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Background
In 2017 in the United States, an estimated 222,500 people have been diagnosed with lung 
cancer, accounting for 13.2% of all new cancer cases [1]. In addition, the 5-year survival 
rate for lung cancer is less than 20%, and the 1-year survival rate is less than 50% [2]. 
This survival rate is strongly dependent on the development of the lung cancer before its 
detection. The earlier the lung cancer is diagnosed from a patient, the longer he or she 
will be susceptible to live.

Low-dose CT screening for lung cancer in individuals at high risk is recommended 
as an effective way of early detection by many scientific societies, based on the finding 
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screening is the prerequisite for precise management of lung cancer. However, a large 
number of false positives appear in order to increase the sensitivity, especially for 
detecting micro-nodules (diameter < 3 mm), which increases the radiologists’ workload 
and causes unnecessary anxiety for the patients. To decrease the false positive rate, we 
propose to use CNN models to discriminate between pulmonary micro-nodules and 
non-nodules from CT image patches.

Methods:  A total of 13,179 micro-nodules and 21,315 non-nodules marked by radiol-
ogists are extracted with three different patch sizes (16 × 16, 32 × 32 and 64 × 64) from 
LIDC/IDRI database and used in the experiments. Three CNN models with different 
depths (1, 2 or 4 convolutional layers) are designed; their performances are evaluated 
by the fivefold cross-validation in term of the accuracy, area under the curve (AUC), 
F-score and sensitivity. The network parameters are also optimized.

Results:  It is found that the performance of the CNN models is greatly dependent on 
the patches size and the number of convolutional layers. The CNN model with two con-
volutional layers presented the best performance in case of 32 × 32 patches size, achiev-
ing an accuracy of 88.28%, an AUC of 0.87, a F-score of 83.45% and a sensitivity of 83.82%.
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that it could reduce lung cancer mortality by 20% [3]. One of the aims of screening is to 
detect pulmonary nodules regarded as crucial indicators of lung cancer from CT images. 
Pulmonary nodules can be defined as small masses of tissue in the lung of round or oval 
shape, well-marginated with a diameter less or equal to 30 mm. Based on their diam-
eters, pulmonary nodules can be divided into three categories including micro-nodules 
(< 3 mm), small nodules (3–9 mm) and nodules (10–30 mm).

Many automated pulmonary nodule detection systems have been developed to pro-
vide with a second opinion and aid the radiologist who is required to find nodules from 
a huge number of CT images [4]. Generally, these automated systems include two steps: 
(1) the candidate screening; (2) the false positive reduction [5]. The coarse candidates 
are screened by setting the threshold to the intensity and morphological parameters [6, 
7]. The threshold value is usually lenient for high sensitivity, and a large number of false 
positives are generated. Hence, the advanced classifiers are required to decrease the false 
positive rate.

Some hand-crafted features and machine learning based classifiers have been 
employed to build up numerous automated pulmonary nodule detection systems. Hara 
et  al. developed a 2nd order autocorrelation features based system for small nodules 
(< 7 mm) detection, achieving an accuracy of 94% [8]. Aggarwal et al. suggested a sys-
tem based on image processing and segmentation techniques [9]. Santos et  al. incor-
porated the Gaussian mixture models, Shannon’s and Tsallis’s Q entropy and support 
vector machine (SVM) into a system for detection and classification of small nodules 
(2–10  mm) [10]. Gong et  al. eliminated the false-positive nodules utilizing the Fisher 
linear discriminant analysis (FLDA) classifier [11]. Liu et al. exploited the spatial fuzzy 
C-means (SFCM) and the random forest (RF) classifier [12]. Although the systems men-
tioned above achieved satisfactory performance, they comprise many steps and are com-
putationally expensive.

Recently, the deep convolutional neural networks (CNNs) have been successfully used 
in many applications including the detection and classification of the pulmonary nod-
ules. Deep CNN can automatically discover features from high-dimension data, which 
helps avoid the feature extraction and selection, and lead to the end-to-end solution 
[13]. Setio et al. proposed a multi-view CNN based system [7]. Tan et al. developed a 
two-phase framework system based on CNN for detection of juxta-pleural lung nodules 
and false positives reduction [14]. A 3D CNN based CAD system for detection of lung 
nodules in low dose CT images was proposed by Huang et al. [15]. Alakwaa et al. pro-
posed a 3D-CNN based system for detection and classification of lung cancer, achieving 
an accuracy of 86.6% [16].

It is noted that previous studies are limited to small nodules with a diameter larger 
than 3 mm, no study on micro-nodules (diameter < 3 mm) has been done. It is reported 
that the pulmonary nodules with the diameter < 4 mm account for 59.5% in a total of 210 
uncalcified pulmonary nodules [17]. Moreover, many recommendations have been given 
for the management of micro-nodules by different institutes. For example, the inter-
val CT at 12 months is recommended for the subjects with high risk if the solid nodule 
(< 4 mm) is detected in the baseline scan, by Fleischner, Lung-RADS, and ACCP (Ameri-
can College of Chest Physicians) guideline [18].
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In this paper, we propose to develop CNN models to discriminate between micro-nod-
ules and non-nodules. As a pioneer work, we expand the automated pulmonary nodules 
detection to the micro-nodules. Due to the smaller size (diameter < 3 mm), the classifica-
tion is thought to be different and more difficult than the large nodules. Our contribu-
tions or novelties are summarized as follows. First, without the nodule segmentation, 
hand-craft feature extraction and selection, the proposed CNN models provide with the 
end-to-end solution, i.e., from the image patches to the determination of micro-nodules 
or non-nodules. Second, a total of 13,179 micro-nodules and 21,315 non-nodules are 
extracted with three different patch sizes (16 × 16, 32 × 32 and 64 × 64) from LIDC/IDRI 
database, for both the validation of our CNN models and open access to future study. 
Third, the effect of the parameters optimization, the patches size (Receptive field), and 
the network depth on the performance of CNN models identifying the micro-nodules 
are clarified.

Methods
LIDC/IDRI dataset

All the CT images are acquired from a publicly accessible medical images database 
named the Lung Image Database Consortium and Image Database Resource Initiative 
(LIDC/IDRI) [19]. This database is made up of 1018 CT scans produced from 1010 dif-
ferent patients where the scans of eight patients had been duplicated by inadvertence. 
The obtained images are of sizes 512 × 512 and are kept in DICOM format.

Each scan was analyzed independently by four medical experts of different institutions 
with the unique aim of annotating the existing lung nodules. In the aim of achieving 
more accurate and efficient results, the annotation process was conducted in two steps. 
In the first step, every patient’s images file was examined and annotated by each of the 
four medical experts independently which is also called the “blinded reading”. In the sec-
ond step, the results of the first step were put together and forwarded to each of the four 
medical experts which allowed them to see both their own annotations and the ones 
done by the other three colleagues. Making use of the information revealed by other 
medical experts’ markings, each medical expert for the second time examined and anno-
tated each scan independently and made a final decision about the existing lung nodules. 
This second step of the annotation process is also known as “unblinded reading”.

According to their diameters, the medical experts classified the found lesions into 
three main categories: (1) nodules (3–30 mm). This type of nodules is having their out-
line well marked by each of the medical expert. An example of lung CT image containing 
a nodule is shown in Fig.  1a. (2) Micro-nodules (< 3  mm). There is no provided con-
tour for this type of nodules. They are pointed out only through their three-dimensional 
center-of-mass. Figure 1b illustrates a micro-nodule found in a lung CT image. (3) Non-
nodules (> or equal 3 mm). They are also pointed out only through their three-dimen-
sional center-of-mass. The presence of non-nodule in a lung CT image is demonstrated 
in Fig. 1c.

Image patches with different sizes

To avoid the data duplication, the eight duplicated patients’ scans of the LIDC/IDRI 
dataset were ignored. Every lesion detected by the medical experts is represented in the 
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xml file by a lesion identifier, a ROI (region of interest) including the x, y and z coordi-
nates. Both the micro-nodules and the non-nodules are represented by only one point 
with no reported characteristics. There is a unique keyword “Locus”, proper to non-nod-
ules in replacement of “edge map” in the definition of nodules and micro-nodules.

For our CNN models, the input is the small patches centering on the point defined by 
xml file and cropped from the CT images. The patch size, also named the receptive filed 
of a network, determines the surrounding range of micro-nodules and non-nodules. 
Because of the small size of micro-nodules, the discriminating features learned in the 
CNN models are strongly dependent on the surrounding or contextual information of 
the micro-nodules. Thus, to determine the appropriate patch size, we generated image 
patches with different sizes including 16 × 16, 32 × 32 and 64 × 64. Some examples of the 
micro-nodules and non-nodules are presented in Fig. 2, in the form of different patch 
sizes. Finally, a total of 13,179 micro-nodules and 21,315 non-nodules image patches 
were extracted.

CNN models

Considering the fact that the micro-nodules and non-nodules are both tiny objects, we 
designed three CNN models with small filters and different depths, as shown in Fig. 3. 
The first CNN model (M1) consists of one convolutional layer and one MaxPooling layer 
after which follow a fully connected layer, a dropout layer and two fully connected layers 
including the Softmax layer. The dropout layer helps the network in ignoring some units 
during the training process which can overcome the problem of overfitting.

The second CNN model (M2) consists of two convolutional layers. The first one is fol-
lowed by a rectified linear activation (ReLU) layer and a MaxPooling layer. A dropout 
layer and two fully connected layers including the Softmax layer follow the second con-
volutional layer. The ReLU layer plays the role of accelerating the convergence of the sto-
chastic gradient descent (SGD) resulting to an improvement of the training speed.

Fig. 1  Examples of the suspected lesions and non-nodules identified in the LIDC/IDRI dataset. a Nodules 
(3 mm ≤ diameter < 30 mm); b micro-nodules (diameter < 3 mm); c non-nodules (3 mm ≤ diameter)
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Fig. 2  The extracted patches of micro-nodules (the first row) and non-nodules (the second row) with 
different sizes. a With the patch size of 64 × 64; b with the patch size of 32 × 32; c with the patch size of 
16 × 16

Fig. 3  The architectures of the proposed three CNN models. a The first CNN model (M1); b the second CNN 
model (M2); c the third CNN model (M3)
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The architecture of the third CNN model (M3) comprises four convolutional layers in 
which the first, second and third ones are followed by a MaxPooling layer which helps 
the network to focus only on the image information resulted from the convolution pro-
cess [21]. The last convolutional layer is followed by a dropout layer and two fully con-
nected layers including the Softmax layer.

CNN training and cross‑validation experiments

The fivefold cross-validation experiments were carried out for each of the three pro-
posed CNN models and each of the three patch sizes. That is, after dividing all data into 
5 disjoint subsets, 4 subsets are added to the training set, and the remaining is used for 
testing. For the training process, we set the learning rate of 0.0001, the parameters of 
momentum of 0.9 and the epochs’ number of 50. The number of epochs and the kernels 
size are varied to optimize the network parameters.

All the experiments were implemented in Matlab 2018a under a Windows 10 oper-
ating system on a workstation with CPU Intel Xenon E5-2640 v4 @ 2.40  GHz, GPU 
NVIDIA Quadro M4000 and 32G RAM.

Evaluation metrics

To evaluate the performance of the proposed CNNs, we used four metrics such as the 
average F-score also known as F-score, the accuracy, the sensitivity or recall (true posi-
tive rate) and the area under the curve (AUC). The average F-score is a measure com-
puted from considering both the precision and the recall of the data samples and is 
expressed as follows:

where the number of classes C is equal to two. The precision and recall are defined as

where TP (true positive) is the proportion of the samples correctly classified, FP (false 
positive) is the proportion of samples shown correctly classified as belonging to a spe-
cific class when they actually do not belong to that class, and FN (false negative) rep-
resents the number of samples classified as not belonging to a specific class when they 
actually do belong to that class.

In the proposed classification method, making use of the labels previously assigned 
to each micro-nodule and non-nodule image patch (1—micro-nodule; 0—non-nodule), 
the TP rate and the true negative (TN) rate are obtained by determining the number 
of micro-nodules correctly labeled with one and the number of non-nodules correctly 
labeled with zero respectively. Similarly, the FP rate and the FN rate consist of the 

(1)F − score =

2∑

C=1

RecallC × PrecisionC

RecallC + PrecisionC

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN
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number of non-nodules labeled with one and the number of micro-nodules labeled with 
zero respectively.

The accuracy can be defined as an evaluation measure computed by dividing the 
amount of data correctly classified by the overall data used for the experiments. The 
AUC is equal to the probability that a classifier will rank a randomly chosen positive 
instance higher than a randomly chosen negative example. It is computed from the 
receiver operating characteristic (ROC) curves.

Results
Networks parameters optimization

For the first CNN model (M1) and the image patches of 32 × 32, the kernel size of the 
convolutional layer was chosen to be 3 × 3, yielding the highest values of 83.8%, 0.84, 
78.54%, and 81.26% for the accuracy, the AUC, the F-score, and the sensitivity, respec-
tively. Actually, we started the training with the kernels of size 11 × 11 and noticed that 
smaller sizes of the kernel led to an improvement of the accuracy, AUC, F-score and 
sensitivity.

Similarly, the second CNN model (M2) achieved an accuracy of 88.28%, an AUC of 
0.87, an F-score of 83.45% and a sensitivity of 83.82%. In the beginning, we considered 50 
for the number of epochs; then we noticed that its increase resulted in an improvement 
of both the accuracy and the F-score. Therefore, we chose the optimal epochs’ number 
to be 120 whose increase did not improve the training performance. The micro-nodules 
being of very small size, we shrunk the kernels of the second convolutional layer to the 
size of 2 × 2; which resulted in an accurate capture of the fine image details leading to 
the improvement of the training results. In addition, Fig. 4a, b display the visualization 
of the learned kernels in the first (7 × 7) and second (2 × 2) convolutional layers, respec-
tively. It can be seen that there is no presence of noises and artifacts. The image patterns 
are very smooth and contain much more feature information; which demonstrates the 
good choice of the network parameters resulting to a well-trained network without over-
fitting and yielding great classification performance.

The values adopted for the parameters of the third CNN model (M3) were 0.0001, 
0.9 and 50 for the learning rate, the momentum parameters and the epochs’ number, 
respectively; yielding an accuracy of 86.84%, an AUC of 0.86, an F-score of 82.79%, and a 
sensitivity of 83. 67%. We noticed no improvement of the training results while assigning 
different values to those parameters.

CNN models with different patch sizes

For three patch sizes of 64 × 64, 32 × 32, 16 × 16, the first CNN model (M1), the sec-
ond CNN model (M2), and the third CNN model (M3) achieved different F-score, accu-
racy, sensitivity and AUC, as shown in Table 1. In addition, the ROC curves are drawn 
in Fig. 5 with the sensitivity and the AUC. From left to right, the first, second and third 
column correspond to the classification performance of M1, M2 and M3 in term of AUC 
and sensitivity, respectively.

We started the experiments with patches of size 64 × 64 and we noticed an improve-
ment of the performance of all the three CNN models while choosing smaller patches 
size (32 × 32), as described by the accuracy, the F-score, the sensitivity and the AUC 
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values recorded in Table  1. A progressive decrease of the patches size till 16 × 16 led 
to an increase of the F-score and the accuracy values but resulted to a smaller value of 
the AUC and the sensitivity. Therefore, the appropriate patches size was chosen to be 
32 × 32.

CNN models with different depths

For the patch size of 32 × 32, we performed experiments with three different depths 
and their performances are presented in Table  1 and Fig.  6. One can find that M2 

Fig. 4  The visualization of the learned features in the trained second CNN model (M2). a The smoothed 64 
kernels (7 × 7) in the first convolutional layer; b the smoothed 128 kernels (2 × 2) in the second convolutional 
layer

Table 1  Performance of three CNN models for three different patch sizes

The rows marked in italics illustrate the patch size achieving the highest sensitivity and AUC in the specific model

Patch sizes F-score (%) Accuracy (%) Sensitivity (%) AUC (%)

The first CNN model (M1) 64 × 64 75.09 81.22 75.71 79.99

32 × 32 78.54 83.8 81.26 84.66

16 × 16 81.09 85.65 80.01 82.74

The second CNN model (M2) 64 × 64 81.84 86.41 83.12 85.64

32 × 32 83.45 88.28 83.82 87.37

16 × 16 84.3 87.03 82.35 85.65

The third CNN model (M3) 64 × 64 81.92 86.35 82.31 85.36

32 × 32 82.79 86.84 83.67 86.73

16 × 16 83.53 87.504 82.49 86.17
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being deeper than M1 performed better, as illustrated by their respective accuracy, 
AUC, F-score and sensitivity values. Moreover, by comparing the closeness of the 
ROC curve peak to the value one and the corresponding AUC values, M2 outper-
forms M3 even though M3 architecture includes more layers. Therefore, the second 
CNN model (M2) is the most suitable CNN architecture for discriminating between 
micro-nodules and non-nodules.

The training accuracy and loss functions of M1, M2 and M3 are plotted in Fig. 7, 
where smoothing was performed for better analysis of the curves. It can be found 
that M1 converges very fast, but the accuracy can hardly reach 90% and the loss 
value remains high (> 0.30). M2 needs more iterations, and the accuracy is the high-
est (almost 100%) and the loss value is the lowest (0.56) among the three models. For 
M3, the convergence is not stable, and the loss value can only decrease to 0.76.

Fig. 5  The performance evaluation of the proposed CNN models with the input image patches of different 
sizes. a The patch size of 64 × 64; b the patch size of 32 × 32; c the patch size of 16 × 16
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Classification results and comparison with previous works

Some image patches after the classification using M2 are shown in Fig.  8. As can be 
observed, micro-nodules and non-nodules of our dataset are very similar in both sizes 
and shapes whose features can sometime be very difficult to differentiate; which might 
easily lead to misclassification. However, the second CNN model (M2) is robust and effi-
cient enough to achieve the best classification performance with relatively low false posi-
tive rate justified by the highest sensitivity of 83.82%.

We have drawn a comparison with some existing works done on the LIDC/IDRI data-
set, as shown in Table 2. We have analyzed all the 1010 patient images files of the LIDC/
IDRI database without excluding any cases which is significantly higher than the number 
of scans considered by most of the existing works. On the other hand, we have extracted 
a total of 13,179 micro-nodules where more than 2600 were used for testing which shows 

Fig. 6  Receiver operating characteristic (ROC) curves of CNN models for micro-nodules and non-nodules 
classification with different depths (1, 2 or 4 convolutional layers) (the size of the input image patches is 
32 × 32)

Fig. 7  The training accuracy and loss functions of the three proposed CNN models. a M1 (with 1 
convolutional layer); b M2 (with 2 convolutional layers); c M3 (with 4 convolutional layers)
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the high complexity of detection due to a more diversified dataset. Although Golan et al. 
[21] have used a total of 1018 scans, their test set comprises only 204 samples yielding 
a sensitivity even smaller than that of our system. Jiang et al. conducted their study on 
1006 scans achieving a sensitivity of 80.06% with 4.7 false positives per scan and 94% 
with 15 false positives per scan [22]. Therefore, our system outperforms the Golan et al. 

Fig. 8  Examples of the image patches classified by the proposed CNN model (M2) with the input patches of 
32 × 32

Table 2  The performance comparison between  the  proposed model and  some existing 
models

Models Year Number 
of scans

The nodule size The number 
of nodules

Sensitivity

Our model – 1010 Diameter < 3 mm 2635 83.82%

Jiang et al. [20] 2017 1006 Diameter > 3 mm – 80.06% (with 4.7 false 
positives per scan)

94.00% (with 15.1 false 
positives per scan)

Golan et al. [12] 2016 1018 Diameter ≥ 3 mm 204 78.9% (with 20 false 
positives per scan)

71.2% (with 10 false 
positives per scan)
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[21] and Jiang et al. [22] systems in both number of study cases and achieved sensitiv-
ity. Furthermore, other systems only focused on nodules with diameter ≥ 3  mm while 
our system aimed to classify much smaller nodules (diameter < 3 mm) making it more 
difficult.

Discussion
In this study, we have developed three CNN models to differentiate micro-nodules and 
non-nodules from CT images. These models can be used to reduce the false positives 
in automated pulmonary nodule detection, which will consequently reduce the radiolo-
gists’ workload, avoid unnecessary anxiety for the affected subjects, and help imply more 
accurate follow-up leading to proper treatment and lives saving.

The significance of the accurate recognition of micro‑nodules

The survival outcome of an individual suffering from lung cancer is strongly dependent 
on the stage of the cancer when it is diagnosed; which is mostly evaluated based on the 
size of the pulmonary nodules shown on CT scans. Recently, numerous works have been 
conducted aiming to accurately evaluate the pulmonary nodules, which is of significant 
importance in the therapeutic decision [23, 24]. However, it is still very challenging to 
recognize nodules of diameter < 3 mm.

For the identified micro-nodules, many specialized lung cancer associations had 
given various recommendations of their management such as “to be ignored” or “to be 
kept under surveillance”. For populations in Asia, annual CT scans are also mentioned 
depending on clinical judgment and patient preference for subjects with solid nodule 
less than 4.0  mm diameter [23]. For the multiple well-defined ground-glass nodules 
(GGN) with the diameter of 5 mm or less, the conservative management of follow-up 
CT scans at 2 and 4 years are recommended [24]. Moreover, there is no consensus about 
the malignancy risk of micro-nodules. MacMahon et al. reported that the malignancy 
risk is highly related to its size: 0.2% for nodule < 3 mm, 0.9% for nodules 4–7 mm, and 
18% for 8–20 mm [25]. However, Munden et al. found that 28% of small pulmonary nod-
ules detected at baseline CT scan will increase in size, indicating metastatic disease [26].

CNN models or the hand‑crafted features based classifier or their fusion

In general, there are three strategies to discriminate between pulmonary micro-nodules 
(or small nodules) and non-nodules from CT images. First, the CNN models are used to 
avoid some computationally expensive steps such as the segmentation, feature extrac-
tion and selection, and lead to the end-to-end solution. Similarly, the residual CNN has 
been employed to reduce the false positives [27], the massive-training artificial neural 
networks (MTANNs) have also been used to build up the end-to-end machine-learning 
models given the limited training data [28]. To the end of addressing the lack of data 
problem, the data augmentation and transfer learning have been proposed [29]. We had 
tried to do data augmentation (i.e., rotation, translation, and scale) in this study, but 
no significant improvement was found for any performance measures (i.e. the F-score, 
accuracy, sensitivity, and AUC). Since we had a total of 13,179 micro-nodules and 21,315 
non-nodules image patches, the transfer learning was not considered. Other end-to-end 
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models such as the deep belief network (DBN) and stacked denoising autoencoder 
(SDAE) might also be included into this category [30].

Second, the hand-crafted features based classifiers have been widely applied. Based on 
boundary delineation or segmentation, various features have been considered including 
intensity, morphology, texture, wavelets, and so on [31–33]. Then the feature selection 
and machine learning based methods are followed [34, 35]. For example, to characterize 
the lung cancer phenotypes, Parmar et al. [36] had evaluated 14 feature selection algo-
rithms and 12 classification methods, and found that Wilcoxon test based feature selec-
tion method and random forest achieved the highest performance.

Third, the fusion of CNN estimation and hand-crafted features has also been used to 
address the false-positive reduction in the automated detection of nodules [4]. Although 
it is difficult to decide on the best strategy to be applied, our CNN models present one 
end-to-end solution with satisfied performance for the classification of micro-nodules 
and non-nodules.

CNN parameters optimization

The choice of the network architecture and of the training parameters may have great 
effect on the classification results. It has been suggested that a wise network param-
eters (number of magnitude M) selection allows designing a network producing accu-
rate results [37]. For instance, He et al. proposed ResNet with 152 layers and only 2 M 
parameters [38]; which significantly outperformed VGG-Net [39] consisting of 16 layers 
and 140 M parameters. Regarding the kernel sizes of the convolutional layers, we have 
noticed that small kernels (3 × 3 or 2 × 2) can access the fine details of the images lead-
ing to a more accurate features discovering. In 2014, one of the top networks of the ILS-
VRC was the VGG-Net with kernels of 3 × 3 developed by Simonyan et al. [39]. In our 
models, a decrease of the kernel sizes led to an improvement of the system performance 
where 2 × 2 kernels yielded very satisfactory classification results.

While designing a CNN network, it is necessary to include a dropout layer and an acti-
vation layer because they can be used to overcome the problems of overfitting and high 
computation time. Besides, the learning rate and the epoch number are critical param-
eters whose values must be assigned carefully and in regard with the problem at hands.

Patch size for small objects

An input of large images may take a longer time and result in a poor features learning 
especially for the case of tiny objects. The computation capacity of the numerous exist-
ing deep learning based methods is conditioned by the memory available on the Graph-
ics Processing Units (GPUs), making it almost impossible to apply deep CNN based 
methods for processing very large images [37]. Therefore, to the end of remedying to the 
memory requirement, it is necessary to split the large images into small patches com-
prising the objects whose features need to be detected. Additionally, large image patches 
may contain important amount of unnecessary information which could cause mixed-
pixel problem [40].

In our system, we have investigated the image patches of size 16 × 16, 32 × 32 and 
64 × 64. Given the small size of the micro-nodules, the image patches of 32 × 32 do not 
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contain too much unnecessary information; which helps the CNN to accurately extract 
the features indispensable for recognizing the micro-nodules. Thus, the appropriate 
patch size was chosen to be 32 × 32.

Is the larger depth of the CNN always good?

Recently, the number of layers of deep CNNs has become larger and larger. The first suc-
cessful application of CNN in recognition task was achieved with AlexNet proposed by 
Krizhevsky et al. [41]. This network architecture consisted of eight layers. Later on, some 
much deeper CNN structures were proposed, including GoogLeNet [42], VGG-Net [39] 
and the Residual Network (ResNet) and its variants [38, 43]. It is beneficial to increase 
the number of layers in the network because the features can be easily learned at dif-
ferent abstraction levels. However, using very deep network structures requires more 
parameters to be learned leading to an increase of the network complexity, the training 
time, the error generalization and the overfitting rate.

In our study, we have explored CNNs with one, two, and four convolutional layers; 
where the most successful model was not the deepest one but the one with two convolu-
tional layers. Therefore, the deeper CNN structures are not always good and it is crucial 
to take into consideration the following factors while designing a network: the size and 
shape of the objects to be classified, the available dataset, and some parameters such as 
kernels size and not only rely on the network depth. The study conducted by Tajbakhsh 
et al. [28] supported this point, and in our previous work, we developed an agile CNN 
model with effective depth through combining the LeNet and AlexNet [44].

Limitations and future works

Although our proposed CNN models with appropriate depth and size of image patches 
can effectively discriminate between pulmonary micro-nodules and non-nodules, there 
are still some limitations to be addressed. First, the CNN models are based on the 2D 
image patches. Actually, one can find that it is really a difficult task to discriminate 
between some micro-nodules and non-nodules using the 2D visual characteristics, as 
shown in Fig.  8. The 3D CNN models or RNN models considering more contextual 
information will be explored in the next work. Second, we did not combine the patches 
(or the receptive field) with different size together as done by Dou et al. [5]. Third, we 
only used the dataset of LIDC, the generalizability of our CNN models is not known for 
other independent dataset. These limitations will be addressed in the future study.

Conclusion
The proposed CNN models with appropriate depth and size of image patches can effec-
tively and efficiently discriminate between pulmonary micro-nodules (diameter < 3 mm) 
and non-nodules, and decrease the false positive rate. For the tiny objects, small image 
patches (or the receptive field) might lead to high performance. The deeper CNN 
structures are not always good and it is crucial to consider the dataset and the objects 
of interest while finding the effective depth. Some parameters such as kernels size and 
the number of epochs require to be optimized. These methodological findings and the 
extracted dataset of micro-nodules and non-nodules might help design other CNN 
models. The proposed CNN models might help reduce the radiologists’ workload and 
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unnecessary anxiety for the affected subjects; and contribute to a precise management 
of lung cancer through early and automatic detection of pulmonary nodules from CT 
images.
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