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Abstract 

Background:  Imbalanced data classification is an inevitable problem in medical intel-
ligent diagnosis. Most of real-world biomedical datasets are usually along with limited 
samples and high-dimensional feature. This seriously affects the classification perfor-
mance of the model and causes erroneous guidance for the diagnosis of diseases. 
Exploring an effective classification method for imbalanced and limited biomedical 
dataset is a challenging task.

Methods:  In this paper, we propose a novel multilayer extreme learning 
machine (ELM) classification model combined with dynamic generative adversarial 
net (GAN) to tackle limited and imbalanced biomedical data. Firstly, principal compo-
nent analysis is utilized to remove irrelevant and redundant features. Meanwhile, more 
meaningful pathological features are extracted. After that, dynamic GAN is designed 
to generate the realistic-looking minority class samples, thereby balancing the class 
distribution and avoiding overfitting effectively. Finally, a self-adaptive multilayer ELM 
is proposed to classify the balanced dataset. The analytic expression for the numbers 
of hidden layer and node is determined by quantitatively establishing the relation-
ship between the change of imbalance ratio and the hyper-parameters of the model. 
Reducing interactive parameters adjustment makes the classification model more 
robust.

Results:  To evaluate the classification performance of the proposed method, numeri-
cal experiments are conducted on four real-world biomedical datasets. The proposed 
method can generate authentic minority class samples and self-adaptively select the 
optimal parameters of learning model. By comparing with W-ELM, SMOTE-ELM, and 
H-ELM methods, the quantitative experimental results demonstrate that our method 
can achieve better classification performance and higher computational efficiency in 
terms of ROC, AUC, G-mean, and F-measure metrics.

Conclusions:  Our study provides an effective solution for imbalanced biomedical data 
classification under the condition of limited samples and high-dimensional feature. The 
proposed method could offer a theoretical basis for computer-aided diagnosis. It has 
the potential to be applied in biomedical clinical practice.

Keywords:  Imbalanced data classification, Limited biomedical samples, High-
dimensional feature, Multilayer ELM, Dynamic GAN
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Background
In the biomedical domain, machine learning techniques can make computer-aided diag-
nosis (CAD) [1] more intelligent in diagnoses of breast cancer, liver disorder, and other 
diseases. While imbalanced class distribution frequently occurs in real-world biomedi-
cal datasets, which causes the loss of essential pathological information from abnormal 
class [2]. Indeed, the misdiagnosis of abnormal class is more severe than that of a nor-
mal class in medical disease diagnosis [3]. Additionally, the training set sometimes con-
tains high-dimensional feature and small samples. These factors further result in a lower 
classification accuracy of abnormal class and incorrect diagnosis result [4]. Therefore, 
establishing an effective classification model is an urgently necessary task for limited and 
imbalanced biomedical dataset.

To solve class-imbalanced classification problem, many studies [5–12] have been pro-
posed. These methods mainly focus on three strategies: the algorithm level, the data 
level, and hybrid method. For the first strategy, the algorithm-based method often needs 
to amend the model parameters. Among numerous classifiers, ELM is famous owing 
to its analytical solution and fast learning speed, which is applicable to the engineer-
ing applications [13]. Various scholars have proposed some improved ELM models for 
imbalanced data classification [14–16]. So far, the weighted extreme learning machine 
(W-ELM) [17] is the most representative learning method for the class-imbalanced 
classification. The samples belonging to different classes are assigned different weights. 
This method attaches great importance to the minority class samples and alleviates 
the bias towards the majority class. A computationally efficient cost-sensitive method 
[18] has been developed by integrating a cost factor into the fuzzy rule-based classifier. 
The misclassified cost of majority class is set to one, while the penalty value of minor-
ity class equals to the imbalanced ratio. It is well suitable for a larger dataset. To extract 
hidden pathological features, forming a deep representation may be more meaningful 
[19]. Hierarchical ELM (H-ELM) [20] as a multilayer neural network has stable hier-
archical structure. And it can produce a better feature representation by unsupervised 
feature learning. In view of the second strategy, the data-based method [21–24] concen-
trates on generating new samples for minority class (oversampling) or removing sam-
ples from majority class (undersampling). Resampling techniques are often employed as 
a preprocessing process. Different from cost-sensitive method, it is much easier to be 
implemented. The synthetic minority oversampling technique (SMOTE) [25] is a typi-
cal method. It creates synthetic samples to oversample the minority samples rather than 
mere data duplicating, thus avoiding the overfitting. Also, it is more helpful in recogniz-
ing outliers. Despite the goodness, this resampling method is prone to neglect the sam-
ple distribution and lead to the information loss.

The last strategy is the widely-employed hybrid method. Apart from the preprocessing 
methods, a better classification algorithm is beneficial for class-imbalanced classifica-
tion task. For example, Yu et  al. [26] proposed a combination method of asymmetric 
bagging ensemble classifier and feature subspace (Bagging-FSS). This method adopts 
random projection to establish the relationship between feature selection and ensem-
ble classifier. The single classifier performance is improved by combining advantages of 
data pre-processing and ensemble learning methods in practical tasks. Similarly, Kraw-
czyk et al. [27] combined the boosting scheme and evolutionary undersampling (EUS) 
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technology for imbalanced classification of breast cancer malignancy. The usage of EUS 
allows selecting the most representative samples for boosting classifier, thereby improv-
ing the diversity of base classifiers. In fact, if the training sample is limited, this model 
will be difficult to guarantee the diversity of base classifiers. Moreover, this ensemble 
learning method largely depends on the performance of base classifier. In [28], synthetic 
minority oversampling technique and ELM (SMOTE-ELM) are integrated to provide an 
efficient solution for the imbalanced data classification. To produce a balanced dataset, 
the distribution of majority class samples is taken into consideration. Then, the oversam-
pling of minority samples is conducted. SMOTE-ELM method has the lower bound of 
model reliability and reduces the information loss of majority samples. However, when 
addressing smaller dataset, particularly less training samples, the aforementioned works 
face some issues. How to establish the quantitative relationship between feature extrac-
tion and model selection should be considered to reduce manual parameters tuning. For 
this purpose, a specifically designed method to address the imbalanced biomedical data 
classification has important meanings in medical intelligent diagnosis.

In this paper, a self-adaptive multilayer ELM model with dynamic generative adver-
sarial net (GAN) (for short PGM-ELM) is proposed to solve the class-imbalanced clas-
sification problem. The proposed method makes biomedical data classification more 
efficient and robust in the context of small-data and high-dimensional feature. The main 
contributions of this paper are summarized as follows: Principal component analysis 
(PCA) is used to remove irrelevant and redundant features from raw feature set, thereby 
extracting more effective features; Dynamic GAN is introduced to generate the realistic-
looking minority class samples and balance the class distribution, thus alleviating effect 
of the imbalanced dataset and avoiding overfitting; The analytic expression for numbers 
of hidden layer and node is determined by establishing the quantitative relationship 
among the changes of imbalance ratio, the sample distribution, and the hyper-param-
eters of model. This provides a solution for reducing the parameter sensitivity of multi-
layer ELM. The effectiveness of the PGM-ELM model is validated and evaluated on four 
biomedical datasets. The obtained experimental results can help guide us to construct 
the optimal classification model for practical biomedical applications.

The remaining of the paper is organized as follows. “Related works” section sim-
ply introduces the basic principles of hierarchical ELM and classical GAN. Then, the 
detailed process of the proposed method is described in “Methods” section. Afterwards, 
the dataset description, evaluation metrics, and experimental results are presented in 
“Results” section. Comparative analyses of the proposed method with other state-of-the-
art methods are given in “Discussions” section. Finally, “Conclusions” section provides 
the conclusion and future research directions of this paper.

Related works
Some variants of the ELM model have been employed effectively. Here the basic princi-
ples of H-ELM and classic GAN are briefly described. They can contribute to the solving 
of imbalanced biomedical data classification.
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Hierarchical extreme learning machine framework

In network structure of H-ELM, the original input is decomposed into multiple hidden 
layers. The output of the previous layer is regarded as the input of the current one. The 
learning of hidden layer represents more abstract information. By doing so, the hidden 
information can be exploited for deeper feature representation.

Assume that we have a training set {(xi, ti)}Ni=1 , where xi denotes the input node i, and 
ti stands for the output of the ith sample. A single hidden layer feedforward neural net-
work with L hidden nodes is used to fit N training samples. Then, the corresponding 
output function of ELM can be expressed as [29]

where H = [h(x1), . . . , h(xN )]
T is the randomized output matrix of hidden layer, and 

T = [t1, . . . , tN ]
T is the target matrix of the output layer. β denotes the connection 

weight from a hidden layer node to each output node. C is a regularization coefficient. 
I is a unit matrix. The input weight and bias will be assigned randomly. Desired outputs 
of minority and majority classes are set to 1 and 0. Figure  1 shows the basic network 
structure of H-ELM, which consists of two separate parts: unsupervised and supervised 
training.

The first phase is unsupervised feature learning by ELM-based autoencoder (ELM-
AE) [30]. ELM-AE based ℓ1-norm optimization is employed to form a multi-layer fea-
ture learning model. By recovering the input data as much as possible, new features can 
be learned to represent the input data. A fast iterative shrinkage-thresholding algorithm 
(FISTA) [31] is utilized to obtain weight β of each hidden layer. The optimization model 
of ELM-AE is given by

where X is the original input data. H represents the random initialized output.

(1)f (x) = h(x)β = h(x)

(

I

C
+HHT

)−1

HTT,

(2)Oβ = arg min
{

�Hβ − X�2 + �β�ℓ1
}

,

Fig. 1  The network structure of H-ELM: k-layer feature learning with L hidden-node ELM feature classification
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Next, the second phase is supervised feature classification. The original ELM is per-
formed for final decision making. The output of the H-ELM is calculated by using the 
last layer output of the ELM-AE as the input of the parallel ELM. Mathematically, the 
output of each hidden layer can be represented as

where Hi(i ∈ (1, . . . ,K )) is the output of the ith hidden layer. g(·) denotes the activation 
function of the hidden layers, and β represents the output weight. Here, the node num-
ber Lk of the kth hidden layer equals to the node number Lk−1 of the (k − 1)th hidden 
layer. Different from deep back propagation (BP) network, all hidden neurons in H-ELM 
as a whole are not required to be iteratively tuned. The parameter of the last hidden layer 
will be adjusted no longer.

Generative adversarial net

GAN [32] is a combination method of simulation and unsupervised learning, and it 
largely depends on the adversarial relationship among competitive neural networks. 
GAN can generate entirely new data like the observed data based on the probability 
distribution model. Figure  2 presents the whole data generation process. GAN simul-
taneously trains the generative model G and the discriminative model D by playing a 
non-cooperative game. G can capture the data distribution to generate samples, while 
D assists G to classify these samples as true or fake. By discriminator D to optimize, the 
parameters of G are adjusted to make the probability distribution p̃(x) and the real data 
distribution p(x) as close as possible.

This process can be expressed by minimizing an objective function. The overall objec-
tive function of GAN model is given as follows

where pdata(x) is the distribution of the training set. pz(z) is the distribution of noise. 
E denotes the expectation. If the generator G is fixed, the optimal discriminator D is 
depicted by the following formula.

(3)Hi = g(Hi−1 · β),

(4)min
G

max
D

V (D,G) = Ex∼pdata(x)

[

logD(x)
]

+ Ez∼pz(z)

[

log (1− D(G(z)))
]

,

Fig. 2  The data generation framework of GAN
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where pg (x) expresses the probability distribution of the generator. The training objec-
tive for D can be interpreted as maximizing the log-likelihood for estimating the condi-
tional probability P(Y = y|x) . The Y makes clear whether the x comes from the real data 
or the generated data. Therefore, the minimax game in Eq. (4) can be rewritten as

G and D will reach a balance after conducting several times training, that is pg = pdata . 
The discriminator is incapable to distinguish the difference between two distributions, 
such that D∗

G(x) = 1/2 [33].

Methods
Throughout this paper, aiming at the limited and imbalanced biomedical data, a 
hybrid PGM-ELM classification model is proposed. Figure 3 shows the whole process 
of the proposed method. In Fig. 3, the model first employs PCA to extract the prin-
cipal features and reduce dimensionality. Afterwards, we use GAN to dynamically 
generate real minority class  samples, thus balancing the class distribution. Lastly, 
considering the numbers of samples and features, once the quantitative relationship 
between the imbalance ratio and the hyper-parameters of multilayer ELM is estab-
lished. A self-adaptive PGM-ELM classification model is constructed for imbalanced 
classification.

For a given training set with N samples DS =
{

(xi, yi)
}N

i=1
 , xi denotes the feature 

vector of the ith sample, and yi is the class label of the ith sample. In our study, the 
medical diagnosis with or without lesions is identified as a binary classification prob-
lem. For convenience, N+ represents the number of the minority class samples, and 
N− represents the number of the majority class samples. N = N− + N+ is the total 
number of all samples in training set.

(5)
D∗
G(x) =

pdata(x)

pdata(x)+ pg (x)
,

(6)

max
D

V (G,D) = Ex∼pdata

[

log
pdata(x)

pdata(x)+ pg (x)

]

+ Ex∼pg

[

log
pg (x)

pdata(x)+ pg (x)

]

.

Fig. 3  The overall framework of the PGM-ELM method
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Principal features extraction

Most of original biomedical datasets have lots of noise and redundant features. PCA is 
adopted to remove the irrelevant and redundant information [34]. For the original fea-
ture set X =

{

x(1), x(2), . . . , x(M)
}

 , the matrix X̃ is obtained through standardized pro-
cessing. This transform relation is given by

where x̃(i) is the ith feature of standardized matrix. x(i) is the ith sample in original fea-
ture set. µ(i) and δ(i) are the mean value and the variance of the original features. The 
covariance matrix is calculated as follows

The eigenvalue decomposition is applied to solve the eigenvalues and corresponding 
eigenvectors of the covariance matrix. The eigenvalues are arranged from large to small, 
and the contribution rate is computed. The formula is described as follows

where �k denotes the kth eigenvalue. The threshold of cumulative contribution rate of 
the eigenvalue is selected as 85%. When the proportion of the largest M′ eigenvalues is 
greater than this threshold, M′ is viewed as the number of the principal components. By 
calculating the product of the standard feature matrix and eigenvector, we get the cor-
responding principal component vector, which is expressed as follows

where ηi represents the standard orthogonal eigenvectors corresponding to the ith 
eigenvalues. Z =

{

z(1), z(2), . . . , z(M
′)
}

 is new feature set after analyzing the principal 

components.

Samples generation

From the perspective of the data, dynamic GAN generates new samples to change the 
imbalanced ratio. To fully make use of the data distribution, all minority class samples as 
a whole chunk are input into GAN model. And then, dynamic GAN is executed multiple 
times to balance class samples. It is worthy note that the execution number of GAN is 
set to num =

⌊

N−

N+

⌋

 according to initial imbalanced ratio, where ⌊·⌋ is on behalf of the 

round down. That is to say, the samples generation procedure using GAN is repeated 
until the imbalanced ratio is closer to 1. By doing so, the class distribution is balanced as 
much as possible.

For the minority class samples X+ , the initial condition is noise Z with the same size as 
the whole target fragment. The objective function of GAN can be depicted by the follow-
ing formula.

(7)x̃(i) =
x(i) − µ(i)

δ(i)
,

(8)R = X̃T X̃/(M − 1).

(9)
α =

r
∑

k=1

�k

/

M−1
∑

k=1

�k ,

(10)z(i) =
M′
∑

j=1

x̃(j)ηTi ,
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The optimal discriminator D equals to pdata(X
+)

pdata(X
+)+pg (X̃+)

 . pg (X̃+) denotes the distribu-

tion of generated data. The discriminator D can be updated by whole target segment.

where, xi and zi denote the samples of X+ and Z . θd is the parameter of discriminator D. 
Generator G is updated by

where θg is the parameter of generator G. If G recovers data distribution, and D equals to 
0.5 in any instance, the new samples X̃+ will be generated. The sample number of the 
training set is increased to N ′ =

⌊

N−

N+

⌋

· N+ + N− . IR = N+

N− is initial imbalanced ratio 

of the training set, while IR′ =
⌊

N−

N+

⌋

· N+ represents new imbalanced ratio after sam-

ples generation. For clear representation, the change of imbalanced ratio �IR can be 
obtained as follows

Self‑adaptive multilayer ELM modeling

In last phase of the PGM-ELM, using the multilayer ELM model is to classify the bal-
anced dataset. The network structure of the classification model is first determined. In 
fact, multilayer ELM is sensitive to the numbers of hidden layer and node. Sometimes it 
is difficult for users to specify an appropriate number of nodes without prior knowledge. 
If the number of nodes is too small, the classifier is unable to learn feature well, causing 
the under-fitting performance. If the number of nodes is too big, the time complexity of 
the network structure will be increased. Generally, it is related to the numbers of sample 
and feature. Therefore, the change of the imbalanced ratio and the number of new fea-
tures are considered in our multilayer ELM model. Mathematically, the number of hid-
den nodes is obtained by

Simultaneously, the number of hidden layers is determined by

(11)
min
G

max
D

V (D,G) = Ex+k ∼pdata(num·X+)

[

logD

(⌊

N−

N+

⌋

· X+
)]

+ Ez∼pz(z)[log (1− D(G(Z)))].

(12)∇θd

1

num · N

num·N
∑

i=1

[logD(xi)+ log(1− D(G(zi)))],

(13)∇θg

1

num · N

num·N
∑

i=1

[log(1− D(G(zi)))],

(14)�IR = IR′ − IR =

⌊

N−

N+

⌋

· N+

N− −
N+

N−=

(⌊

N−

N+

⌋

−1
)

·N+

N− .

(15)P =
⌈

(1−�IR)×
N

M
+�IR×

N ′

M′

⌉

.
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where ⌈·⌉ shows the round up.
It can be found that, on the one hand, the bigger the change of imbalanced ratio is, the 

greater the number of hidden layers is. On the other hand, the more numbers of the fea-
ture and generated samples are, the larger the number of hidden nodes is. This specific 
relationship can self-adaptively adjust the parameters of model for different datasets. 
After that, the designed network is learned layer by layer using the M–P generalized 
inverse. And the functional relationship of each layer is achieved as follows

where HQ =







g(a1 · x1 + b1) . . . g(aL · x1 + bP)
... . . .

...
g(a1 · xN ′ + b1) . . . g(aL · xN ′ + bP)







N ′×P

 is the output matrix of the 

Qth hidden layer. a is the orthogonal random weight vector between input nodes and 
hidden nodes. b is the orthogonal random threshold of the hidden neurons. The sigmoid 
function is selected as the activation function g(·) . This function expression is

Finally, the output matrix β is obtained, and the entire hybrid model is established. 
Pseudo-code description for the process of hybrid approach is shown as Algorithm 1.

Results
In this section, to validate the effectiveness of the proposed PGM-ELM method, exten-
sive experiments have been performed. We first describe four real-world imbalanced 
biomedical datasets derived from the UCI machine learning repository [35]. Then we 

(16)Q =
⌈

�IR×M′⌉,

(17)β = HT
Q

(

I

C
+HQH

T
Q

)−1

TQ,

(18)g(u) =
1

(1+ exp (−au))
.
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present the classification results of our method. Also, the obtained results are discussed 
adequately. Our experimental computer configurations are listed as follows: Intel(R) 
dual-core, 3.20 GHz, 8 GB RAM with Windows 7 Operating System. All algorithms in 
this study are programmed with MATLAB R2014a.

Datasets description

For constructing a small training  sample set, each dataset are divided into the train-
ing and test sets via a random sampling process. The breast cancer diagnostic dataset 
provides information on the discrimination of benign and malignant. Each instance has 
one ID number, 30 real value variables and one diagnosis label. The Indian liver data-
set describes liver patient or not, which is made up of two patient information, eight 
real-valued features and a class label. The diabetic retinopathy Debrecen dataset with 19 
numerical features contains the sign of diabetic retinopathy or not. The Pima diabetes 
dataset collects pathologic data from diabetes patients, including eight real-valued fea-
tures and a class label. Table 1 summarizes the detailed information of the four biomedi-
cal datasets.

From Table 1 we can see that these four datasets are imbalanced since the imbalance 
ratios are much less than 1. Besides, they have different feature dimensionalities and 
smaller instances. It is noticeable that all datasets should be normalized to facilitate pro-
cessing. Furthermore, only real-valued features are used as the input of the model in all 
experiments. Considering the fact that the distinction between normal and abnormal 
is a typical two-class classification task, so the labels containing majority and minority 
classes are specified as 0 and 1, respectively.

Performance evaluation metrics

In order to evaluate the classification performance of the proposed model, there are sev-
eral commonly considered measurement criteria that can be used in imbalanced clas-
sification task [36]. First, Table 2 gives the confusion matrix of a two-class problem for 
explaining the performance measures. TP and TN are the numbers of correctly clas-
sified positive and negative samples, respectively. FP and FN are the numbers of the 

Table 1  Description of the experimental datasets

Datasets Attributes Minority Majority Imbalance ratio Training 
samples

Test samples

Breast cancer 32 212 357 0.59 100 469

Liver patient 11 26 224 0.12 50 200

Diabetic retinopathy 20 100 300 0.30 100 300

Pima diabetes 9 117 517 0.23 200 434

Table 2  Confusion matrix for a two-class problem

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)

Negative class False positive (FP) True negative (TN)
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misclassified negative and positive samples, respectively. The confusion matrix gives the 
quantitative classification results on each dataset.

And then, receiver operator characteristic (ROC) is a graphical method to intuitively 
show the compromise between the true positive rate and false positive rate for the clas-
sification models. Area under the ROC curve (AUC) can describe the performance of 
classifiers in different decision thresholds. The AUC value is larger, the better the per-
formance of classifier is. G-mean is a popular measure to indicate the geometric mean of 
sensitivity and specificity. F-measure is the harmonic mean of precision and recall. They 
can be effective to evaluate generalization performance than overall classification accu-
racy, and their definitions are expressed as follows.

where, true positive rate (TPR) represents the proportion of positive samples to be cor-
rectly classified as positive class, whose definition is the same as Recall. True negative 
rate (TNR) indicates the proportion of negative samples to be correctly classified as neg-
ative class. Precision denotes the proportion of positive samples to be correctly classified 
and all positive samples. They are defined in the following.

The result analysis of dynamic GAN

First of all, the principal components of original feature set are extracted from a given 
imbalanced training set by using PCA. Thereafter, new balanced dataset are achieved 
after generating minority class samples using dynamic GAN. In the network structure 
of dynamic GAN, several appropriate parameters are selected to generate realistic 
minority class samples. The number of hidden nodes is set to 100. The learning rate is 
set to 0.01. Dropout fraction of discriminator D and generator G are set to 0.9 and 0.1, 
respectively. The activation function of GAN is given as follows: the generator G uses 
ReLU and Sigmoid, while the discriminator D employs Maxout and Sigmoid. Figure 4 
depicts the comparative distributions of the original samples and the generated sam-
ples after performing the dynamic GAN.

In Fig.  4, five different colors represent five principal components after perform-
ing PCA. There are 100 minority class samples derived from breast cancer dataset. In 
general, similar dataset should be represented by similar distribution. We can easily 
observe that, the distribution of the generated samples is consistent with the original 
sample distribution. This visually proves that the dynamic GAN is capable to capture 

(19)G-mean =
√
TPR · TNR,

(20)F-measure =2× Precision × Recall

Precision + Recall
,

(21)TNR = TN

FP+ TN
.

(22)TPR =Recall = TP

TP+ FN
.

(23)Precision = TP

TP+ FP
.
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the distribution of actual data to generate convincing samples, thus balancing the 
class distribution and avoiding the overfitting.

To quantify the quality of generated data, we compute the dissimilarity between the 
distributions of generated data and original data by means of kernel maximum mean 
discrepancy (MMD). Kernel MMD [37] is a popular sample-based evaluation metric 
for quantitatively evaluating GANs model. A lower MMD means that the distribution 
of generated data is consistent with that of the real data. Table  3 reports the com-
parison results of Kernel MMD on four datasets. All MMD values are calculated over 
50, 100 and 200 samples generated by dynamic GAN. In Table  3, as increasing the 
number of samples, the smaller the MMD value is, the higher the quality of gener-
ated samples is. Based on this quantitative result, we can conclude that the dynamic 
GAN can capture the training data distribution. GAN can be appropriate for pro-
ducing samples without the information loss of majority class in class-imbalanced 
classification.

Analysis of the classification results

In order to examine the classification results of PGM-ELM against other constructive 
algorithms: W-ELM, SMOTE-ELM, and H-ELM. We give the corresponding results of 
these algorithms on four biomedical datasets. Considering fact that the weight of ELMs 
model is randomly chosen, four methods are ran 20 independent monte carlo trials. The 
final result is from the average of the 20 results. For fair comparison, these methods use 
same sigmoid activation function for learning.

Fig. 4  The comparison result of samples distribution on breast cancer dataset. a The distribution of original 
samples. b The generated samples by dynamic GAN

Table 3  Comparison result of Kernel MMD on four test sets

The dataset 50 samples 100 samples 200 samples

Breast cancer 0.104 0.096 0.089

Liver patient 0.181 0.118 0.124

Diabetic retinopathy 0.219 0.143 0.078

Pima diabetes 0.072 0.057 0.060
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Consequently, Fig.  5 displays the spatial distribution of classification results on four 
datasets after performing one monte carlo trial. The correctly classified samples and the 
misclassified samples are visualized. From Fig.  5 can be seen that the correctly classified 
samples are much more compared to the misclassified ones on each dataset. Obviously, 
Pima diabetes dataset yields the best classification result of PGM-ELM model. And its 
misclassified samples number is much less than those of other datasets. This reflects bet-
ter classification ability of the PGM-ELM for most of biomedical datasets.

Apart from the spatial distribution results, the result of confusion matrix (two-class 
case: 0 for majority class and 1 for minority class) on four biomedical datasets is pre-
sented in Fig. 6. The numbers of correctly classified and misclassified samples are shown. 
Corresponding true positive rate (TPR) and false negative rate (FNR) are computed. 
Taking breast cancer dataset as an example, given a classification of the minority class 1, 
171/178 will be correct (class 1). Moreover, the number of misclassified minority sample 
is smaller than the misclassified rate of the majority class. It can be seen that most of 
predicted samples are classified as actual class on each dataset. Therefore, the proposed 
PGM-ELM significantly improves the classified rate of minority class samples. This 
reflects a superior classification capacity for imbalanced biomedical dataset.

Fig. 5  Spatial distribution of sample using PGM-ELM. (Blue circles describe the correctly classified samples, 
while the red stars mean the misclassified samples.) a Breast cancer dataset. b Liver patient dataset. c Diabetic 
retinopathy dataset. d Pima diabetes dataset
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Meanwhile, we assess the classification performance of four models in terms of ROC 
curve. Figure 7 shows comparison results of the averaged ROC curve on four datasets. 
From almost most of results of Fig.  7a–d can be seen that, by comparing with other 
three algorithms, the PGM-ELM method has much higher ROC curve on each data-
set. However, H-ELM has a relatively poor performance, especially on small training set, 
which is showed in Fig. 7a, d. It can explain that H-ELM is sometimes difficult to con-
trol the optimal hyper-parameters by manually tuning parameter. In Fig. 7b, the ROC 
curve of SMOTE-ELM is higher at first and tends to the obvious decline at last. Gener-
ally, SMOTE method uses local information to generate synthetic samples. When the 
training set is smaller and severe imbalanced, it usually ignores the overall class distribu-
tion, leading to some information loss. By contrast, although W-ELM reveals a merely 
superior recognition ability to these two algorithms on breast, liver, and diabetes data-
sets. But if data dimensionality is greater, W-ELM poorly performs the classification due 
to some redundant features. The PGM-ELM can present better performance thanks to 
the realistic-looking samples generation and the information loss reduction by dynamic 
GAN. More importantly, biomedical hidden features are learned by using layer wise 
unsupervised learning.

Now onto a discussion about the number of hidden nodes in ELMs model. Limited 
availability of the training samples necessitates careful selection of the parameters of the 
hidden layer, thereby achieving well-generalizing model. To this end, we give the ana-
lytic expression for numbers of layer and hidden node in PGM-ELM. The accumulated 
G-means and F-measures of four models as changing the number of hidden nodes are 
illustrated in Figs. 8 and 9.

As can be seen from Figs. 8a and  9a, taking breast cancer dataset as an example, the 
PGM-ELM gets the highest G-mean and F-measure when the number of hidden nodes 

a b

c d
Fig. 6  Confusion matrix of PGM-ELM on four biomedical datasets. a Breast cancer dataset. b Liver patient 
dataset. c Diabetic retinopathy dataset. d Pima diabetes dataset
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is 14. It suggests that our method obtains better classification accuracy and robustness. 
Besides, we can easily observe that, compared with H-ELM, PGM-ELM shows superior 
performance in case of same number of hidden nodes on most of datasets. This indicates 
that PGM-ELM is not sensitive to the hyper-parameter of hidden layer by considering 
the changes of imbalance ratio and sample distribution. This is explained by the fact that 
the analytical solution for parameters of the hidden layer makes classification results 
more accurate. For W-ELM and SMOTE-ELM, G-mean and F-measure only slightly 
change with different hidden nodes. This is perhaps because that simpler single layer 
network is also less sensitive to the number of hidden nodes. As a consequence, these 
results demonstrate the adaptability of the proposed PGM-ELM in dealing with small 
sample and imbalanced data.

Discussions
In this study, we have developed a self-adaptive multilayer ELM model combining 
with dynamic GAN to classify the limited and imbalanced dataset for the biomedical 
engineering application. Representative W-ELM, SMOTE-ELM, and H-ELM models 
are also implemented to solve the biomedical data classification in our work. In this 

Fig. 7  Comparison ROC curves of PGM-ELM, H-ELM, SMOTE-ELM, and W-ELM. a Breast cancer dataset. b Liver 
patient dataset. c Diabetic retinopathy dataset. d Pima diabetes dataset



Page 16 of 21Zhang et al. BioMed Eng OnLine          (2018) 17:181 

section, we discuss the classification performance, the statistical significance, and the 
computational time of these four models. At last, the advantages and limitations of 
the PGM-ELM method are summarized.

Evaluation of the classification performance

To further objectively verify the superiority of the proposed method, extensive evalu-
ations are conducted on four datasets. We compute G-mean, AUC, and F-measure 
metrics of four methods. Table  4 tabulates the quantitative comparison results of 
different methods on four biomedical datasets in terms of G-mean, F-measure, and 
AUC.

From the AUC values in Table  4, we can clearly observe through the comparison 
and analysis, the proposed PGM-ELM has a much larger value than SMOTE-ELM 
and H-ELM, while a little higher than W-ELM for most of the test sets. The rea-
son calls for PGM-ELM, the input of the model is changed from the original imbal-
anced data to a more balanced one by dynamic GAN. From the values of G-mean and 
F-measure, we also can find that our approach has a significant improvement against 
the others on four datasets. Especially, for Pima diabetes dataset, the value of F-meas-
ure nearly tends to 1. The hyper-parameter analytic expression of hidden layer helps 

Fig. 8  Comparison G-means of the PGM-ELM, H-ELM, SMOTE-ELM, and W-ELM with different numbers 
of hidden nodes. a Breast cancer dataset. b Liver patient dataset. c Diabetic retinopathy dataset. d Pima 
diabetes dataset
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to achieve a better performance by providing more robust features extract from the 
balanced data. Meanwhile, an important observation is that fewer parameters need to 
be chosen adaptively in the training process. The whole performance of the algorithm 
is not only high but also stable.

The statistical significance testing

In the statistical hypothesis testing, the Friedman test and post-hoc Nemenyi test [38] 
are used to further analyze whether our method is statistically significant than other 
compared methods. Combining these two hypothesis testing methods are to compare 
the performances of various classification methods on multiple datasets. After Friedman 
hypothesis testing, the null hypothesis (i.e. the performances of all four methods are 
equivalent) is rejected at α = 0.05 since the p-values for G-mean, AUC, and F-measure 
are 0.0256, 0.0129, and 0.0112. This result indicates that our method has a significant dif-
ference than the others.

Then, the post-hoc Nemenyi test is adopted to observe the differences among the four 
models. A critical difference (CD) of 2.345 is computed at p = 0.05 . For G-mean met-
ric, the average ranks of PGM-ELM, W-ELM, SMOTE-ELM, and H-ELM are 1, 2.75, 
2.5, and 3.75, respectively. From these rank differences among PGM-ELM, W-ELM 
and SMOTE-ELM, they are lower than the CD value. So PGM-ELM has no statistically 

Fig. 9  Comparison F-measures of the PGM-ELM, H-ELM, SMOTE-ELM, and W-ELM with different numbers 
of hidden nodes. a Breast cancer dataset. b Liver patient dataset. c Diabetic retinopathy dataset. d Pima 
diabetes dataset
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significant difference in terms of G-mean, despite our method wining on most of the 
datasets. While PGM-ELM is statistically different from H-ELM. This explains why our 
method is suitable for the imbalanced data classification problem.

Comparison of the computational time

The classification efficiency of the W-ELM, SMOTE-ELM, H-ELM, and PGM-ELM 
algorithms are compared, which is presented in Fig. 10. By analyzing the computational 
times, we can find that the training time of PGM-ELM is slightly higher than that of 
W-ELM. And it is obviously lower than those of H-ELM and SMOTE-ELM. The rea-
son for this is that a lot of time is costed for the sample generation process using GAN. 
W-ELM has a computational advantage owing to its fast weighting process. Neverthe-
less, if the imbalanced ratio is extremely low, the W-ELM usually leads to an excessive 
learning. It is difficult to control the optimal parameter. Anyway, the computational 
time of PGM-ELM method on each dataset is below 2s. In a word, the proposed method 
can quickly and accurately alleviate the class-imbalanced problem. These findings dem-
onstrate that the algorithm presented here has a potential significance for the clinical 
practice.

Based on the above analysis, we can summarize the advantages and limitations of the 
proposed method. Our method attempts to tackle the classification of limited and imbal-
anced biomedical dataset. In the proposed method, dynamic GAN takes the data distri-
bution into account for producing authentic minority class samples. Furthermore, the 
parameters of hidden layer are adaptively chosen according to the change of the imbal-
anced ratio. It avoids the drawback of manual parameter adjustment. Under imbalanced 
scenarios, different types of biomedical data (e.g. protein dataset, gene expression data, 
and medical images) have similar properties, such as high-dimensional and small sam-
ples. For example, image data can be converted to numerical attributes by using some 
segmentation methods [39, 40]. In this way, the proposed method can effectively address 

Table 4  Performance comparison results of testing on different datasets

Biomedical datasets Methods G-mean AUC​ F-measure

Breast cancer W-ELM 0.5679 0.8093 0.7658

SMOTE-ELM 0.7816 0.7981 0.7584

H-ELM 0.5835 0.6584 0.5967

PGM-ELM 0.9212 0.9013 0.9354

Liver patient W-ELM 0.7827 0.7439 0.9127

SMOTE-ELM 0.6379 0.5198 0.9218

H-ELM 0.5980 0.6919 0.7226

PGM-ELM 0.8016 0.8581 0.9304

Diabetic retinopathy W-ELM 0.6555 0.7849 0.9207

SMOTE-ELM 0.7554 0.7220 0.7404

H-ELM 0.6112 0.7493 0.6346

PGM-ELM 0.8778 0.8619 0.9715

Pima diabetes W-ELM 0.9360 0.9151 0.9724

SMOTE-ELM 0.6277 0.8792 0.5655

H-ELM 0.5041 0.8580 0.5000

PGM-ELM 0.9657 0.9324 0.9922
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the class-imbalanced classification problem with respect to different biomedical data-
sets. Despite this goodness, the proposed method has also two potential weakness. One 
limitation is that the time cost of our method is slightly higher than W-ELM, mainly due 
to extra cost of the samples generation process. The other is, if a large of missing values 
occur in biomedical dataset, GAN model will generate some ineffective samples. The 
proposed model also will suffer from worse classification performance. In future works, 
these two limitations will be addressed.

Conclusions
In this paper, a self-adaptive multilayer ELM with dynamic GAN has been proposed for 
the imbalanced biomedical classification. Different from traditional deep network, self-
adaptive multilayer ELM gives the analytic expression for numbers of layer and hidden 
node according to the changes of the imbalanced ratio and sample distribution. This is 
helpful for avoiding the hyper-parameter sensitivity. Furthermore, principal compo-
nents of the original features are extracted by PCA, thus removing irrelevant features 
and obtaining more effective feature set. Then, dynamic GAN generates the real-looking 
samples to balance the class distribution. It fully considers the sample distribution and 
reduces overfitting. The proposed method has been evaluated on four real-world bio-
medical datasets. Qualitative and quantitative results show that the proposed method 
is quite promising than other representative methods in terms of ROC curve, AUC, 
G-mean, and F-measure metrics. The generality and capability of the proposed model 
are further confirmed under the condition of small sample and high-dimensional fea-
ture. We will make efforts to provide multi-class classification model for multiclass 
imbalanced classification problem in our future works.

Fig. 10  Comparison result of the running time
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