
Beard et al. Int J Health Geogr           (2018) 17:38  
https://doi.org/10.1186/s12942-018-0157-5

REVIEW

A systematic review of spatial decision 
support systems in public health informatics 
supporting the identification of high risk areas 
for zoonotic disease outbreaks
Rachel Beard1,2, Elizabeth Wentz3 and Matthew Scotch1,2* 

Abstract 

Background: Zoonotic diseases account for a substantial portion of infectious disease outbreaks and burden on 
public health programs to maintain surveillance and preventative measures. Taking advantage of new modeling 
approaches and data sources have become necessary in an interconnected global community. To facilitate data col-
lection, analysis, and decision-making, the number of spatial decision support systems reported in the last 10 years 
has increased. This systematic review aims to describe characteristics of spatial decision support systems developed 
to assist public health officials in the management of zoonotic disease outbreaks.

Methods: A systematic search of the Google Scholar database was undertaken for published articles written 
between 2008 and 2018, with no language restriction. A manual search of titles and abstracts using Boolean logic and 
keyword search terms was undertaken using predefined inclusion and exclusion criteria. Data extraction included 
items such as spatial database management, visualizations, and report generation.

Results: For this review we screened 34 full text articles. Design and reporting quality were assessed, resulting in a 
final set of 12 articles which were evaluated on proposed interventions and identifying characteristics were described. 
Multisource data integration, and user centered design were inconsistently applied, though indicated diverse utiliza-
tion of modeling techniques.

Conclusions: The characteristics, data sources, development and modeling techniques implemented in the design 
of recent SDSS that target zoonotic disease outbreak were described. There are still many challenges to address dur-
ing the design process to effectively utilize the value of emerging data sources and modeling methods. In the future, 
development should adhere to comparable standards for functionality and system development such as user input 
for system requirements, and flexible interfaces to visualize data that exist on different scales.
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Introduction
The current global population of 7.6 billion persons is 
expected to reach 9.8 billion by 2050 with an increasing 
number living in high density urban areas. The combi-
nation of high population density with increased global 
mobility of the human population potentially leads to 
growing exposure to dangerous zoonotic diseases. Tech-
nological advances, however, offer the opportunity to 
better understand patterns of disease spread, underly-
ing conditions, and distribution of vulnerable popula-
tions. Spatial decision support tools can equip heath care 
officials with the data, analytics, information, modeling 
capacity, and visual tools to effectively make decisions 
and policy recommendations to improve public health 
outcomes. However, the literature shows that there have 
been missed opportunities, false starts, and gaps in the 
development of such tools. This paper identifies the 
strengths and challenges of spatial decision support sys-
tem in public health informatics through a systematic 
literature review and offers insights on the significant 
advances, best practices, and gaps in knowledge.

Background
Zoonotic diseases are a prominent concern in public 
health, with the rise or reemergence of disease-causing 
pathogens such as Middle Eastern Respiratory Syndrome 
(MERS), Ebola virus, Zika virus, West Nile virus (WNV), 
and numerous influenza strains across the globe [1, 2]. 
Transference from animal reservoirs to the human pop-
ulation is a concern among populations of mingling and 
mobile species across various geographic scales [3, 4]. 
Approximately 60% of all human pathogens that nega-
tively impact overall population health are derived from 
animals and a new emerging disease manifests approxi-
mately every 8  months [5, 6]. With each new introduc-
tion, it has been found that 60–80% of documented 
emerging infectious diseases originated in animals [7].

In the United States, the federal government and indi-
vidual states conduct surveillance of infectious diseases 
but are limited in the scope of their analyses due to avail-
able data, resources and training, which is intensified by 
the growing development and application of informatics 
techniques. This development includes the introduction 
of digital disease surveillance systems such as HealthMap 
[8] which provides visualization of current disease out-
breaks detected through data aggregation of online data 
sources such as ProMED [9], RSS feeds, Twitter and news 
reports using automated datamining [10]. Traditionally, 
surveillance of clusters of at risk areas has been passive, 
as agencies rely on case reporting by clinicians, laborato-
ries, and the public. Reportable disease data constitutes 
a suspected or infected case and addresses: who, what, 
when, and where did the infection occur. Identification 

of high risk-areas or clusters of disease outbreak using 
digital data as a means of early warning and prevention 
is gaining traction as public health practitioners have 
compared local surveillance network performance with 
tools such as HealthMap in order to assess utility as a 
supplementary tool [11]. Other emerging sources of data 
by which outbreaks are assessed in this modern era are 
drawing on genetic data, primarily to identify viral strain 
types and to assess pathogenicity. These data enable pub-
lic health practitioners such as epidemiologists to study 
the infectious agent itself, often using results from local 
laboratory strain typing and sequencing efforts [12]. 
Other fields such as molecular epidemiology, landscape 
epidemiology and phylogeography have demonstrated 
the value of incorporating infectious disease genetics 
and spatial analysis to address ad hoc population health 
research [13–17].

Recent literature indicates that public health officials 
have begun to address disease surveillance by incorpo-
rating spatial and temporal components of reportable 
disease data to model outbreaks and using geographic 
information systems (GIS) [18]. These methods include 
statistical and GIS software to produce disease maps 
using an array of data types such as clinical, the physical 
environment, or human mobility data to identify out-
breaks or disease clustering. However, here has been lit-
tle focus on employing these approaches by local health 
departments (LHDs) for differentiating strains of circu-
lating zoonotic viruses, though the opportunity to do so 
is growing with the increasing amount of genetic data 
being generated via Next Generation Sequencing (NGS), 
and public sequence databases such as GenBank and the 
Influenza Research Database (IRD) [19, 20].

While the application of GIS and spatial statistics has 
advanced visualization and decision-making capabili-
ties for disease detection, similar technological advances 
have been introduced and merged into integrated sys-
tems in other informatics related fields called a spatial 
decision support systems (SDSS). SDSS emerged from 
the more general decision support systems (DSSs), 
used widely across public health, governance, and envi-
ronmental management fields. For example, electronic 
health records (EHRs) can incorporate DSS to assist 
medical staff with a variety of tasks such as treatment 
plans or alerts of contraindications in medications [21]. 
SDSS are computer-based systems that allow decision 
makers to take advantage of available data to solve spa-
tially related problems in a more dynamic and integrated 
interface that allows for data organization, analysis and 
visualization [22]. Implementation of such systems have 
the potential to facilitate public health decision makers 
with many tasks from detecting high risk locations for 
influenza outbreaks, or distribution of medical facilities, 
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vaccines and staff based on the affected population dis-
tribution [23, 24]. While technology and analytical soft-
ware has become more sophisticated, a movement to 
enable decision makers to more fully explore available 
data to develop actionable and evidence based planning 
has grown [25].

The term spatial decision support system was first 
introduced in a series of conference proceedings from 
1983 to 1985 by Jerome Dobson, in addition to Hopkins 
and Armstrong respectively [26, 27]. There are a few 
examples of prototype SDSS projects that predate the 
term, such as IBM’s GADS (Geodata analysis and dis-
play system) which allowed users to analyze and display 
geographic data [28]. However, for many years SDSS 
remained in a developmental phase in which decision 
support systems and GIS techniques were integrated 
into a more cohesive framework. The 1990’s saw the 
rise of SDSS that were frequently built using Esri’s Arc-
GIS software, often to demonstrate proposed architec-
tural designs. The first implementations of modern SDSS 
occurred in the early 2000’s and continue today, which 
take advantage of advances in the world wide web that 
allows for web-services, data warehousing and advanced 
analytical processing [29].

Features that differentiate SDSS from other related sys-
tems, including clinical decision support tools, and GIS 
software are derived from the complex decision-making 
process all users engage in across multiple fields. Public 
health practitioners consider data such as reported cases, 
demographics, recent exposures, location and many 
other aspects while managing potential and current dis-
ease outbreaks. Due to scenarios of this complex nature, 

spatial problems have been referred to as “semi-struc-
tured” because they cannot be fully articulated, nor are 
the procedures carried out in a decision making process 
consistent from one investigation to the next [30]. Often 
decision-making software focuses on developing tools 
for a pre-defined decision-making process, which are 
often too constricting. Instead, early in the introduction 
of SDSS, Densham [30] emphasized that highly adaptive 
tools within a problem solving environment are needed. 
Since this time, the characteristics of modern SDSS 
have been defined by Sugumaran and DeGroote [29]. 
These characteristics, which include the ability to per-
form spatial analysis, visualization, and multiple scenario 
evaluation all within the same system have increased in 
popularity in the past decade as indicated by published 
literature using the term in PubMed (Fig. 1).

Several example SDSS reported in the literature that 
are intended to aid public health decision makers in situ-
ations ranging from capacity analysis for local hospital 
beds to national preparedness for influenza outbreaks. 
Many recently developed systems web-based surveillance 
systems or platforms, though some are distributed as 
software packages. Functionality often includes geo-visu-
alization of observed disease cases or outbreaks, to assist-
ing in the actual decision to be made such as distribution 
of vaccination supplies [31, 32]. For example, Huang 
et al. [33] developed a SDSS for risk assessment of airline 
travel on global disease outbreaks. This tool was intended 
to aid the decision process, readily quantifying and com-
paring risk levels to assist end users with targeting prior-
ity routes in terms of prevention of spread, or mitigation 
efforts. In contrast, Bouden et al. [34] developed a system 

Fig. 1 Number of papers that mention spatial decision support system by year in PubMed
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that provided users with a geosimulation functionality, 
allowing them to manipulate outbreak model parameters 
such as climate to aid decision makers in visualizing the 
progression of infectious disease distribution. However, 
the differences among recently developed systems is not 
well understood, including the use of development tech-
niques, data sources and evaluation procedures.

A prominent complaint in literature reviews of SDSS 
is the inconsistency of end user involvement [35]. This 
is problematic in many respects because there are many 
considerations for software design, such as available 
technology and display capability, training, and knowl-
edge of the decision-making process. While the potential 
and intention behind the design of many decision sup-
port systems is laudable, previous research has found 
these principles are inconsistently applied in the design 
of SDSS and related surveillance tools targeting public 
health users [36].

An attractive aspect of SDSS are their integrative 
capability to draw on many different sources of data, to 
relieve much of the organizational burden from the end 
user. However, inclusion of data sources for a given task 
are becoming increasingly difficult to address the full 
range of potential contributing factors using established 
methods. For surveillance tasks and analysis, common 
methods employ manually curated data that is processed 
using GIS and statistical software. As surveillance has 
become increasingly multidisciplinary, there is demand 
for access to more data and analytical tools [37]. As such, 
the online community has begun facilitating the acqui-
sition of various types of data for analytical purposes by 
creating online repositories of data with various states of 
organization. Integrating these types of sources is imper-
ative to fully explore all contributing factors to zoonotic 
disease. Additionally, recent SDSS have allowed for auto-
mated integration of data collection from multiple rele-
vant sources such as hospitals, laboratories and physician 
reporting.

In this systematic review, we differentiate the charac-
teristics of recently developed SDSS designed to aid pub-
lic health practitioners in the identification of high risk 
areas for zoonotic disease outbreaks. While other litera-
ture has summarized the various forms of visualization 
and analytic tools targeting zoonotic disease, focusing 
on SDSS development allows for a better understanding 
of an emerging type of tool that has the potential to bet-
ter integrate data for modeling and analytical processes 
to aid decision making. This is important as public health 
officials continue to rely on more sources with the rise 
of new online databases and newsfeeds for surveillance, 
thus increasing the complexity and cognitive load.

The objectives of this systematic review were to:

• To identify and describe current spatial decision sup-
port systems developed for identifying zoonotic dis-
ease outbreaks in the public health sector.

• To identify the underlying modeling techniques and 
predictors used in the development of the identified 
spatial decision support systems.

Methods
Selection of studies
To identify articles covering the recent advances in SDSS, 
we chose to utilize the guidelines for systematic reviews 
provided by the PRISMA statement [38]. To identify 
potential articles, we searched the Google Scholar data-
base using Boolean logic to combine key terms described 
in Table 1 and limited the years of observation from Janu-
ary 1, 2008 to August 31, 2018. The search was performed 
independently by two researchers, using the Endnote ref-
erence manager to document all citations. Once dupli-
cates were removed, titles and abstracts were screened, 
and discrepancies were resolved through mutual agree-
ment. A final screening of full manuscripts was carried 
out, whereby inclusion and exclusion criteria were used 
to identify the final set of articles by two reviewers.

Inclusion and exclusion criteria
For a prospective article to be considered, the subject 
of the title and abstract had to describe the develop-
ment and implementation of an SDSS designed to aid the 
decision-making process to manage a zoonotic disease 
outbreaks capable of spatial modeling. However, we did 
consider the article if it described a tool that was devel-
oped to address reportable infectious disease generically 
and was inclusive of zoonotic diseases. The main inter-
vention the SDSS had to address was the identification of 
high risk regions for disease transmission or outbreaks. 
As the primary concern of this article is to enhance the 
current understanding of tools available to support public 
health decision making, we only included those articles 

Table 1 Columns A, B and  C indicate interchangeable 
terms combined using AND/OR

Example search terms: (spatial online platforms) and (zoonotic disease) and 
(outbreak detection)

Column A Column B Column C

Spatial decision support 
systems

Public health High risk areas

Spatial online platforms Zoonotic disease Outbreak detection

Mapping tool Infectious disease Cluster detection
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that studied human or animal populations. We excluded 
any summaries or reviews written about current SDSS, 
in addition to articles which proposed SDSS frameworks 
yet to be implemented. Any articles that did not develop 
an SDSS in which the intended users were professionals 
such as epidemiologists, veterinarians, wildlife biologists, 
or other similar positions were excluded. Any SDSS that 
were developed to manage other health conditions exclu-
sively such as cardiac disease, diabetes, obesity, or emer-
gency care were not considered. We also excluded the 
article if it described a system that did not include fully 
integrated spatial visualization and modeling capabilities 
through a user interface. Articles which described tools 
developed specifically for mathematical modeling of out-
breaks or other events alone, and not in conjunction with 
decision-aid functionality for public health professionals 
were excluded. Systems which were developed to moni-
tor and maintain a database of current zoonotic disease 
reports were also not considered. A full description of all 
criteria are summarized in Table 2.

Assessment
For each article that met our inclusion criteria, we 
reviewed the entire text in addition to tables, figures 
and supplementary material. For the review process, 
we first evaluated the quality of each publication using 
a scoring methodology (MMAT) approved for use in 
systematic reviews. This tool first applies screening cri-
teria for any type of study to confirm whether there are 
clear objectives and whether the collected data allowed 
the researcher(s) to address the objective. Studies which 
passed the initial screening question were then further 
evaluated based on study type (quantitative, qualitative, 
or mixed methods) using a ranking system to answer 
specific questions (see Fig. 2), with either: yes, no, unable 
to tell, or not applicable similarly to Fournet et  al. [39] 
(each response was ranked as 4, 3, 2, 1 respectively). The 
Template for intervention description and replication 
(TIDieR) checklist was then used to evaluate each of the 
full texts that passed the MMAT screening for complete-
ness in addressing the intervention proposed as a means 
of qualitative synthesis [40]. The TIDieR was published in 

2014 to extend the CONSORT and SPIRIT statements, 
and can be applied to all evaluation study designs [41]. 
This checklist covers topics including naming the specific 
intervention, why, what, who, how, where, and when.

General descriptions of the final set of articles are doc-
umented in excel, including the target disease or diseases, 
the target population at risk, and the geographic cover-
age, and data sources and types used for identifying areas 
at risk for outbreak. To compare each SDSS in terms 
of modeling capability, we documented and described 
eight necessary characteristics of a SDSS as identi-
fied by Sugumaran et al. [29]. These include spatial data 
management/analysis, visualization, report generations, 
interactive problem solving, spatial modeling, semi struc-
tured problem solving, scenarios evaluation, and easy 
user interaction.

Results
Screening results
After duplicates were removed from search results and 
inclusion/exclusion criteria were applied to title and 
abstract screening, 75 articles were subject to full text 
review. We then screened each full article for inclusion/
exclusion criteria and reduced the final set to 34 arti-
cles. Of those remaining, all articles selected described 
SDSS development intended for public health officials 
as end users which focused on identifying at risk areas 
of infectious disease outbreaks. The full screening pro-
cess is summarized in Fig. 3. The final set of articles were 
published evenly throughout the selected time-period of 
2008–2018, with a decreasing trend towards the end of 
the study period. See Additional file 1 for a basic descrip-
tion of all articles [8, 23, 24, 31–34, 42–109] that under-
went full text review, with reasons for exclusion.

Qualitative assessment
Quality filtering
Of the final 34 articles identified after full text screening, 
22 did not meet the MMAT screening criteria by address-
ing a specific objective or research question that could be 
readily quantitatively or qualitatively assessed (see Addi-
tional file 2 and Fig. 4). The articles which could not be 

Table 2 Inclusion and exclusion screening criteria

Inclusion criteria Exclusion criteria

System targets zoonotic diseases or infectious diseases generically, but inclusive of 
zoonosis

Systematic/scoping review of surveillance systems

Performance of spatial modeling Does not address decision support for public health officials

Intervention is to identify at risk areas for outbreaks Non-implemented system, modeling only

Human and animal health only No user interface with spatial visualization built into system

Database of zoonotic or infectious disease

Monitoring system for disease cases only
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Fig. 2 Distribution of studies selected for full text evaluation by publication year

Fig. 3 PRISMA diagram featuring article selection and screening process. All papers were selected based on inclusion and exclusion criteria 
described in Table 2, a detailed explanation of papers excluded with reasons are provided in Additional file 1
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fully evaluated using the MMAT generally reviewed the 
development and implementation of an SDSS, while 
a few also described a case study (n = 4), a simulation 
study (n = 3), and a pilot study (n = 1). Of those stud-
ies fully evaluated using the MMAT (n = 12), three were 
qualitative, seven were quantitative, and 2 were mixed 

methodologies. The average MMAT score for the final set 
of 12 articles was 87.5%.

Quality of interventions description
The papers that passed the MMAT screening ques-
tions were also assessed using the TIDieR checklist to 

Fig. 4 Results of qualitative assessment using the MMAT tool. All papers included in the full text review were subject to the MMAT review, 22 of the 
34 papers did not pass the initial screening questions and were not subject to further evaluation

Fig. 5 TIDieR checklist criteria results
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determine if the proposed intervention was adequately 
described (see Fig.  5 and Additional file  3). All studies 
addressed most items on the checklist, all with a similar 
intervention to develop a spatial decision support system, 
though with some variations to address high risk areas 
for outbreaks and methodology. Rationales behind devel-
opment varied from visualization of space time events, 
detection, monitoring or prediction of disease clusters 
or epicenters, or more specific tasks related to targeting 
regions for disease elimination or management. All but 
one [73] article described the intervention as effective, 
either through sensitivity (n = 3), significance (n = 3), or 
percentage (n = 2) evaluations on ability to identify at 
risk areas for outbreaks, in addition to user access traf-
fic (n = 2), and user feedback on usability or usefulness 
(n = 5).

Evaluation of selected SDSS
General descriptions
The selected SDSS are described briefly in Table 3 (also 
see Additional file  4). SDSS were developed predomi-
nantly as desktop applications, while four were web-
based and one was undetermined. Half of the systems 
were capable of real or near real time surveillance data 
(n = 6) while the remaining systems were retrospec-
tive. Common practices described during development 
included data preprocessing, cleaning, or aggregation. 
Aggregation was often applied to climactic or environ-
mental predictors for which finer geographic resolution 
was available, compared to other data sources. Other dif-
ficulties in combining data included differences in storage 

format, naming conventions, or data relationships from 
various sources and health organizations. Many studies 
described methods to address integration issues, though 
most did not give specifics.

Target disease, population, and geographic coverage
Further examination revealed an array of individual or 
groups of diseases targeted by the selected studies. Most 
commonly, a system was developed with the intent of 
being used for monitoring a single disease (n = 7), while 
those remaining were inclusive of several reportable 
infectious diseases (n = 5) for a given study area. Many of 
the reviewed SDSS were developed such that the interna-
tional (n = 2) community could potentially utilize them, 
or a specific country (n = 7). A smaller proportion (n = 3) 
focused on a specific region, state or province. All but 
one of the reviewed systems focused on human centric 
health outcomes (Table 4). 

Data types and sources
We found that most systems relied on case related data 
(n = 9) and most frequently was provided by National 
health departments (n = 7). Case reporting was some-
times combined with other data types (n = 4), though 
nearly half (n = 5) utilized case reporting data alone. 
Overall, combining multiple data sources was slightly 
more common (n = 7). In several instances we found that 
SDSS often integrated individual reporting, climactic, 
environmental, or remote sensing data. Less common 
data sources included drug sales [43], citizen reporting 
and social media data [57, 64]. A small subset allowed the 

Table 3 Articles selected for inclusion for systematic review

Article numbers assigned refer to the associated SDSS, and will be used to refer to specific papers in later tables

Article 
number

First author Tool Year Intervention

1 Ali ID-Viewer 2016 Development of visual analytics decision support system for data acquisition, 
analysis, and visualization for surveillance tasks

2 Bui Unnamed online analytical tool 2016 Development of web-based integrated system for malaria surveillance

3 Carney DYCAST 2011 Development of early warning system for West Nile virus outbreaks

4 Chen Unnamed online analytical tool 2016 Development of online platform to monitor dengue fever

5 Delmelle H.EL.P. 2011 Development of decision support system for practitioners to understand 
disease dynamics

6 Gesteland EpiCanvas 2012 Development of interactive visualization system for disease surveillance

7 Guo OSCAR 2017 Development of framework to integrate spatial analysis, and data aggregation

8 Iannetti SIMAN 2014 Integrated web support system in veterinary epidemic emergencies

9 Kelly SDSS 2013 Development of a surveillance response system for Malaria elimination

10 Rao SEARUMS 2008 Development of modeling tool to study avian influenza outbreaks, for scenario 
analysis and visualization

11 Vanmeule-brouke HIV/AIDS tool 2008 A system to explore hypothesis testing though data integration and visualiza-
tion to manage HIV/AIDS

12 Wangdi SDSS for malaria elimination 2016 Development of spatial decision support system to aid malaria elimination
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user to upload data into the system (n = 2), and several 
SDSS allowed near real time automated data integration 
with local or national health agencies. One employed web 
crawling services to automatically update data in near 
real time from public online databases or resources [64] 
(Table 5).

Summary of core SDSS characteristics
Spatial database management
An overview of results for the review process in which 
each SDSS was evaluated based on the inclusion of the 
eight core functionalities are presented in Table  7. For 
the first core functionality, all systems described the 
inclusion of spatial database management, however the 
specific system could not be identified in four instances. 
ArcGIS and PostgreSQL were the most frequently used 
management system, open source GIS software such as 
QGIS while others utilized database management soft-
ware such as MySQL in combination with map visualiza-
tion tools such as OpenLayers and Google Maps.

Visualization
All systems were built as an application with integrated 
mapping capability that was developed for user interac-
tion. All SDSS provided similar layouts that included a 
menu bar at the top, in addition to panels and or tabs that 
could be navigated to produce different displays includ-
ing maps, analysis parameters, results, file management, 
analysis, or summaries. Most base maps were choropleth 
in nature and allowed overlays or color themes that iden-
tified areas of interest. These overlays were often points 
or circles to draw the user’s attention to georeferenced 

outbreak data. Other raster format layers representing 
demographic data, landuse, or climactic data were com-
mon. Less common overlays included simulations of net-
works of disease spread.

Report generation
While all SDSS were capable of displaying maps, most 
applications provided a means to generate tables or 
charts with summaries of the data or analyses being 
conducted. Often reports were available in a sepa-
rate panel or tab within the user interface. A variety 
of graphs were used, ranging from pie charts for illus-
trating concepts such as proportions of case reports 
by region, tables summarizing analysis results, to bar 
or line graphs often used to present time-series data. 
Those SDSS which followed a web application format 
often took advantage of services such as HighCharts, 
which allow the developer to produce interactive charts 
within webpages.

Interactive problem solving
A variety of built in functions were noted for all SDSS 
related to mapping, analysis, and graphing. Often the 
interface allowed the user to adjust or remove layers to 
customize the spatial visualization in addition to zoom-
ing, color themes, legend display, select region etc. When 
the user performs an analysis, SDSS commonly allowed 
user selection of species or disease (if more than one 
available), timeframe, region of interest, model parame-
ters, covariates to include, or graphical output format. In 
a few instances, an SDSS was capable of several different 
types of outbreak detection and prediction analysis [43, 

Table 4 Targeted diseases for selected SDSS

Article 1 2 3 4 5 6 7 8 9 10 11 12

Disease targeted

 Infectious disease ✓ ✓ ✓ ✓
 Malaria ✓ ✓ ✓
 West Nile virus ✓
 AIDS/HIV ✓
 Animal disease ✓
 Dengue virus ✓
 Influenza ✓

Target population

 Human ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
 Animal ✓

Geographic region

 International ✓ ✓
 Country ✓ ✓ ✓ ✓ ✓ ✓ ✓
 Regional ✓ ✓
 State or province ✓
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48, 83], or allowed for simulations of disease outbreaks 
[34].

Spatial modeling capability
Most commonly choropleth maps were produced for 
model visualization, often identifying areas in which out-
breaks of disease were identified or predicted. Risk maps 
were not always conceptualized in the same way rang-
ing from clustering, disease activity levels, at-risk house-
holds to population density. Many SDSS were capable of 
also modeling disease distribution, identifying locations 
of individual cases, or zones of high risk. In one instance 
transmission routes or disease origins and destinations 
over a given time frame were modeled within a network 
to identify high risk nodes [33, 73]. Several spatial and 
non-spatial analytical techniques were used to develop 
the set of SDSS, often allowing the user to choose 
between multiple options including spatial scan statistics, 

data mining algorithms, susceptible, infected, recovered 
(SIR) models, Moran’s I, Knox test, and linear regression 
(see Table 6 for a summary).

Semi structured problem solving
Not all end users would necessarily utilize the same 
methods in designing a particular SDSS, apart from ana-
lyzing outbreaks, as such most SDSS allowed the user 
to control the analysis and modeling process in several 
ways. The user could often tune parameters used in the 
modeling process such as timeframe in which the model 
was constructed, search radius, predictors, or data 
sources. Furthermore, some studies allowed the user to 
query, add to, or modify the database [24, 80, 88]. Addi-
tionally, these SDSS often allowed the user to select from 
different map layers, or graphics to model an outbreak 
situation to their specifications and could be manipulated 
by zooming, panning, or feature section.

Table 5 Data types and sources utilized in the described SDSS

Article 1 2 3 4 5 6 7 8 9 10 11 12

Data type

 Confirmed case reports (human) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
 Confirmed case reports (avian) ✓ ✓
 Animal distribution ✓ ✓
 Drug sales ✓
 ED chief complaint ✓
 Animal mortality ✓
 Sanitation amenities ✓
 Temperature ✓
 Rainfall ✓
 Environmental data ✓ ✓
 Citizen notification ✓
 Human population ✓
 Animal population ✓
 Remote sensing ✓
 Demographic data ✓ ✓ ✓ ✓

Data sources

 Local hospitals ✓ ✓ ✓
 Local pharmacies ✓
 Local health department ✓ ✓
 National health department ✓ ✓ ✓ ✓ ✓ ✓ ✓
 International health agency ✓
 Census reporting ✓ ✓ ✓
 Satellite imagery ✓
 Social Media ✓
 Citizen reporting ✓
 Open source database

 News reports ✓
 User input ✓ ✓
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Scenario evaluation
A lot of the same features mentioned for semi structured 
problem solving also allow the user to iteratively model 
an outbreak situation to the users’ satisfaction. This is 
evident through iterative modeling for a given scenario 
using different data sources, parameters, or map specifi-
cations. A small set of studies incorporated methods to 
compare different models, as Ali et  al. [43] allowed the 
user to compare two evaluations for a given outbreak 
side by side, which utilized different predictors or chart 
predicted versus observed outbreak data. Another study 
provided a feature to simulate the results of different 
mosquito spraying interventions to prevent diseases such 
as West Nile virus [34].

Easy user interface
All systems provided a graphical user interface that inte-
grated mapping for spatial modeling visualization, and 
options to produce a variety of graphs or tables to aid 
the decision-making process either in a desktop or web 
application format. However, there were few studies that 
included a mechanism to assess user satisfaction to deter-
mine ease of use. A total of five studies included details 
of a usability evaluation and discussion. Evaluations were 
carried out by interviewing or surveying the user after 
performing set tasks. Surveys were either custom made 
or an industry standard such as the System Usability 
Scale [110]. Less direct methods of measuring ease of use 
included tracking user system accesses and usage, and 

percentage of target user utilization. Several studies indi-
cated usability was addressed during the design process 
by consulting with potential users on needs and require-
ments, though follow up evaluation was inconsistent.

Table  7 describes the major characteristics of SDSS’ 
evaluated here, by summarizing themost common 
method by which each characteristic is incorporated, and 
possible formats, or methods.

Discussion
General features
In our review, we found a large amount of diversity in 
design and scope regarding study areas targeted by recent 
SDSS. The systems observed here were developed by 
smaller research teams at individual institutions, as well 
as by government divisions throughout the world to 
address the concerning zoonotic disease developments 
and spread which have increased in recent years. Several 
SDSS built for smaller regions relied on local data sources 
and reporting, whereas those developed to be more gen-
eralizable used more public data sources. These findings 
highlight a common problem wherein systems are devel-
oped in isolation and rely on locally collected and curated 
data.

Fortunately, the trend in the data presented here indi-
cates most systems are developed to address numer-
ous diseases over large regions, entire countries, or the 
entire globe. Those systems that are more geographically 
inclusive have the potential to address a range of decision 

Table 6 Summary of visual and statistical modeling techniques utilized by selected SDSS

Article 1 2 3 4 5 6 7 8 9 10 11 12

Spatial visualization modeling

 Buffered zones ✓ ✓ ✓
 Point or polygon overlay ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
 Choropleth maps ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
 Heat/density/risk maps ✓ ✓ ✓ ✓

Spatial statistics modeling

 Spatial scan ✓ ✓ ✓ ✓
 Spatial autocorrelation algorithms ✓ ✓
 Space–time k-function ✓ ✓
 Knox test ✓ ✓
 Network modeling ✓
 k-nearest neighbor ✓ ✓

Non-spatial statistics modeling

 Correlation ✓
 Anomaly detection ✓
 Support vector machine ✓
 Bayesian model ✓✓
 SIR model ✓
 Regression ✓ ✓
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making needs of public health officials who are often 
faced with a variety of outbreak threats from surround-
ing environments. This universal approach reduces the 
necessity to have multiple tools that perform similar or 
redundant tasks.

Core SDSS functionalities
For each of the core functionalities, studies often pro-
vided enough detail to determine specific details 
regarding architectural design that allow visualization, 
reporting, problem solving etc. and implementation. 
Throughout the history of SDSS development, there has 
been a heavy reliance on proprietary, standalone GIS 
[111]. Beginning with open source GIS distributions such 
as GRASSGIS, the last 10–15 years have seen a remark-
able expansion in the availability of open source soft-
ware such as statistical packages, web mapping services, 
and others which have shifted the focus on client–server 
architecture to a web services model in newer SDSS 
[111]. The results here indicate that the availability of 
new tools to aid SDSS development are diversifying what 
software is used to produce the final product, ranging 
from desktop applications integrating one of many GIS 
with spatial database management to the implementation 
of web application frameworks that utilize open source 

database management systems (PostgreSQL, MySQL, 
etc.) with mapping services such as OpenLayers. Also 
reflected are a large variety of analytical tools or algo-
rithms that can be packaged for use in a variety of sys-
tems for a similar purpose, or complementary analysis. 
For instance, Kulldorff’s spatial scan statistic software 
[112], k-nearest neighbor and support-vector machine 
learning models were implemented in just one SDSS 
reviewed here.

Many of the reviewed studies were less consistent in 
describing or performing model evaluations, obtain-
ing stakeholder requirements, pilot studies, or usability 
testing. Several studies described their system as user 
friendly [23, 48, 49, 51, 64, 106, 107, 113], though not all 
performed an evaluation or even approached the topic in 
the same way. Most studies utilizing this term referred to 
usability testing, which was often followed with robust 
evaluation methods. However, other studies used the 
term in reference to ease of configuration with other soft-
ware, or visual displays that were esthetically appealing 
without providing details of user participation to evalu-
ate these claims. Despite this, it is noteworthy that usabil-
ity metrics mentioned within the selected articles do not 
necessarily evaluate all aspects that potentially contribute 
to ease of use.

Table 7 Summary of finding for SDSS core functionalities

Characteristic Description Most common method Less common methods

Spatial data management GIS based management systems that 
can organize and analyze spatial 
data

Unspecified (n = 4) ArcGIS, Google maps, OpenLayers, 
QGIS, PostgreSQL, hBase, MySQL

Visualization Visualization through maps, graphs, 
tables

Choropleth (n = 12) Point layers, count overlays, panels, 
buttons, data entry fields, menu

Reports Summary of scenario or analytical 
process, may be graphical, maps etc.

Mapping (n = 12) Map, table, chart, statistic summary, 
network graph

Interactive problem solving Environment which allows the user to 
explore the possible solution space 
for a given problem, allowing inter-
action within the problem-solving 
environment

Select area of study(n = 6) Select species, timeframe, covariates, 
color theme, graph views, radius 
selection, query fields

Spatial modeling capability Availability of spatial/non-spatial 
modeling packages

Clustering(n = 5) Clustering, risk mapping, anomaly 
mapping, disease spatial distribution, 
networks of disease

Semi structured problem solving Problems that are ill defined, but can 
accommodate imposed restrictions 
and user preferences

Adjust analysis parameters (n = 12) Explore disease network, choose 
summary statistic, user selection of 
model parameters

Scenario evaluation Decision support utilities that allow 
scenario analyses through iterative 
analyses

Adjust distribution display (n = 12) Track different species, transmis-
sion route or outbreak simulation, 
generation of actionable suggestion, 
distribution of cases/clusters

Easy User interface Interfaces that engage the user, and 
allow easy interaction

Usability testing (n = 5) Design consultation, mental mapping 
of tasks, feedback surveys, pilot 
study, usability, and usefulness 
testing
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Current data sources and future developments
Integration of disparate data sources has been a common 
theme in surveillance systems and decision support sys-
tems for public health surveillance [114]. To accomplish 
this, collections from local health practitioners, state 
departments, or government agencies may be joined 
such that reportable disease data are housed within the 
same framework that integrates sources such as media, 
genetic sequencing, socio-economic data, or other envi-
ronmental characteristics. However, integration of mul-
tiple data sources was not universal in recently developed 
SDSS reviewed here. Availability and utilization of social 
media, news, landscape, climactic, socio-economic data 
are reflected here, as several systems covered are inclu-
sive of these increasingly readily available data types, 
providing even more data to better understand what con-
tributes to disease spread and outbreaks. There are still 
many inequities in accessibility to resources globally that 
make collection and availability of data difficult, stratify-
ing health status and potential interventions by socio-
economic means and access to urban areas [115]. Limited 
resources to collect and organize data to develop effective 
surveillance systems is further impacted with difficul-
ties in combining datasets recorded for varying formats, 
quality standards, and reporting requirements [116].

Genetic sequencing and related bioinformatics tools 
and resources are an emerging data source which are 
not well represented in recent SDSS development. Open 
source genetic data repositories are increasingly more 
common, such as GenBank [19] and the IRD [20] which 
contain an abundance of pathogen sequences and rel-
evant metadata that present opportunities to enhance 
current practices. Utilization of sequencing to support 
epidemiological and disease prevention efforts have 
been demonstrated in recent epidemic events including 
the Ebola outbreak in west Africa from 2014 to 2015, in 
which genetic sequencing provided valuable information 
on the genetic diversity, to estimate how fast the disease 
spread and predict future transmission through phylo-
genetic analysis [117]. Likewise, Fraser et  al. found that 
transmission potential estimates derived from genetic 
sequencing were comparable to traditional epidemiologi-
cal estimates based clinical attack rates during the H1N1 
pandemic of 2009 [118]. While these developments show 
great potential for the use of bioinformatic tools and 
resources in public health, the public sector has yet to 
take full advantage of genetic data driven tools. Despite a 
substantial amount of literature that documents the value 
of understanding the genetic variability of disease [119–
121], only three potential articles included in the screen-
ing process were inclusive of sequencing data but did not 
pass the inclusion criteria or quality filtering process [53, 
89, 95]. Complications for including sequencing data for 

zoonotic surveillance are largely due to limited resources 
or laboratory capacity to rapidly sequence emerging 
infections [121], and a unifying framework from which 
to integrate the phylogenetic patterns of an infectious 
agent and potential hosts [122], in addition to drivers of 
disease.

Understanding the phylogenetics of a disease in con-
text with the spatial distribution, environmental charac-
teristics, and potential hosts, assists in the identification 
of geographic areas that drive zoonotic disease spread 
and circulation. Ge et  al. [123] compared methodolo-
gies for H5N1 avian influenza outbreak identification 
derived from three different fields including phyloge-
netics, spatial statistics, and epidemiological analysis of 
socio-ecological determinants of disease such as human 
and avian population density, migration routes, railways, 
and inland water, which found that integrating all three 
serves to better corroborate observed occurrence and 
estimate ability to spread. Changes in human population, 
industrialization, global trade, and travel also play a key 
role in facilitating the introduction or discovery of novel 
pathogens throughout the world [124], and phylogenetic 
analysis facilitates tracing the spread of disease through 
human interactions [125]. Health agencies are now better 
able to respond to emerging zoonotic diseases through 
understanding how changes in the genome of a pathogen 
impacts disease risk and spread by identifying transmis-
sion routes, mutation rates, in conjunction with other 
epidemiological parameters of interest [3]. Substantial 
concern for potential pandemics due to transmission of 
zoonotic disease from animal to human populations such 
as avian influenza [126] has also prompted integration of 
animal phylogenetic analysis to better understand inter-
action and transmission which can aid management and 
preventative measures [127–129]. The need to develop 
an integrative approach necessary to  understand the 
emerging spatial patterns of zoonotic disease outbreak 
and spread has long been recognized, with the advent of 
movements such as “One Health” which call for a global 
strategy that is multidisciplinary to address the health of 
humans, animals, and the ecosystem [130]. Future devel-
opment should focus on assisting in the ease of access 
and integration of multiple data sources to achieve this 
goal.

Future directions
Data integration and availability still pose several chal-
lenges in the development of SDSS for zoonotic disease 
outbreak management, including variability among avail-
able sources such as scale, completeness, and timeliness. 
Potential data sources range from the microscopic to 
the global scale, necessitating data transformation and 
projection for appropriate analysis and visualization. 
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While georeferenced datasets describing environmen-
tal and climactic phenomena are more readily available, 
emerging genetic data sets present some challenges, as 
location of isolation are generally extracted manually 
from public records or publications. To address visuali-
zation of genetic sequence data, there have been efforts 
to extract geospatial metadata such as location and host 
from GenBank records, to ease automation of linking rel-
evant sequence data for spatial modeling of disease [131]. 
Efforts to model outbreaks within a decision support 
environment which integrate data collected on different 
spatial scales need to address automated data extraction 
and transformation such as aggregation of case reports, 
host population densities, and locations from which iso-
lates were sequenced for a region under study such that 
visualization of a multifaceted scenario is possible.

Sparsity in collected data across large geographic 
regions could also introduce uncertainty in results, lead-
ing to imputation or summarization methods to account 
for unobserved data. This is particularly a problem for 
genetic sequence data currently available, which does 
not cover regions comprehensively and geographic meta-
data may vary by location specificity, ranging from coor-
dinates to country [132]. Machine learning algorithms 
have been utilized in clinical decision support systems 
to address missing patient data to aid medical profes-
sionals with decision making [133], and may also prove 
useful in spatial decision support systems to address 
this limitation. Other approaches to documenting dis-
ease case reporting that have been increasingly utilized 
are social media, new sources and various forms of citi-
zen science. One SDSS reviewed here incorporated pub-
lic reports of disease morbidity to enhance surveillance, 
provided through a hotline or online submission. The 
advent of the mobile phone in an increasingly intercon-
nected digital age has given rise to a form of citizen sci-
ence aptly described by the phrase ‘Wikification of GIS 
by the masses’ (WGM) coined by Kamel Boulos [134], 
and later described as volunteered geographic informa-
tion (VGI) [135]. WGM is the specific embodiment of 
crowdsourcing approach in GIS [136]. WGM encom-
passes data contributions from citizens to bring local 
knowledge and spatial awareness on matters of interest 
into better focus. WGM is commonplace now in appli-
cations such as Google maps, and similar platforms have 
arisen to assist in disease surveillance such as Flu Near 
You [137, 138]. Recent literature has questioned the util-
ity of WGM for surveillance purposes, suggesting that 
crowd sourced reporting at the local level does not cor-
relate well with CDC records [138]. However, this citizen 
reporting through crowd sourcing can potentially com-
plement traditional data sources.

Timeliness of emerging genetic data sources are cur-
rently primarily used for retrospective study due to 
inability to perform sequencing locally during epide-
miological investigations, especially in regions of the 
world with limited resources and infrastructure. How-
ever, advances in near real time genetic sequencing may 
address this problem in the near future with the arrival 
of a portable sequencing instrument, which can produce 
sequencing results within a day of receiving a sample 
during on ongoing epidemic [139].

Future SDSS also need to better support existing public 
health surveillance practices, skills, resources and meth-
odologies [140]. Previous work indicates that LHD’s uti-
lize a wide variety of information systems for surveillance 
and identifying at risk areas in the United States alone, 
with little understanding of effectiveness [141]. Incorpo-
rating user centered design principles such as designing 
for the user tasks would allow more effective, efficient 
work within a user-friendly interface. Sutcliffe et  al. 
has previously described a design framework for visu-
alization decision support tools for epidemiology which 
incorporates user centered design [101]. They argue that 
to effectively translate data into actionable policy or pre-
vention measures, the software designers and end-user 
analysts must collaborate extensively. This approach has 
been implemented more consistently in clinical infor-
matics projects such as the design of electronic health 
records [142], though rarely in public health informatics 
[101]. The successful implementation of decision sup-
port tools is often limited to evaluations of the proposed 
system in which potential users provide valuable feed-
back, and frequently suffer from user dissatisfaction due 
to a mismatch in expectation, user knowledge of spatial 
analysis and other contributing factors [143]. While sev-
eral SDSS here did evaluate usability after system design, 
often without prior user input, our finding here indicate 
that improvements can still be made to better include 
potential users throughout the design process.

Limitations
To limit the possible number of comparisons to more 
dated methods and technology, we focused on more 
recent work and thus excluded articles prior to 2008. We 
also did not search all available databases, opting for the 
breadth of Google scholar which might have resulted in 
unique publications that were not available in individual 
databases.

Conclusions
The characteristics, data sources, development and mod-
eling techniques implemented in the design of recent 
SDSS that target zoonotic disease outbreak risk were 
highlighted. To take advantage of data collected on 
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zoonotic diseases and their geographic distribution for 
public health decision making, it is necessary to integrate 
current organizational and analytical methods employed 
into the development of novel systems. These approaches 
need to be grounded in epidemiological practice, to bet-
ter serve the end user’s objective. However, the systems 
described here often did not consistently or effectively 
address this important aspect. A focus on a cohesive 
methodology in the development of SDSS is needed to 
better address the needs of the user. As indicated here, 
there is a disconnect between many available systems 
and the end user as many of the recent designs and sys-
tem evaluations did not include public health officials, or 
interaction was not limited. Inclusion and better com-
munication with public health officials in the develop-
ment process is necessary going forward, in addition to 
ongoing training, planning for full implementation and 
distribution.

Data integration with new complimentary fields of 
study are also needed, such as incorporating genetics 
into zoonotic spatiotemporal surveillance approaches. 
This enables health agencies to consider not only tradi-
tional epidemiological data such as location and timing 
of reported cases but also the genetics of the virus that 
influence the virus’s ability to adapt as it spreads and pro-
liferates throughout an environment. Data quality and 
completeness will also need to be taken into considera-
tion during this process. Going forward with inclusion of 
new data sources will necessitate an increase in complex-
ity and connectivity between online resources and new 
public health SDSS in a streamlined manner, to reduce 
cognitive overload. Few of the SDSS described here have 
been widely distributed or consistently implemented by 
the greater public health community. Future systems that 
adopt these practices will potentially have better sup-
port from the target audience, resulting in continuing 
improvement of SDSS and prolonged use.
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