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Background
Chest radiography (chest X-ray or CXR) is an economical and easy-to-use medical imag-
ing and diagnostic technique. The technique is the most commonly used diagnostic tool 
in medical practice and has an important role in the diagnosis of the lung disease [1]. 
Well-trained radiologists use chest X-rays to detect illnesses, such as pneumonia, tuber-
culosis, interstitial lung disease, and early lung cancer.

The great advantages of chest X-rays include their low cost and easy operation. Even 
in underdeveloped areas, modern digital radiography (DR) machines are very affordable. 
Therefore, chest radiographs are widely used in the detection and diagnosis of the lung 
diseases, such as pulmonary nodules, tuberculosis, and interstitial lung disease. Chest 
radiography contains a large amount of information about a patient’s health. However, 
correctly interpreting the information is always a major challenge for the doctor. The 
overlapping of the tissue structures in the chest X-ray greatly increases the complexity 
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of the interpretation. For example, detection is challenging when the contrast between 
the lesion and the surrounding tissue is very low or when the lesion overlaps the ribs 
or large pulmonary blood vessels. Even for an experienced doctor, it is sometimes not 
easy to distinguish between similar lesions or to find very obscure nodules. Therefore, 
the examination of the lung disease in chest X-ray will cause a certain degree of missed 
detection. The wide application of chest X-rays and the complexity of reading them 
make computer-aided detection (CAD) systems a hot research topic since the system 
can help doctors to detect suspicious lesions that are easily missed, thus improving the 
accuracy of their detection.

The first attempt to establish a computer-aided detection system was in the 1960s [2], 
and studies have shown that the detection accuracy for the chest disease is improved 
with a X-ray CAD system as an assistant. Many commercial products have been devel-
oped for the clinical applications, including CAD4 TB, Riverain, and Delft imaging 
systems [3]. However, because of the complexity of the chest X-rays, the automatic 
detection of the diseases remains unresolved, and most of the existing CAD systems are 
aimed at the early detection of the lung cancer. A relatively small number of studies are 
devoted to the automatic detection of the other types of the pathologies [4].

The CAD systems are mainly divided into the following steps: image preprocessing, 
extracting ROI regions, extracting ROI features, and classifying disease according to 
the features. The recent development of artificial intelligence (AI) combined with the 
accumulation of large volumes of medical images opens up new opportunities for build-
ing CAD systems in the medical applications. Artificial intelligence methods (including 
shallow learning and deep learning, etc.), especially deep learning, mainly replace the 
process of feature extraction and disease classification in the traditional CAD systems. 
Artificial intelligence methods have also been widely used in image segmentation and 
bone suppression of chest X-ray. The shallow learning methods are widely used as clas-
sifiers to detect diseases, but their performance depends strongly on the extracted hand-
crafted features. For the complex chest X-ray images, it takes a long time for researchers 
to find a good set of features that will be helpful of the CAD performance. Recently, due 
to the extensive and successful application of deep learning in different image recogni-
tion tasks (such as image classification [5–8] and semantic segmentation [9–12]), inter-
est has been stimulated in reapplying deep learning to medical images. In particular, 
advances in deep learning and large database construction have made the algorithm “go 
beyond” the performance of medical professionals in a variety of medical imaging tasks, 
including pneumonia diagnosis [13], diabetic retinopathy detection [14], skin cancer 
classification [15], arrhythmia detection [16], and bleeding identification [17]. Therefore, 
deep learning methods (especially CNN), which automatically learn image features to 
classify chest diseases, have become a mainstream trend.

This article reviews the common methods of computer-aided detection of the chest 
radiographs based on AI. The second section provides commonly used CXRs data-
sets and general image preprocessing techniques applied to chest radiographs. The 
third section discusses the detection of single diseases, including tuberculosis, pulmo-
nary nodules, interstitial lung disease and other diseases. The fourth section provides 
the detection of multiple diseases. The fifth section summarizes the CAD of chest 
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radiography and discusses existing problems and development trends, finally, we con-
clude the paper in the sixth section.

Datasets and image preprocessing techniques
Datasets

CAD systems can be used to detect various diseases in the chest X-rays. Figure 1 shows 
the eight most common types of diseases observed in the chest radiograph [23], which 
are the disease of infiltration, atelectasis, cardiac hypertrophy, effusion, lumps, nodules, 
pneumonia, and pneumothorax, respectively. The training, validation, testing, and per-
formance comparisons of CAD systems require many chest radiographs. Since creating 
a large, annotated medical image dataset is not easy, most researchers rely on the follow-
ing publicly available CXR datasets.

Indiana dataset [18]

The dataset was collected from various hospitals affiliated to the Indiana University 
School of Medicine. It consists of 7470 chest radiographs including the frontal and lat-
eral images of disease annotations, such as cardiac hypertrophy, pulmonary edema, 
opacity, or pleural effusion.

KIT dataset [19]

The dataset consists of 10,848 DICOM cases from the Korea Tuberculosis Institute 
under the Korea Association of Tuberculosis, including 7020 cases of normal and 3828 
cases of abnormalities (tuberculosis).

MC dataset [20]

The dataset was collected from the Department of Health and Human Services in part-
nership with Montgomery County, Maryland in the United States. The group consisted 

Fig. 1  Eight common diseases such infiltration, atelectasis, cardiac hypertrophy, effusion, lumps, nodules, 
pneumonia, and pneumothorax observed in the chest radiographs
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of 138 frontal chest radiographs from the Montgomery County Tuberculosis Screen-
ing Program, of which 80 were normal and 58 were tuberculosis with the image sizes as 
4020 × 4892 or 4892 × 4020 pixels.

JSRT dataset [21, 22]

The dataset was compiled by the Japanese Society of Radiological Technology 
(JSRT) and includes 247 chest radiographs, of which 154 have pulmonary nodules 
(100 malignant and 54 benign), and 93 have no nodules. All of the X-ray images are 
2048 × 2048 pixels in size, while the color depth of the grayscale is 12 bits.

Shenzhen dataset [20]

The dataset was collected in collaboration with Shenzhen No. 3 People’s Hospital, 
Guangdong Medical College, Shenzhen, China. It contains 662 cases of chest X-rays, 
including 326 normal cases and 336 tuberculosis cases.

Chest X‑ray14 dataset [23]

The dataset is extracted from the clinical PACS databases in the hospitals affiliated to 
National Institutes of Health Clinical Center and consisted of about 60% of all frontal 
chest X-rays in the hospitals. The dataset contains the X-ray images of 112,120 frontal 
views of 30,805 patients and the image labels of 14 diseases (each image can have mul-
tiple labels) that can be mined from related radiology reports using natural language 
processing (NLP). The dataset contains 14 common chest pathologies, including ate-
lectasis, consolidation, infiltration, pneumothorax, edema, emphysema, fibrosis, effu-
sion, pneumonia, pleural thickening, cardiomegaly, nodule, mass, and hernia.

Image preprocessing techniques

Computer-aided detection systems usually take input images for a series of pre-
processing steps. The main purpose of preprocessing is to enhance the quality of the 
images and make the ROI (region of interest) more obvious. Thus, the quality of the 
preprocessing has a large influence on the performance of the subsequent procedures. 
Typical preprocessing techniques include image enhancement, image segmentation 
and bone suppression for specific applications in chest X-rays. This section briefly 
describes these techniques.

Enhancement

Contrast, edge features, and noise in images have a large influence on the classifica-
tion and identification of lesions. To obtain more details in obscure and low-contrast 
areas of chest X-ray images, chest radiographs should be enhanced to highlight the 
structural information and suppress noise. The enhancement of chest X-rays includes 
contrast enhancement, noise suppression, edge sharpening, and filtering [24–27]. 
Contrast enhancement is the process of stretching the brightness value range in an 
image, which improves the overall or local contrast of the image and makes the image 
clear. Image sharpening compensates the contour of the image, enhances the edge 
of the image and the part of the grayscale jump, that is, enhances the image detail 
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information. Noise suppression is the process of image denoising while preserving the 
details of the image as much as possible. In the image enhancement process, the fil-
tering operation may be used, which can be carried out either in the real domain or 
in the frequency domain. Filtering is a neighborhood operator that uses the value of 
the pixels around a given pixel to determine the final output value of that pixel. In 
general, as a preprocessing step, the image enhancement can help reduce the rate of 
misdiagnosis without losing image details, introducing excessive noise and causing 
detail distortions.

Segmentation

In chest radiographs, it is usually necessary to segment the anatomy to obtain the ROI. 
Due to the different purpose (for detection of pulmonary nodules, cardiomegaly and 
abnormal asymmetry, etc.) of the tasks in chest radiography, there are many different 
studies focus on segmentation. Some studies segment the lung fields [28, 29]; others 
detect the contours of the lung fields [30] or ribs [31]; and a few try to directly detect the 
diaphragm or the costophrenic angle [32]. Lung field segmentation is the most impor-
tant because it accurately defines the ROIs of the lung fields, where specific radiological 
signs, such as lung opacities, cavities, consolidation, and nodules, can be searched. Seg-
mentation methods can be divided into image progressing-based methods and machine 
learning-based methods. Table 1 summarizes the segmentation methods which are eval-
uated by the used data, the assessment measures, and the corresponding segmentation 
results.

• • Image progressing-based methods. The category can be subdivided into rule-based 
methods and deformable model-based methods. Rule-based algorithms segment 
the lung region using rules based on the location, intensity, texture, shape, and rela-
tionships with other anatomies [33], including thresholding, edge detection, region 
growth, mathematical morphology operations, geometric models matching meth-
ods, etc. [34–38]. Typical examples based on deformable model segmentation are 
the active shape model (ASM) [39], the active appearance model (AAM) [40], and 
improvements to both [41–44].

• • Machine learning-based methods. The category can also be referred to as pixel-based 
methods. For chest radiographs, each pixel is assigned to a corresponding anatomi-
cal structure, such as lung, heart, mediastinum, diaphragm and so on. The classifier 
can use various features, such as the gray value of the pixel, spatial location infor-
mation, and texture statistical information. There features are inputted into some 
classifier, e.g., a k-nearest neighbor (KNN) classifier, support vector machine (SVM), 
Markov random field (MRF) model, or neural network (NN), to train the classifier. 
The method can be subdivided into shallow machine learning-based methods and 
deep learning-based methods.

•	 In shallow machine learning-based methods, the feature extraction process is 
intuitive, and the main challenge is to determine the appropriate categories of the 
features and extract them in a robust way. Mcnittgray et al. [45] first proposed a 
method of lung field segmentation using features. The features used were gray-
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scale, a measure of the local difference, and a measure of the local texture. Using 
KNN, linear discriminant analysis (LDA), and feedforward backpropagation neu-
ral network (NN), the method classifies each pixel of a CXR into one of several 
anatomical categories (heart, sub diaphragm, upper mediastinum, lungs, armpit, 
and background). The correct percentages were 70%, 70%, and 76% for each of 
classifier, respectively. Similar to the literature [45], Vittitoe et al. [46] used spa-
tial and texture information to segment CXRs into lungs or non-lungs. They 
used Markov Random Field to build a model that had high sensitivity, specificity, 
and accuracy. Shi et al. [47] used an unsupervised approach to segment the lung 
region in CXRs. They segmented lung fields using fuzzy C-means (FCM) cluster-

Table 1  Segmentation methods in  chest X-ray. The datasets, methods, assessment 
measures, and segmentation results are provided in each column, respectively

Accuracy: (TP + TN)/(TP + TN + FP + FN); sensitivity: R = TP/(TP + FN); specificity: TN/(TN + FP); overlap scores: TP/
(TP + FP + FN); precision (or positive predictive value): P = TP/(TP + FP); F score: 2 × P × R/(P + R); intersection-over-union: 
IoU = TP/(TP + FP + FN); negative precision: TN/(TN + FN); false accept rate: FAR = FP/(FP + TN); false rejection rate: FRR = FN/
(TP + FN); where TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative, respectively

Dice coefficient: DSC = 2 × (|S∩GT|)/(|S| + |GT|, jaccard coefficient of concordance: JS = (|S∩GT|)/(|S∪GT|), where S is 
segmentation result, GT is the ground truth

Study Datasets Assessment measures Results

Image 
progress-
ing based 
methods

Cheng et al. [34] Custom Accuracy

Armato et al. [35] Custom (600) Subjectively assessed 
the accuracy and 
completeness of the 
contour

Up to 79.1% (score 4 or 
5) and 8.1% inaccurate 
(score 1 or 2)

Li et al. [36] Custom (40) Accuracy, sensitivity, 
specificity

Left lung: 95.2% accuracy, 
91% sensitivity, 96.5% 
specificity; right lung: 
96% accuracy, 91.1% 
sensitivity, 97.2% 
specificity

Iakovidis et al. [37] Custom (24) Accuracy, sensitivity, and 
specificity

95.3% sensitivity, 94.3% 
specificity

Wan et al. [38] JSRT Custom (154) Accuracy, overlap scores, 
precision, sensitivity, 
specificity, and F score

Accuracy, F value, accu-
racy, sensitivity, and 
specificity were higher 
than 90%; the JSRT 
dataset overlap score 
was 87%; the overlap 
rate of the custom 
datasets (standard 
machines) was 81% 
and (mobile machines) 
is 69%

Van Ginneken et al. [42] Custom (230) Overlap scores Left lung: 0.887 ± 0.114; 
right lung: 0.929 ± 0.026

Machine 
learning 
based 
methods

Mcnittgray et al. [45] Custom (33) Accuracy NN: 76%; LDA: 70%; KNN: 
70%

Vittitoe et al. [46] Custom (198) Sensitivity, specificity, 
and accuracy

Sensitivity: 0.907 ± 0.044; 
specificity: 
0.972 ± 0.022; accuracy: 
0.948 ± 0.016

Shi et al. [47] JSRT (52) Accuracy 0.978 ± 0.0213

Novikov et al. [51] JSRT Dice coefficient, jaccard 
coefficient

Lung: 97.4%, 95%; col-
larbone: 92.9%, 86.8%; 
heart: 93.7%, 88.2%

Dai et al. [52] JSRT, MC Intersection-over-union Both lungs: 94:7% ± 0:4%, 
heart: 86:6% ± 1:2%
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ing based on Gaussian kernels and space constraints. The method was tested on 
52 CXRs of the JSRT dataset and achieved an accuracy of 0.978 ± 0.0213.

• 	 Shallow learning-based approaches rely on hand-crafted features that can 
become vulnerable when applied to different patient groups and image qualities. 
Because the traditional lung segmentation method requires human intervention 
and a priori knowledge of the dependence of the problems, the deep learning 
extractor has effectively replaced manual feature extraction. The current applica-
tion of a more semantic segmentation method is the fully convolutional network 
(FCN) [48], which retains the advantageous features of SegNet [49], accepts 
input of any size, and produces output of the same size. Ronneberger et al. [50] 
improved the FCN to create a U-net structure consisting of a context-grabbing 
path and a symmetric extension path, allowing for precise positioning and reduc-
ing the number of images required for training. Subsequently, U-net was used for 
biomedical segmentation with good performance. For example, Novikov et  al. 
[51] proposed a multiple image segmentation method based on U-net to seg-
ment the lung region and solve the data imbalance problem by associating the a 
priori class data distribution with a loss function. Additionally, this method goes 
beyond the advanced methods in the clavicle and heart segmentation tasks. Dai 
et  al. [52] proposed a structure correcting adversarial network (SCAN) frame-
work that uses a confrontational process to develop an accurate semantic seg-
mentation model for segmenting lung fields and the heart in chest X-ray images. 
This method improves the FCN and achieves segmentation performance compa-
rable to human experts.

Bone suppression

Bone suppression is a unique preprocessing technique in chest radiography and is an 
important preprocessing step in lung segmentation and feature extraction. The ribs and 
clavicle can block lung abnormalities, which complicates the feature extraction phase of 
a CAD system. Therefore, there is a need to remove skeletal structures, especially the 
posterior ribs and clavicle structures, to increase the visibility of the soft tissue density. 
Suzuki et  al. [53] and Loog et  al. [54] first proposed the bone suppression technique 
in 2006. Subsequent research has shown that using bone suppression techniques can 
improve the performance of pulmonary nodule detection [55–57] and can also be used 
to detect other abnormalities. For example, Li et  al. [58] found that bone suppression 
could increase the performance on recognition of local pneumonia significantly.

A method of removing the skeletal structure of CXRs is mainly applied to dual-energy 
subtraction (DES) imaging [59]. DES radiography involves the use of X-ray radiation to 
take two radiographs at high energy and low energy. The two radiographs are then com-
bined using a specific weighting factor to form a subtracted image that highlights soft 
tissue or skeletal components. However, the use of this technology requires specialized 
equipment, and only a few hospitals use the DES system.

A better solution is to automatically detect or remove bone structures in chest X-rays 
based on image processing techniques. Suzuki et al. [53] developed a method to suppress 
the contrast between ribs and clavicles in a chest X-ray with a multiresolution, large-
scale training artificial neural network (MTANN). Subtracting a bone image from the 
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corresponding chest radiograph produces a “soft tissue image”, where the rib and clavicle 
are substantially suppressed. Nguyen et  al. [60] used independent component analysis 
(ICA) to separate the ribs and other parts of lung images. The results showed that 90% of 
the ribs could be completely and partially inhibited, and 85% of the cases increased the 
nodule visibility. Yang et al. [61] used deep convolution neural networks (ConvNets) as 
the basic prediction unit and proposed an effective deep learning method for single con-
ventional CXR skeletal suppression. The results showed that this method can produce 
high-quality and high-resolution images of bone and soft tissue. Gordienko et  al. [62] 
detected lung cancer using a deep learning method, which demonstrated the efficiency 
of the bone suppression technique. The study found that the pretreatment dataset with-
out bones showed better accuracy and loss results.

Specific disease detection
Chest X-rays contain the main respiratory and circulatory organs, maintaining some 
of the body’s vital life activities. Millions of people suffer from chest disease each year. 
Tuberculosis, interstitial lung disease (LID), pneumonia, lung cancer, and other dis-
eases are the most common diseases in the world [4]. In chest radiographs, there are 
three main types of anomalies: texture abnormalities, which are characterized by dif-
fuse changes in the appearance and structure of the area, such as interstitial lesions; 
focal abnormalities, which are manifested as isolated changes in density, such as pul-
monary nodules; and abnormal shape, in which disease processes change the outline 
of the normal anatomy, such as cardiomegaly. Sometimes, the texture and shape of the 
chest changes at the same time as a certain disease, such as tuberculosis [63]. The sec-
tion describes common abnormalities in chest radiographs mainly caused by pulmonary 
nodules, tuberculosis, interstitial lesions, cardiomegaly, etc.

Pulmonary nodule detection

According to the World Cancer Report, lung cancer is the most common cancer in men 
and the third most common in women. It is one of the most aggressive human cancers, 
with a 5-year overall survival of 10–15% [64]. Pulmonary nodules are early manifesta-
tions of lung cancer; thus, the early detection and diagnosis of pulmonary nodules is 
very important for the early diagnosis and treatment of lung cancer. Nodules often 
appear on chest radiographs as small circular or oval low-contrast tissue masses in the 
lung region. They are characterized by several features, e.g., large changes in size, large 
changes in density, uncertainty of location in the lung area, etc. [65]. Creating a lung 
nodules automatic detection algorithm has always been a difficult but important aspect 
in the field of medical image CAD. Table 2 summarizes the main methods of pulmonary 
nodule detection, assessment measures, and results.

To prove that CAD is clinically useful for radiologists in detecting pulmonary nodules 
on chest radiographs, Kobayashi et al. [66] conducted observer performance studies. In 
this trial, 60 cases of chest radiographs that contained pulmonary nodules and 60 cases 
of non-nodular chest radiographs were used. The 16 radiologists who participated in 
the trial explained chest radiographs without computer-aided and with computer-aided 
interventions. Radiologists were evaluated for the performance of distinguishing the 
lung nodule using receiver operating characteristic curves (ROCs). The results showed 
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that CAD systems increased the accuracy of the radiologist’s detection of pulmonary 
nodules from 0.894 to 0.940.

Traditional pulmonary nodule CAD systems include image preprocessing (enhance-
ment and lung segmentation), candidate nodule detection, and extraction of features to 
reduce false positives [4, 67]. The purpose of image preprocessing is to enhance nodules, 
partition lung tissue, remove other tissue areas, and reduce data noise. Candidate nodule 
detection uses a variety of algorithms to identify as many of the nodules in the image as 
possible. To enhance the sensitivity of the algorithm to the nodules, this step does not 
strictly require a false alarm rate. False positive reduction in the suspected concentration 
removes the non-nodules and reduces the false positive false alarm rate of the system. 
At present, many algorithms focus on how to improve the detection rate of the nodules 
while reducing the false positives in the detection results.

To reduce the false positive nodules, the traditional algorithm extracts the fea-
tures of the candidate nodules and classifies the nodules and non-nodules by the 
features. These features have a significant impact on the CAD performance [68, 69]. 
Early studies of lung nodule detection used differences in the candidate shapes at 
different thresholds as a feature to identify the candidate nodules. However, these 
methods consider only the intensity and shape of the lung nodule candidates, and 
they cannot achieve high sensitivity and low false positive rates. Recent studies on 
pulmonary nodule detection have added gradient features (including intensity and 
direction) and texture features to identify lung nodules from pre-detected candi-
dates. For example, Wei et al. [70] determined the optimal feature set of 210 features 
using the forward-step selection method. This method achieved good lung nod-
ule sensitivity. However, with too many features, robustness cannot be guaranteed. 
Schiham et  al. [67] used a multiscale Gaussian filter to extract 96 texture features 
as well as two location features and 11 lung nodule characterization detector fea-
tures and classified them using the KNN classifier. Shiraishi et al. [71] extracted 57 
image features from original and nodule-enhanced images based on the geometry, 
grayscale, background texture, and edge gradient features. Fourteen image features 
were extracted from the corresponding locations in the subtracted images, and three 

Table 2  Pulmonary nodule detection. The datasets, assessment measures, and  detection 
results are provided in each column, respectively

FP/image means specific false positives per image. AUC denotes area under the receiver operating characteristic curve

Study Datasets Assessment measures Results

Wei et al. [70] JSRT AUC​ 85%

Schiham et al. [67] JSRT Average sensitivity under FP/image 2 FP/image: 51%; 4 FP/image: 67%

Shiraishi et al. [71] Custom (924) Average sensitivity under FP/image 5.05 FP/image: 70.1%;

Chen et al. [65] JSRT
Custom (48)

Average sensitivity under FP/image 5 FP/image: JSRT, 78.6%; Custom, 83.3%
2 FP/image: JSRT, 71.4%; Custom, 77.1%

Hardie et al. [72] Custom (167)
JSRT

Average sensitivity under FP/image 4 FP/image: sensitivity 78.1%

Ogul et al. [73] JSRT
Custom (300)

Average sensitivity under FP/image JSRT: 6.4 FP/image, 80%
Custom: 6.7 FP/image, 76%

Bush. [76] JSRT Sensitivity and specificity Sensitivity: 92%; specificity: 86%

Wang et al. [77] JSRT Average sensitivity and specificity 
under FP/image

1.19 FP/image: sensitivity 69.27%; 
specificity 96.02%;
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consecutive artificial neural networks (ANNs) were used to reduce the number of 
false positive candidates. Chen et al. [65] enhanced the nodules in images and used 
a clustering watershed algorithm to extract the initial candidate nodules. Thirty-one 
features, including morphology, gray intensity, area, and gradient, were extracted 
to identify pulmonary nodules using a nonlinear SVM with a Gaussian kernel. Har-
die et  al. [72] calculated a set of 114 features for each candidate nodule. The final 
test was performed on a subset of 46 features using the Fisher linear discriminant 
(FLD) classifier. Ogul et al. [73] used supervised methods to distinguish nodules and 
non-nodules via a set of representative image features. However, inaccurate feature 
calculations and segmentation of complex objects can introduce new errors in their 
performance because hand-crafted features do not adequately represent the nod-
ules; moreover, the design of these features requires specialized prior knowledge.

With the development of convolution neural network (CNN) in recent years, CNN 
model has proved its performance in image classification and detection. However, 
the chest radiograph datasets used for lung nodule detection are relatively small, 
making it might not be very successful to train a complicated pulmonary nodule 
image neural network from scratch. To accomplish this goal, the following stud-
ies explored and used transfer learning [74]. Transfer learning is considered to be 
an efficient learning technique, especially when faced with relatively limited medi-
cal datasets. Compared with the “starting from scratch” way of most other learn-
ing models, transfer learning helps train new models by transferring the learned 
model parameters trained on a large datasets to the new model. Considering that 
some data or tasks are related, we can share the model parameters (also known as 
the knowledge) learned from the model into the new model to improve the model 
performance. Concretely, in the detection of chest X-ray diseases, it is to learn gen-
eral semantic features (such as edge information, color information, etc.) from clas-
sification tasks (such as natural image classification) related to disease detection to 
improve the generalization of disease detection. The network learns the advanced 
semantic classification features by self-adjusting on the chest dataset to achieve the 
purpose of distinguishing specific types of diseases. Bar et al. [75] explored the feasi-
bility of training a CNN with ImageNet, a well-known large scale non-medical image 
database, and finally the trained CNN model was applied to distinguish the dis-
eases in chest radiograph. The best performance was achieved using a combination 
of features extracted from the CNN and a set of low-level features including: SIFT, 
GIST, PHOG and SSIM. This is the first-of-its-kind experiment that shows that deep 
learning with large scale non-medical image databases may be sufficient for gen-
eral medical image recognition tasks. Based on this approach, Bush [76] explored 
the use of the RESNET CNN model by transfer learning the pre-training weights 
extracted from the ImageNet to classify pulmonary nodules, with a sensitivity of 
92% and a specificity of 86%. The model can determine the general nodular area but 
cannot determine the exact locations of the nodules. Although advanced features 
can be derived from classical deep learning models that used transfer learning, they 
are not related to medical image analysis tasks. The greater the gap between fea-
tures extracted from natural images and those from medical images implies lower 
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transferability of the feature. Wang et al. [77] fused the deep feature obtained from 
the CNN model used transfer learning and hand-crafted features (geometric fea-
tures, intensity and contrast features, etc.) to reduce the false positive results. With 
the guidance of the specific false positives, i.e., 1.19 false positives per image, the 
sensitivity is 69.27% and the specificity is 96.02%. The low sensitivity is likely due to 
hand-crafted features being not superior.

Tuberculosis detection

Tuberculosis (TB) is the ninth leading cause of death worldwide and the leading cause 
from a single infectious agent, ranking above HIV/AIDS. Globally, in 2016, the propor-
tion of people who developed TB and died from the disease (case fatality ratio, CFR) 
was 16%, which meant that an estimated 10.4 million people (90% adults; 65% male; 10% 
people living with HIV) fell ill with TB [78]. Detecting tuberculosis in CXRs is a difficult 
task since it has different manifestations. Abnormal tuberculosis manifestations often 
affect the lungs’ texture and geometry in CXRs, such as consolidations, infiltrates and 
cavitation, ranging from subtle miliary patterns to obvious effusions [63, 79]. Table  3 
summarizes the methods of tuberculosis detection, assessment measures, and results.

Some studies detected tuberculosis based on the shape, texture, and local characteris-
tics of the lungs, focusing on the general performance. To imitate radiologists for visual 
detection and diagnosis of the texture features of chest X-ray images, Rohmah et al. [80] 
used texture features as descriptors to classify images as tuberculosis or non-tuberculo-
sis. The results showed that tuberculosis can be detected based on the statistical features 
in the image histogram. Tan et al. [81] proposed a tuberculosis index (TI) based on the 
segmented pulmonary regional texture features and classified the normal and abnormal 
CXR using a decision tree, and obtained an accuracy rate of 94.9%. Noor et al. [82] pro-
posed a statistical interpretation technique to detect tuberculosis in CXR images. They 
first applied the wavelet transform to the CXR image, calculated 12 texture measures 

Table 3  Tuberculosis detection. The datasets, manifestations, assessment measures 
and results are shown in each column, respectively

Study Datasets Manifestations Assessment measures Results

Rohmah et al. [80] Custom (120) Tuberculosis Accuracy, false accept 
rate, false rejection rate

95.7%, 3.33%, 6.67%

Tan et al. [81] Custom (95) Tuberculosis Accuracy, sensitivity, 
specificity, AUC, preci-
sion

92.9%, 91%, 95.4%, 92.8%, 
94.9%

Noor et al. [82] TPR (100) Tuberculosis Accuracy 94%

Song et al. [87] Custom (200) Focal opacities Accuracy

Shen et al. [88] Custom (243) Cavities True positive rate (or 
sensitivity) under FP/
image

0.237 FP/image: 82.35%

Xu et al. [89] Custom Cavities Densitivity, specificity, 
and accuracy

E-Group: 78.8%, 86.8%, 
82.8%; D-Group: 69.4%, 
81.6%, 75.5%

Hwang et al. [90] KIT, MC, Shenzhen Tuberculosis AUC, accuracy, positive 
precision, negative 
precision

96.4%, 90.3%, 95.3%, 97.4%

Lakhani et al. [91] Shenzhen Tuberculosis AUC, sensitivity, and 
specificity

99%, 97.3%, 100%
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from the wavelet coefficients, reduced the dimensions with PCA, and estimated the 
probability of misclassification using the probability ellipsoid and discriminant func-
tions. In addition to extracting texture features, some studies applied bone suppression 
to pretreat chest radiographs for improving the classification performance. Leibstein 
et al. [83] used a DES rib block to pretreat chest radiographs and proposed a method 
based on the local binary pattern (LBP) and Laplacian of Gaussian (LoG) to detect 
tuberculosis and improve the classification performance. Maduskar et  al. [84] com-
pared the automatic tuberculosis detection of conventional CXRs and bone suppression 
CXRs and found that bone suppression was better than the conventional classification 
performance due to the diversity of pulmonary tuberculosis manifestations in the chest. 
Hogeweg et al. [85] improved the detection performance with help of an anomaly detec-
tion system and normal anatomy. The combination of texture anomaly detection and 
clavicle detection reduced false positives. In a study [86], the authors fused the supervi-
sory subsystems for detecting the texture, shape, and focal abnormalities and developed 
a generic framework for tuberculosis detection.

Another portion of the literature has focused on the detection of specific manifes-
tations, such as diffuse opacity, effusion, cavities, and nodule lesions. Song et  al. [87] 
proposed a method to locate focal opacities in tuberculosis. These investigators stud-
ied the initial extraction of rib threads. After locating the ribs, morphological opening 
operations and seed growth methods were used to automatically locate the focal opacity. 
However, handling images that have blots or have no visible features on the border is 
not sufficient and can even lead to misjudgment. Shen et al. [88] proposed a Bayesian 
classification method based on hybrid knowledge to automatically detect tuberculosis 
cavities in CXRs. The gradient inverse coefficient of variation (GICOV) describes the 
texture (area boundary), and the circular measure describes the shape of the latent cav-
ity. This method is the first automatic algorithm that detects tuberculosis accurately but 
uses a global adaptive threshold in such a way that automatic initialization cannot place 
the initial contour within the cavity, leaving a cavity. Xu et al. [89] classified tuberculo-
sis cavities by combining texture and geometric features. First, rough feature classifica-
tion was performed using Gaussian model-based template matching (GTM), LBP, and 
directional gradient histogram (HOG) methods to extract cavity candidates from CXR 
images. These candidates were then further refined using Hessian matrix eigenvalues 
and snake-based techniques by means of active contouring. In the final phase, SVM was 
used to reduce the false positives by further narrowing the enhanced cavity candidates at 
finer scales.

Most prior CAD algorithms used well-designed morphological features to distinguish 
different types of lesions and to improve the screening performance. However, such 
manual features do not guarantee the best description of tuberculosis classification. 
Recently, the role of deep learning in tuberculosis classification has proven to be effec-
tive. Hwang et al. [90] proposed the first CNN-based automatic tuberculosis detection 
system. To overcome the difficulty of training deep NNs, the author adopted a transfer 
learning strategy to improve the system’s performance. Lakhani et al. [91] used radiolo-
gist-enhanced methods to further improve the accuracy in cases of ambiguous classifica-
tion, and they obtained an AUC of 0.99.
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Interstitial lung disease detection

The interstitial lung is support tissue outside the alveolar and terminal airway epithe-
lium. When the interstitial lung is damaged, the chest radiograph indicates changes in 
the texture of the lung [92], such as linear, reticular, nodular, honeycomb, etc. [93]. Inter-
stitial lung disease (ILD) is a group of basic pathological lesions with diffuse pulmonary 
parenchyma, alveolar inflammation, and interstitial fibrosis, including interstitial pulmo-
nary edema, allergic pneumonia, idiopathic pulmonary interstitial fibrosis, sarcoidosis, 
and lung lymphatic cancer [94, 95]. Cases with different interstitial lesions behave very 
similarly on light sheets, even for professionals, it is difficult to distinguish between nor-
mal and non-normal tissue based on texture. Therefore, the detection of ILD in chest 
radiography is one of the most difficult tasks for radiologists.

Earlier articles used CAD systems to detect ILD in chest radiographs through texture 
analysis [96–99]. For example, the CAD system of the Kun Rossman Laboratory in Chi-
cago [100] divided the lung into multiple regions of interest and analyzed the lungs’ ROI 
to determine whether there was any abnormalities. Then, pretrained NNs were used to 
classify suspicious areas to be detected. This system can help doctors improve the accu-
racy of interstitial lesion detection.

Plankis et  al. [94] developed a flexible scheme for CAD of ILD. This approach can 
detect a variety of pathological features of interstitial lung tissue based on an active 
contour algorithm which can select the lung region. The region is then divided into 40 
different regions of interest. Then, a two-dimensional Daubechies wavelet transform is 
performed on the ROI to calculate the texture measure. However, with the extensive 
application of deep learning in the detection of lung diseases, there is little literature on 
the detection of interstitial lung disease in the absence of a large chest X-ray dataset on 
ILD. Most of the literature used CT datasets to detect ILD.

Other diseases

In chest X-rays, in addition to pulmonary nodules, tuberculosis, and ILD, there are other 
diseases that can be detected, such as cardiomegaly, pneumonia, pulmonary edema, and 
emphysema. There is less literature on these diseases, and a brief discussion is given 
here.

Detecting cardiomegaly usually requires analyzing the heart size and calculating the 
cardiothoracic ratio (CTR) and developing a cardiac tumor screening system. Candemir 
et al. [30] used 1D-CTR, 2D-CTR, and CTAR as features, and they used SVM to clas-
sify 250 cardiomegaly images and 250 normal images, obtaining an accuracy of 76.5%. 
Islam et al. [101] used multiple CNNs to detect cardiomegaly. The network was accu-
rately adjusted on 560 image samples and validated on 100 images, and they obtained a 
maximum accuracy of 93%, which is 17% points higher than in the literature [30].

Pneumonia and pulmonary edema can be classified by extracting texture features. 
Parveen et al. [102] used an FCM clustering algorithm to detect pneumonia. The results 
showed that the lung area of the chest was low in black or dark gray. When a patient has 
pneumonia, the lungs are full of water or sputum. Thus, there will be more absorbed 
radiation, and the lung areas will be white or light gray. This approach can help doctors 
detect the degree of infection easily and accurately. Kumar et al. [103] used a machine 
learning algorithm to perform texture analysis of chest X-rays. They used a Gabor filter 
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and SVM to distinguish normal chest and pulmonary edema in chest radiographs, and 
they obtained an AUC of 0.96. Here, they did not use large datasets and validate other 
lung conditions. Islam et al. [101] used a CNN to detect and locate pulmonary edema, 
which manifested as a reticular white structure in the lung area with no anatomical 
changes.

Multiple disease detection
There may be one or more diseases in the chest radiographs. However, when using CAD 
methods to output the normal/abnormal classification of each image, i.e., when they are 
applied to only detect one disease, this approach cannot meet the demand. This section 
discusses the methods of using CAD technique to detect multiple diseases. Table 4 sum-
marizes the conditions, methods, assessment measures, and results.

Avni et  al. [104] used the “bag of visual words” to represent the image content and 
used a nonlinear, multiple SVM to classify the left and right pulmonary pleural effusion, 
cardiomegaly, and septum enlargement, and they obtained AUCs of 80%, 79.2%, and 
88.2%, respectively. However, their algorithm was designed only for global representa-
tion and could identify the diseases manifested in the locally or relatively small regions.

Noor et al. [105] proposed a new texture-based statistical method for the detection of 
lobar pneumonia, tuberculosis, and lung cancer. Each ROI was transformed into four 

Table 4  Multiple disease detection. The datasets, manifestations, assessment measures 
and results are shown in each column, respectively

Study Datasets Conditions Measurements Results

Avni et al. [104] Custom Left and right pulmonary 
pleural effusion, car-
diomegaly, and septum 
enlargement

AUC​ Left and right pulmonary 
pleural effusion: 80%; 
cardiomegaly: 79.2%; 
septum enlargement: 
88.2%

Noor et al. [105] Custom Lobar pneumonia, tubercu-
losis, and lung cancer

Accuracy 70%, 97%, and 79%, respec-
tively

Bar et al. [75] Custom Right pleural effusion, 
cardiomegaly, health, and 
abnormal disease

AUC​ 93%, 89%, and 79%, respec-
tively

Cicero et al. [106] Custom Normal, cardiomegaly, 
pleural effusion, pul-
monary edema, and 
pneumothorax

AUC​ 96.4%, 87.5%, 85%, 96.2%, 
86.8%, and 86.1%, respec-
tively

Wang et al. [23] Chest-Xray14 14 common diseases in 
CXRs

AUC​ Mean: 73.8%

Yao et al. [107] Chest-Xray14 14 common diseases in 
CXRs

AUC​ Mean: 80.3%; however, lim-
ited training focuses on 
biased interdependence 
and cannot accurately 
represent the actual 
distribution of morbidities

Rajpurkar et al. [13] Chest-Xray14 14 common diseases in 
CXRs

AUC​ Mean: 84.2%; pneumonia 
(76.8%) exceeded the 
human level

Kumar et al. [109] Chest-Xray14 14 common diseases in 
CXRs

AUC​ Mean: 79.5%; cardiomegaly 
(91.33%) beyond the 
previous method

Guan et al. [111] Chest-Xray14 14 common diseases in 
CXRs

AUC​ Mean: 87.1%
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subsets using a two-dimensional Daubechies wavelet transform, which represented 
the trend, horizontal, vertical, and diagonal detail coefficients. Twelve types of texture 
measurements, such as the mean energy, entropy, contrast, and maximum column total 
energy, were calculated. The modified principal component (ModPC) method was used 
to generate the feature vectors for the discrimination process. For all three diseases, the 
texture measurement of maximum column total energy produced a 98% correct clas-
sification rate. The two diseases were then compared in pairs, and the correct classifi-
cation rates for lobar, tuberculosis, and lung cancer using mean energy and maximum 
texture measurements were 70%, 97%, and 79%, respectively. This algorithm is different 
from other semi-automatic methods in that the ROI choice does not involve the usual 
segmentation problem, and the proposed statistical-based CAD algorithm does not rely 
on establishing precise boundaries and avoids the possibility of losing information from 
the original image. However, this method still requires further work that involves larger 
samples for validation studies.

Bar et  al. [75] used a combination of features extracted from a CNN, which were 
trained on ImageNet, and a set of low-level features to detect right pleural effusion, car-
diomegaly, and health versus abnormal disease; they obtained AUC values of 93%, 89%, 
and 79%, respectively. However, the detection was performed with features learned from 
non-medical datasets, and it was inaccurate.

Cicero et al. [106] used the GoogLeNet CNN to classify normal, cardiomegaly, pleural 
effusion, pulmonary edema, and pneumothorax on a moderate size dataset automati-
cally. It was shown that the current CNN architecture can be trained with a medical 
dataset of moderate size, which solves the problem of simultaneous prediction of multi-
ple labels for the detection and removal of common diseases in chest radiographs.

NIH [23] published a large-scale chest X-ray dataset and used a weak-supervised 
multi-label method to classify and locate eight diseases, which validated the usability of 
deep learning on this dataset. Based on this result, Yao et al. [107] used DENSENET to 
extract disease features on this dataset and proposed LSTM-based approach to simu-
late label dependency, which improved the classification performance. Rajpurkar et al. 
[13] proposed the ChexNet method, which used dense connections [108] and batch nor-
malization [109] to make the optimization of such a deep network tractable. The AUC 
of pneumonia on the Chest-Xray14 dataset was 76.4%, reaching the human level, and 
greatly improved the accuracy of detection of these 14 diseases. Kumar et al. [110] used 
a cascade deep learning network to classify 14 diseases on this dataset, and the perfor-
mance of classification of cardiomegaly improved upon previous methods. These meth-
ods of detecting multiple labels in chest radiographs all input the global image into the 
network. However, the lesion area can be very small compared to the global image, and 
using a global image for classification could result in a significant amount of noise out-
side the lesion area. In response to this problem, Guan et al. [111] proposed the atten-
tion guided convolutional neural network (AG-CNN), which has three branches, i.e., 
global branch, local branch, and fusion branch. This network combines global and local 
information to improve the recognition performance.
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Discussion
This study discussed various CAD algorithms for detecting abnormal chest radiographs. 
CXR CAD algorithms have wide applications in detecting various diseases, and they are 
playing a vital role as a second opinion for medical experts. In addition, CAD algorithms 
also reduce the workload of medical experts by reviewing many CXRs quickly. In this 
section, we will discuss and compare the CAD algorithms in detection of chest abnor-
malities, and will state some problems and the future works in this field.

1.	 From the literatures, it can be found that there are many CAD methods currently 
used to detect abnormalities in chest radiographs. Most of these methods belong to 
the field of artificial intelligence [112] and they dedicate to computer-aid detection 
based on the chest radiograph. However, it is proved that the deep learning methods 
are more accurate in classification from the comparison and laboratory experiments 
shown in Table 5. Furthermore, previous methods can only detect one or several dis-

Table 5  Comparison of  classification methods for  thoracic diseases. The classification 
methods, measurements, and  best results in  the  review are shown in  each column, 
respectively

Methods Measurements Best results

Traditional machine learn-
ing methods

Maharanobis distance [70] AUC​ Lung nodules: 85%

KNN [67] Sensitivity Lung nodules 4FP/image: 
67%

ANN [71] Sensitivity Lung nodules 5.05FP/image: 
70.1%

SVM [30, 65, 89, 104] Sensitivity, accuracy
Specificity, AUC​

Lung nodules: sensitivity 5FP/
image: 83.3%

Tuberculosis: accuracy 82.8%, 
specificity 86.8%, sensitivity 
78.8%

Cardiomegaly: accuracy 
76.5%, sensitivity

77.1%, AUC 79.2%
Pleural effusion: AUC 80%
Septum enlargement: AUC 

88.2%

Fisher linear discriminant 
[72]

Sensitivity Lung nodules 4FP/image: 
78.1%

Minimum distance [80] Accuracy Tuberculosis: 95.7%

Decision tree [81] Accuracy Tuberculosis: 94.9%

Bayesian classifier [88] Sensitivity Tuberculosis: 0.237 FP/image: 
82.35%

Traditional machine learn-
ing methods + CNN

CNN transfer learn-
ing + SVM [75]

AUC​ Right pleural effusion: 93%
Cardiomegaly: 89%

AlEXNET transfer learn-
ing + random forests [77]

Sensitivity, specificity Lung nodules: 1.19FP/image: 
sensitivity 69.27%, specific-
ity 96.02%

Deep learning methods RESNET transfer learning 
[76]

Sensitivity
Specificity

Lung nodules: sensitivity 92%, 
specificity 86%

CNN transfer learning [90] AUC, accuracy Tuberculosis: 96.4%, 90.3%

CNN [101] Sensitivity, accuracy, 
AUC, specificity

Cardiomegaly: 93%, 97%, 
94%, 92%

GoogleNet CNN [106] AUC​ Cardiomegaly: 87.5%, pneu-
mothorax: 86.1%, pleural 
effusion: 96.2%, pulmonary 
edema: 86.8%
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eases from the chest radiograph, while Table 6 shows that the deep learning method 
can read the appearance of various types of suspected diseases simultaneously and 
directly from the chest radiograph, which conforms to the principles of radiolo-
gists’ interpretation of the film. This should be a main direction of computer-assisted 
detection of chest radiographs in the future. We think that deep learning has very 
far-reaching development potential, while at the same time it needs further improve-
ment for playing a greater role. At present, deep learning methods classify diseases by 
extracting the features from the limited datasets. However, the problems with these 
methods are that limited datasets have limitations, such as unbalanced sample distri-
bution, and the generality of the networks trained with them is insufficient. In order 
to further improve the classification ability, the following aspects should be carried 
out: (1) Dataset: Based on existing datasets, a more representative dataset with a 
larger number of examples, preferably from different devices and different regions, 
is established, making the training network more versatile. (2) The network needs to 
be further studied and optimized in order to facing special resolution. For example, 
RESNET increased network depth by adding residual blocks [7]. DENSENET con-
nected all layers (with matching feature-map sizes) directly with each other to ensure 
maximum information flow between layers in the network. They can farther alleviate 
the vanishing-gradient problem, strengthen feature propagation, encourage feature 
reuse, and substantially reduce the number of parameters [108]. Dual Path Network 
[113] combined residual channels with densely connected paths to increase training 
speed significantly, reduce memory footprint, and maintain higher accuracy. Similar 

Table 6  Comparison of  multiple label classification methods for  thoracic diseases. The 
classification methods, measurements, and  best results in  the  review are shown in  each 
column, respectively

Methods Thoracic diseases Measurements Best results

RESNET [23] Atelectasis, cardiomegaly 
effusion, infiltration, mass, 
nodule, pneumonia, pneu-
mothorax, consolidation, 
edema, emphysema, fibrosis, 
pleural thickening hernia

AUC​ Respectively, 71.6%, 80.7%, 
78.4%, 60.9%, 70.6%, 
67.1%, 63.3%, 80.6%, 
70.8%, 83.5%, 81.5%, 
76.9%, 70.8%, 76.7%

LSTM + DENSENET [107] AUC​ Respectively, 77.2%, 90.4%, 
85.9%, 69.5%, 79.2%, 
71.7%, 71.3%, 84.1%, 
78.8%, 88.2%, 82.9%, 
76.7%, 76.5%, 91.4%

ChexNet [13] AUC​ Respectively, 82.1%, 90.5%, 
88.3%, 72.0%, 86.2%, 
77.7%, 76.3%, 89.3%, 
79.4%, 89.3%, 92.6%, 
80.4%, 81.4%, 93.9%

Cascade deep learning net-
work based on DENSENET 
[110]

AUC​ Respectively, 76.2%, 91.3%, 
86.4%, 69.2%, 78.9%, 
70.4%, 71.5%, 85.9%, 
78.4%, 88.8%, 91.6%, 
75.6%, 77.4%, 89.8%

Attention guided CNN [111] AUC​ Respectively, 85.3%, 93.9%, 
90.3%, 75.4%, 90.2%, 
82.8%, 77.4%, 92.1%, 
84.2%, 92.4%, 93.2%, 
86.4%, 83.7%, 92.1%
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to the literature [111], the Residual Attention Network [114] introduced an attention 
mechanism to extract the significant features from the images by stacking multiple 
attention modules. These mentioned above methods have greatly improved the clas-
sification accuracy.

2.	 The big data is used in current deep learning methods to extract the features of the 
corresponding disease through the convolution algorithm, that is, to extract different 
features from shallow level to deep level through convolution operations. The train-
ing process of the neural network makes the entire network to automatically adjust 
the parameters of the convolution kernel, resulting in the suitable classification fea-
tures being consistent with the appearance of the chest radiograph image. Although 
these methods have made great progress in this area, it is very time-consuming to 
build big data. Therefore, it should be considered whether future studies can use 
other domain datasets to emulate chest radiographs. Or similar to Two-Pathway 
Generative Adversarial Network (TP-GAN) proposed by literature [115] (combin-
ing a realistic frontal face view by simultaneously sensing the global structure and 
local details), it may be possible to use small datasets to generate valuable big data 
that can help with lung diseases detection. To avoid the need for large datasets, a 
method similar to Alphago Zero [116], which uses no datasets and instead relies on 
radiologist-interpreting-film-rules studied in the review, could be used. This should 
be a direction of study in the future.

3.	 According to the first point mentioned above, CNN and other networks have reached 
a relatively mature stage and have higher classification accuracy than other artificial 
intelligence methods. However, it should be believed that in the future research, in 
addition to the above-mentioned improvements on deep learning network, some 
traditional machine learning methods still have potential for development and will 
continue to play a vital role in many aspects. It is valuable to study these methods for 
improvement of chest X-ray disease detection.

4.	 The appearance of a disease in the chest is usually accompanied by other diseases 
and is related to each other, such as pulmonary tuberculosis usually accompanied by 
pneumonia, and there are other abnormalities that can be caused by the exacerbation 
of a disease. According to the multiple diseases detection section, multiple disease 
detection through artificial intelligence methods in the chest radiographs is clinically 
required, and is currently an important study direction. We can also consider the 
further detection of the deterioration of the disease, such as whether ordinary pneu-
monia can be transformed into interstitial pneumonia. The current methods do not 
reach this point, because the features of diseases that could further deteriorate have 
not been discovered yet. It could be solved by using CAD techniques in molecular 
biology, which plays an important role in the diagnosis and treatment of diseases.

Conclusions
Usually there are four steps in a CAD system: algorithm preprocessing, extracting ROI 
regions, extracting ROI features, and classifying disease according to the features. In the 
algorithm preprocessing and extraction of ROI, the techniques of enhancement and seg-
mentation are very important. Usually, there are many ways to highlight lesions and sup-
press noise. In the segmentation, the deformable model and the deep learning method 
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are the best, while the rule-based methods have poor performance, and they often used 
together with other methods to improve the segmentation performance. The techniques 
of bone suppression are used less frequently in the literature, but removing the rib and 
clavicle that block lung abnormalities can improve the system performance; In terms 
of feature extraction, the features extracted by traditional machine learning algorithms 
include geometric features, texture features, and shape features, which are usually pro-
cessed to reduce the dimensionality due to feature redundancy. However, hand-crafted 
features could have errors that affect the classification performance and are gradually 
replaced by deep learning methods. In terms of classifier selection, the performance of 
support vector machine and random forest in traditional algorithms may be better, but 
with the excellent performance of deep learning in image classification, the deep learn-
ing methods have gradually become the mainstream.
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