in how we can optimally
model the nature of the tumor microenvironment, in-
cluding the three-dimensional (3D) cell-to-cell contact,
cell-matrix contact and the multi-cellular components,
such as stromal and immune cells. So far, researchers
have traditionally relied on the use of two-dimensional
(2D) cancer cell line as a source to model cancer. The
failure to capture components of the microenvironment
in this model has been perceived as a determining factor
for the disappointing success rate of novel drugs in
oncology [88]. The recent switch to primary patient-
derived cancer material and the development of 3D cul-
ture with the use of Matrigel® has significantly improved
such models and shown to better recapitulate intra-
tumor heterogeneity [89]. Despite a poorly defined com-
position, this matrix has shed tremendous useful insight
on tumor biology and enabled high throughput screening
[90]. However, despite a clear improvement, current 3D
cultures normally do not include supportive cells normally
present in the tumor. In addition, the matrix composition
and rigidity are not the same as in cancer. With this in
mind, the future development of cancer models ideally
should accommodate the heterogeneous components of a
tumor. For instance, co-culture of patient’s own cancer
and stromal cells in specialized scaffolds representing
ECM physical features will definitely open up novel
insight into CSC biology and may provide crucial insight
to develop CSC-specific therapies.
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