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Abstract 

Background:  Ensemble Empirical Mode Decomposition (EEMD) has been popular-
ised for single-channel Electromyography (EMG) signal processing as it can effectively 
extract the temporal information of the EMG time series. However, few papers examine 
the temporal and spatial characteristics across multiple muscle groups in relation to 
multichannel EMG signals.

Experiment:  The experimental data was obtained from the Center for Machine 
Learning and Intelligent Systems, University of California Irvine (UCI). The data was 
donated by the Nueva Granada Military University and the Technopark node Manizales 
in Colombia. The databases of 11 male subjects from the healthy group were taken 
into the study. The subjects undergo three exercise programs, leg extension from a 
sitting position (sitting), flexion of the leg up (standing), and gait (walking), while four 
electrodes were placed on biceps femoris (BF), vastus medialis (VM), rectus femoris (RF), 
and semitendinosus (ST).

Methods:  Based on the experimental data, a comparative study is provided by assess-
ing the Empirical Mode Decomposition (EMD)-based approaches, EEMD, Multivari-
ate EMD (MEMD), and Noise-Assisted MEMD (NA-MEMD). The outcomes from these 
approaches are then quantitatively estimated on the basis of three criterions, the 
number of Intrinsic Mode Functions (IMFs), mode-alignment and mode-mixing.

Results:  Both MEMD and NA-MEMD methods (except EEMD) can guarantee equal 
numbers of IMFs. For mode-alignment and mode-mixing, NA-MEMD is optimal com-
pared with MEMD and EEMD, and MEMD is merely better than EEMD.

Conclusions:  This study proposes the NA-MEMD approach for multichannel EMG 
signal processing. This finding implies that NA-MEMD is effective for simultaneously 
analysing IMFs based frequency bands. It has a vital clinical implication in exploring the 
neuromuscular patterns that enable the multiple muscle groups to coordinate while 
performing the functional activities of daily living.

Keywords:  EEMD, MEMD, NA-MEMD, Mode-alignment, Mode-mixing, Multichannel 
EMG signals
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Background
Electromyography (EMG) is the collective electric manifestation during muscle con-
traction, and indicates the electrophysiological responses of motor units from a muscle 
group, which is controlled by the nervous system. The surface EMG signal, originating in 
motor units and then recorded by measurement tools, was often contaminated by vari-
ous types of noises or artifacts, e.g., power line interference, baseline wandering, elec-
trocardiographic (ECG) artifacts, capacitive effects of the detection site, and the firing 
rate of motor units [1–6]. Therefore, the identity of an actual EMG still remains difficult 
[7–9].

Recently, several methods have been developed to analyse and de-noise the EMG sig-
nal [10–12]. The conventional techniques based on Fourier analysis (e.g., IIR filters) are 
widely used for EMG-based filtering. However, Fourier analysis is purely based on pre-
defined basis functions, which not only reduces the noise but also attenuate the EMG 
signal. As an alternative to the usual Fourier transform method, wavelet analysis is 
also popularised due to its advantages in terms of the time–frequency representation 
[13–16]. The wavelet-based approaches, however, are also suboptimal because the pre-
selected wavelet function is often not suitable for matching the natural property of an 
EMG signal. Previous studies have also introduced the Empirical Mode Decomposition 
(EMD) approach to handle EMG signals [17]. Instead of those reported in literatures 
[18], the EMD is a fully data-driven adaptive time–frequency analysis method, and offers 
no prior assumption through the overall data processing procedure [19–22].

The EMD algorithm was put forward by Huang et al. and provided the most success-
ful results for the decomposition and time–frequency analysis of non-stationary sig-
nals. It is given as a sifting process that decomposes a signal into a finite set of intrinsic 
mode functions (IMFs), amplitude- and/or frequency-modulated components repre-
senting its inherent oscillatory modes. Adriano et  al. first employed this technique to 
filter EMG signals in background activity attenuation [17]. However, the first version of 
EMD was only used for a single-channel EMG, and did not focus on the accuracy of 
the decomposed subfrequency bands. In order to alleviate this problem, the Ensemble 
EMD (EEMD), an adaptive dyadic filter bank, was introduced. This method can effec-
tively eliminate the mode-mixing and physically produce more unique frequency levels. 
The literature shows that several studies have investigated the de-noising performance 
for EMG signals using the EEMD algorithm [23]. However, such single-channel based 
EMD algorithms cannot be directly applied into the multiple-channel EMG signal pro-
cessing [24]. Moreover, the EMD or EEMD algorithms cannot guarantee the equality 
of the number of decomposed IMFs across multichannels, and may lead to subsequent 
EMG-based analyses being physically meaningless. Accordingly, the multivariate exten-
sion of EMD (MEMD) and its noise-assisted analysis method, Noise-Assisted Multivari-
ate EMD (NA-MEMD) have been developed recently to produce the same number of 
IMFs across all channels thereby facilitating direct multichannel analyses with the con-
sideration of cross-channel interdependence (mode-alignment) and single-channel inde-
pendence (mode-mixing) [25–30].

EEMD has been extensively applied as an accurate and computationally efficient 
quantitative analysis for electromyography (EMG) signals. The EEMD algorithm can 
effectively extract the temporal information of EMG time series. However, few papers 
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examine the temporal and spatial characteristics across multiple muscle groups in rela-
tion to multichannel EMG signals. In this study, NA-MEMD is proposed to handle the 
multichannel EMG signal processing. The performance of the proposed method has 
been validated by comparing it with EEMD and MEMD. The experimental data was 
obtained from the Center for Machine Learning and Intelligent Systems, University of 
California Irvine (UCI). The data was donated by the Nueva Granada Military Univer-
sity and the Technopark node Manizales in Colombia. Three criterions are proposed to 
assess the decomposition performance, (1) the number of intrinsic mode functions; (2) 
mode-alignment (common frequency scales in the same indexed IMFs across different 
channels) for the cross-channel interdependence; (3) mode-mixing (a single IMF con-
taining multiple scales and/or a single scale residing in multiple IMFs) for the single-
channel independence. Results indicate that both MEMD and NA-MEMD methods 
(except EEMD) can guarantee equal numbers of IMFs. Specifically, for mode-alignment 
and mode-mixing, NA-MEMD is optimal compared to MEMD and EEMD, and MEMD 
is merely better than EEMD.

Experiments
The experimental data was obtained from the Center for Machine Learning and Intel-
ligent Systems, University of California Irvine (UCI). The data was donated by the Nueva 
Granada Military University and the Technopark node Manizales in Colombia. UCI 
consented to cite these datasets in publications [31]. This work is also approved by the 
Institution Research Ethics Board of University of Electronic Science and Technology of 
China (UESTC). The databases of 11 male subjects from the healthy group are taken into 
the study. The subjects undergo three exercise programs associated with the knee joint, 
leg extension from a sitting position (sitting), flexion of the leg up (standing), and gait 
(walking), while four electrodes are placed on biceps femoris (BF), vastus medialis (VM), 
rectus femoris (RF), and semitendinosus (ST). The goniometer is also used to record the 
angle of the knee joint during the exercise programs. Each subject is asked to perform 
these exercise programs once, and each exercise program contains approximately five 
motion repetitions. The period time of motion is about 4 s, 2 s for motion and 2 s for 
rest.

Methods
EEMD

The Empirical Mode Decomposition (EMD) is a fully data-driven and adaptive time–
frequency analysis method. It describes a signal as a linear combination of a finite set 
of intrinsic mode functions (IMFs) and a residual signal. The mathematic representa-
tion of EMD can be depicted as

where x(t) is an original signal, cm(t) and r(t) represent the mth IMF and the resid-
ual assumed as the (M + 1)th IMF, respectively. These resultant IMFs, cm(t)Mm=1, are 
sequentially extracted from the original signal by an iteration algorithm called the 

(1)x(t) =

M
∑

m=1

cm(t)+ r(t)
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sifting processing [19]. For the EMD-based sifting process, the local maxima and min-
ima of x(t) are first identified, and the upper (lower) envelope is constructed by fitting 
the local maxima (minima) into a cubic-spline curve. The averaged curve of upper and 
lower envelopes is then intended to update x(t) by subtracting it from x(t). This sift-
ing process will be iteratively executed until each IMF can be determined, while two 
stoppage criterions should be satisfied, i.e., (a) the number of zero crossings and the 
number of extrema (inclusive of the total number of the local maxima and minima) 
should not differ by more than one; (b) the average value of the upper envelope and 
the lower envelope through the overall data should be zero. After repeating the above 
sifting process, all IMFs cm(t)Mm=1 are obtained when the residual r(t) becomes a mono-
tonic function.

For EEMD, the extra white Gaussian noises (WGNs) w(t) are added with the original 
signal x(t) to obtain an ensemble of noise-assisted signal s(t), i.e., s(t) = x(t)+ w(t), and 
the ensemble signal is decomposed by using the EMD algorithm. This single noise-added 
procedure is then repeatedly executed, and for each iteration the different realization 
of white noise wn(t) is given where n = 1, 2, . . .N  representing the number of iterations 
that is set to 50 in this study. The final IMFs can be calculated by averaging the same 
indexed IMFs of the decomposition. The EEMD algorithm is provided as follows [29]:

(1)	Input signal, x(t);
(2)	Generate x̄n(t) = x(t)+ wn(t) for n = 1, 2, . . .N , where wn(t) (n = 1, 2, . . .N) are N 

different realizations of WGN;
(3)	Identify all local extrema of x̄n(t);
(4)	Find lower and upper envelopes, enl (t) and enu(t), which interpolate all local minima 

and maxima, respectively;
(5)	Calculate the local mean, m̄n(t) = 1

2
(enl (t)+ enu(t));

(6)	Subtract the local mean from x̄n(t), cnm(t) = x̄n(t)− m̄n(t) (n is the index number of 
IMF);

(7)	Let x̄n(t) = cnm(t) and go to step 3); repeat until cnm(t) becomes IMFs;
(8)	Average the corresponding IMFs from the whole ensemble to obtain the averaged 

IMFs; for instance, the mth IMF can be obtained by using c̄m(t) = 1
N (

∑N
n=1 c

n
m(t)).

MEMD

Rehman and Mandic developed multivariate empirical mode decomposition (MEMD), 
which is a natural extension of the original EMD/EEMD. In MEMD, the multiple-
channel EMGs should be first projected into n-dimensional spaces based on low 
discrepancy Hammersley sequence. The projections along different directions in mul-
tidimensional spaces represent the amplitudes of EMGs across four channels. The 
extrema are interpolated via cubic-spline interpolation in order to obtain the subenve-
lopes eθv (t)Vv=1

. Those sub-envelopes are then averaged to obtain a local mean of a mul-
tiple-channel EMG signal, M(t). Then, the first IMF can be extracted by subtracting 
the local mean from the input channels. The outline of MEMD algorithm is presented 
as follows [25]:
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(1)	Choose a suitable point set for sampling a (p− 1) sphere;
(2)	Calculate a projection, wθv (t), of N-channel input signals xN (t) (N = 4) along the 

direction vector dθv, for all v (the whole set of direction vectors), giving wθv (t)
V
v=1

 as 
the set of projections;

(3)	Find the time instant tθv (t)Vv=1
 corresponding to the maxima of the set of projected 

signal wθv (t)
V
v=1

;
(4)	Interpolate [tθv (t), xN (tθv )] to obtain multivariate envelope curve eθv (t)Vv=1

;
(5)	For a set of V direction vectors, the mean M(t) of the envelope curve is computed 

as M(t) = 1
V (

∑V
v=1 eθv (t));

(6)	Let cN (t) = xN (t)−M(t). If cN (t) fulfills the stopping criterion for a multivariate 
IMFs, apply the above procedure to xN (t)− cN (t); otherwise, apply it to cN (t).

Different with EEMD, the sifting process is followed by

where e(t) is the bias function defined by e(t) = 1
N

∑N
n−1 | c

n(t)−M(t) |, and the 
threshold value γ was set to 0.2 based on the EMG signals during lower-limb exercises. 
The sifting process will be continued if Eq. (2) is satisfied.

NA‑MEMD

The Noise-Assisted multivariate empirical mode decomposition (NA-MEMD) was also 
introduced by Rehman and Mandic. This signal processing work exploits the dyadic filter 
properties of EMD and MEMD. Additionally, it also applies the noise assisted analysis 
method into MEMD, a dyadic filter bank on each channel while adding certain multi-
dimensional WGNs together with the original signals which are decomposed by using 
MEMD. More specifically, K-channel (K ≥ 1) uncorrelated WGNs time series of the 
same length with that of the M-channel EMGs (M = 4) are randomly separately created. 
Then, a new input multichannel signal is constructed by adding the original EMGs with 
the noise channel, the resulting (M + K )− channel multivariate signal. Considering the 
decomposition of the constructed signal, the remaining procedures are strictly followed 
by those of MEMD [32]. Figure 3 outlines the processing procedure of NA-MEMD. The 
effects of the number of noise channels and noise power in NA-MEMD are discussed in 
[33]. In this study, the average STD based on all EMG channels is selected as the residual 
noise power, and the number of noise channel is set to four. The schematic diagram for 
methods of EEMD, MEMD, and NA-MEMD is presented in Fig. 1.

Data preprocessing and evaluation criterions

Data preprocessing

The raw EMG data measured from each subject were first segmented. The period of the 
exercise motion was reserved and labeled. The approaches of EEMD, MEMD, and NA-
MEMD are then used to decompose these segmented EMG data, by which the decom-
posed IMFs are obtained via three methods, and then normalized by using standard 
deviation. Based on each single normalized IMF data, the alignment of IMF based fre-
quency bands in cases of EEMD, MEMD, and NA-MEMD is estimated by the spectra 

(2)
M(t)

e(t)
< γ
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analysis. The last step is to evaluate three criterions, the number of IMFs (indicating 
cross-channel interdependence), mode-alignment (estimating the alignment of the fre-
quency bands of the same-index IMFs across channels), and mode-mixing (estimating 
the similarity of the frequency bands of IMFs within a single channel). Figure 2 depicts 
the schematics for data flow and evaluation criterions, the number of IMFs, mode-align-
ment, and mode-mixing.

Mode‑alignment

The mode-alignment effect indicates the common frequency scales in the same indexed 
IMFs across different channels. This effect would numerically analyse the correlations of 
frequency scales for each component of the EMG channels, and take advantages of com-
paratively analysing the frequency similarity of the same-indexed IMFs across channels. 
In order to obtain this performance, the power spectral density (PSD) of the normalized 
IMF is first calculated. The PSD correlations between two IMFs are then obtained by ci,j , 
where i stands for the ith indexed IMF, and j is for the number of the channel. The cor-
relation matrix for all IMFs across channels could be expressed as
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The elements in the ith row of the correlation matrix are averaged to represent the 
mode-alignment value in the ith indexed IMF.

Mode‑mixing

The mode-mixing effect describes the overlap of frequency information among the 
decomposed IMFs within one EMG channel, which would reflect whether or not a sin-
gle IMF contains multiple scales and/or a single scale resides in multiple IMFs [34]. In 
this study, we used the following equation to quantitatively describe the mode-mixing 
effects, MMi,j,

where f2i, f8i, and Di are the PSD of the ith indexed IMF. f2, f8 are the frequencies at 
which 20 and 80% of the energy of an IMF are reached, respectively. Di is the difference 
between f2i and f8i. Based on Eq. (4), the mode-mixing effect for a single EMG channel 
could be calculated as

(3)CMA =









c(1, 1) c(1, 2) . . . c(1, j)
c(2, 1) c(2, 2) . . . c(2, j)

.

.

.
.
.
.

. . .
.
.
.

c(i, 1) c(i, 2) . . . c(i, j)









(4)MMi,j =
max([f2i, f8i] ∩ [f2j , f8j])−min([f2i, f8i] ∩ [f2j , f8j])

min{Di,Dj}
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where I is the total number of IMFs.

Results
Figure  3 shows an example of the decomposition result in the vastus medialis muscle 
group for three exercise programs (sitting, standing, and walking) for EEMD, MEMD 
and NA-MEMD. Since the most predominant energy for an EMG signal is approxi-
mately between 20 and 500 Hz [5], the decomposed components that have lower subfre-
quency bands than 20 Hz are synthesized together (from the 5th to 11th IMFs, the 6th to 
16th IMFs, and the 7th to 16th IMFs for EEMD, MEMD, and NA-MEMD, respectively).

Spectra analysis

In order to analyse IMF based frequency components produced by EEMD, MEMD, and 
NA-MEMD, the decomposed IMFs, specifically representing one of exercise motions, 
are first normalized. These IMFs are then utilized for the analysis of spectra. Figure 4 
indicates the spectra results of IMFs for three exercise motions decomposed by EEMD, 
MEMD, and NA-MEMD. In this study, we only focus on the shape of individual spec-
tra in considerations of mode-alignment and mode-mixing. The alignment of frequency 
bands of the same-index IMFs in muscles BF, VM, RF, and ST is closer, the mode-align-
ment performance is more prominent. The spectra figures only can qualitatively analyze 
and demonstrate the differences of decomposition by EEMD, MEMD, and NA-MEMD, 
in which the stabilization of the shape of individual spectra from BF, VM, RF and ST 
can be observed. Based on these spectra information, the statistical analyses are used to 
quantitatively estimate the performance of mode-alignment and mode-mixing.

The number of IMFs

A statistical survey is also taken by investigating the EMG signals of muscle groups RF, 
BR, VM, and ST to sitting, standing, and walking exercises for all subjects. The aver-
aged number of IMFs for each muscle is shown in Table 1. It has been clearly shown that 
MEMD and NA-MEMD could guarantee the equal number of IMFs across EMG differ-
ent channels. In addition, the number of IMFs via MEMD and NA-MEMD have a larger 
amount compared to those of EEMD, indicating that more details of EMG frequency 
components can be obtains based on MEMD and NA-MEMD results.

Mode‑alignment

In order to statistically analyse the mode-alignment performance for multiple-channel 
EMGs, the correlation matrixes based on the motion segmentations of four-channel EMG 
signals from all subjects in three exercise programs are calculated. The IMFs with the sub-
frequency energy less than 20Hz are removed as it contains much noise and has a low sig-
nal-to-noise ratio. The mode alignment effects of decomposed IMFs of four-channel EMG 
data obtained from the health group are identified in Table 2. Based on these results, two-
way analysis of variance (ANOVA) is used to examine the influence of exercise programs 
(i.e., sitting, standing, and walking) and methods (i.e., EEMD, MEMD, and NA-MEMD) 

(5)
M̃ =

I−1
∑

i=1

MMi,i+1
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on the performance index of mode-alignment (Table 3). The assessment results show that 
the methods have a significant main effect (p < 0.01), and no interaction between exercise 
programs and methods (p > 0.05). The statistic analysis with no interaction effect con-
firms that the three types of exercise programs equally represent the characteristic of func-
tional activities of daily living. In order to further evaluate the difference among methods, 
the mode-alignment values in three exercise programs for each subject are averaged, and 
then the One-way Repeated Measures ANOVA is used to compare the mode alignment of 
IMFs by EEMD, MEMD, and NA-MEMD. It is clear that there is a significant difference 
among three methods (F = 32.022, p = 0.000). By using the Least Significant Difference 

Table 1  Statistics results for the number of  IMFs by using EEMD, MEMED, and NA-MEMD 
for four-channel EMG signals related to lower-limb functional activities of daily living

Italic values are statistically significant

RF BF VM ST

Sitting

 EMD 12.27 ± 1.20 12.45 ± 1.29 12.09 ± 0.94 12.18 ± 0.75

 MEMD 16.45 ± 0.93 16.45 ± 0.93 16.45 ± 0.93 16.45 ± 0.93

 NA-MEMD 16.64 ± 0.67 16.64 ± 0.67 16.64 ± 0.67 16.64 ± 0.67

Standing

 EMD 12.27 ± 1.10 13.00 ± 0.63 12.18 ± 0.87 12.18 ± 1.60

 MEMD 15.64 ± 0.92 15.64 ± 0.92 15.64 ± 0.92 15.64 ± 0.92

 NA-MEMD 16.55 ± 0.93 16.55 ± 0.93 16.55 ± 0.93 16.55 ± 0.93

Walking

 EMD 10.73 ± 0.79 10.91 ± 0.54 10.54 ± 0.67 10.64 ± 0.67

 MEMD 14.27 ± 0.47 14.27 ± 0.47 14.27 ± 0.47 14.27 ± 0.47

 NA-MEMD 15.09 ± 0.30 15.09 ± 0.30 15.09 ± 0.30 15.09 ± 0.30

Table 2  Statistics results for the mode-alignment effects based on the motion segmenta-
tions of four-channel EMG signals from all subjects related to lower-limb functional activi-
ties of daily living

Italic values are statistically significant

Subject Sitting Standing Walking

EMD MEMD NA-MEMD EMD MEMD NA-MEMD EMD MEMD NA-MEMD

1 0.73 0.78 0.84 0.65 0.74 0.76 0.82 0.79 0.78

2 0.73 0.78 0.84 0.65 0.74 0.76 0.62 0.78 0.79

3 0.72 0.82 0.88 0.68 0.80 0.80 0.67 0.80 0.83

4 0.68 0.78 0.80 0.77 0.75 0.76 0.71 0.78 0.76

5 0.76 0.70 0.76 0.72 0.80 0.82 0.51 0.71 0.76

6 0.66 0.64 0.75 0.80 0.81 0.80 0.81 0.84 0.81

7 0.43 0.80 0.77 0.68 0.88 0.89 0.61 0.66 0.84

8 0.54 0.82 0.86 0.69 0.88 0.89 0.50 0.55 0.79

9 0.71 0.87 0.87 0.68 0.90 0.92 0.64 0.80 0.79

10 0.59 0.90 0.91 0.60 0.82 0.89 0.76 0.77 0.79

11 0.81 0.83 0.86 0.62 0.86 0.88 0.34 0.57 0.72

Mean 0.67 0.79 0.83 0.69 0.82 0.83 0.64 0.73 0.79

STD 0.11 0.07 0.05 0.06 0.06 0.06 0.14 0.10 0.03
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(LSD), the mode-alignment effect of NA-MEMD is the best among three methods, and the 
effect of MEMD is merely better than that of EEMD (Fig. 5).

Mode‑mixing

In this study, we also investigate the mode-mixing effect based on each muscle chan-
nel by using Eqs. (4) and (5). In order to avoid the effects of inter-subject variability, 
the mode-mixing effects from all subjects are investigated. For each single subject, the 
decomposed IMFs for each muscle channel with a central frequency of the spectrum 
less than 20 Hz are also removed. The mode-alignment MMi,i+1 (i = 1, 2, . . . , I)from the 
remaining IMFs for each muscle channel are calculated. The mode-alignment effect for 
each muscle channel M̃ is then obtained by averaging the set of MMi,i+1 (i = 1, 2, . . . , I).

Following this procedure, the mode-mixing effects of four EMG channels for three exer-
cise programs are provided in Table 4.

In a similar way, the influence of exercise programs and methods on mode-mixing is 
first quantitatively analyzed through two-way ANOVA. Table 5 indicates the main effect 
of methods (p < 0.01) as well as no interaction effect between two factors (p = 0.706).  
The mode-mixing values in the three exercise programs of each subject are averaged, 
and the averaged values are applied to test the influence of methods on the perfor-
mance of mode mixing by using One-way Repeated Measures ANOVA and LSD. It can 
be seen from Fig. 5 that there are significant differences between two methods (EEMD 
vs. MEMD, EEMD vs. NA-MEMD, and MEMD vs. NA-MEMD) for the performance of 
mode mixing of decomposed IMFs. The NA-MEMD achieves the best mode mixing per-
formance compared to EEMD and MEMD, while MEMD far outperforms that of EEMD.

Table 3  Results of two-way ANOVA (exercise programs × methods) for mode-alignment

** p < 0.01 change within the methods among EEMD, MEMD, and NA-MEMD

Source of variation Sum of squares Degree of freedom Mean square F-statistic p

Exercise programs 0.063 2 0.031 2.257 0.131

Methods 0.417 2 0.372 32.022** 0.000

Exercise 0.006 4 0.003 0.342 0.717

Programs × methods

Fig. 5  One-way repeated measures ANOVA for EEMD versus MEMD, EEMD versus NA-MEMD, and MEMD ver-
sus NA-MEMD. The left subfigure indicates the comparative results for mode-alignment. The right one indicates 
those for mode-mixing
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Discussion
The objective of this study is to evaluate a superior solution for the preprocessing 
of multichannel EMG signals as well as for the analysing of the IMF based frequency 
components related to multiple muscle groups. The muscle coordination often occurs 
in human motions, which is not only indicated by multichannel EMG signals, but also 
conducted by neuromuscular patterns [35]. Generally, the neuromuscular pattern is 
intrinsic for the specific exercise motions. Therefore, the single-channel-based analyses 
for the observation of the nervous system and its corresponding muscle contraction are 
not sufficient.

Additionally, similar with the ECG lead system [36], it is also desirable to develop the 
EMG lead system in which the behaviors of motor units can be represented as a set of 
statistically independent sources.

The human exercise is often supported by multiple relative muscles. For example, the 
muscle groups of BF, VM, RF and ST are the muscles related to the knee movement such 
as standing, sitting, and walking. Hence, the use of the so-called four-lead system (the 
leads placed on muscles BF, VM, RF and ST) would well indicate the overall neuromus-
cular patterns, which are further controlled by the human brain activity. Moreover, it is 

Table 4  Statistics results for the mode-mixing effects based on the motion segmentations 
of  four-channel EMG signals from  all subjects related to  lower-limb functional activities 
of daily living

Italic values are statistically significant

Subject Sitting Standing Walking

EMD MEMD NA-MEMD EMD MEMD NA-MEMD EMD MEMD NA-MEMD

1 0.09 0.067 0 0.14 0.01 0 0.03 0.01 0

2 0.09 0.067 0 0.14 0.01 0 0.05 0 0.01

3 0.12 0 0 0.09 0.02 0 0.14 0 0

4 0.09 0.03 0.04 0.14 0.02 0 0.11 0.04 0

5 0.18 0.05 0 0.15 0.02 0 0.21 0.03 0.0014

6 0.27 0.06 0 0.16 0 0 0.06 0 0

7 0.10 0 0 0.08 0 0 0.33 0.10 0

8 0.18 0.01 0 0.12 0 0 0.20 0.04 0

9 0.17 0 0 0.10 0 0 0.11 0 0

10 0.13 0 0 0.24 0.02 0 0.15 0.01 0

11 0.13 0.04 0 0.08 0 0 0.27 0.11 0.02

Mean 0.14 0.03 0 0.13 0.01 0 0.15 0.03 0.003

STD 0.06 0.03 0.001 0.05 0.01 0 0.09 0.04 0.005

Table 5  Results of two-way ANOVA (exercise programs × methods) for mode-mixing

∗∗ p < 0.01 change within the methods among EEMD, MEMD, and NA-MEMD

Source of variation Sum of squares Degree of freedom Mean square F-statistic p

Exercise programs 0.004 1.344 0.003 0.644 0.481

Methods 0.368 1.234 0.299 138.687** 0.000

Exercise 0.002 1.708 0.001 0.307 0.706

Programs × methods



Page 14 of 17Zhang et al. BioMed Eng OnLine  (2017) 16:107 

a natural way to simultaneously decompose the multichannel EMG signals and analyse 
the subfrequency bands of multichannel EMG signals.

Although previous literatures have reported the successful applications of EMD/
EEMD in the single-channel EMGs [17], these approaches cannot solve the critical prob-
lem about the fusion and analysis of multichannel EMG signals [30, 34, 37]. Therefore, 
EEMD, MEMD and NA-MEMD have been investigated in this study for the decompo-
sition performance of four knee muscle groups associated with standing, sitting, and 
walking. Three criterions (the number of IMFs, mode-alignment and mode-mixing) are 
employed to quantitatively depict the decomposition efficiency.

It has been confirmed that both MEMD and NA-MEMD (exclusive of EEMD) could 
provide an equal number of IMFs across EMG different channels. If the number of IMFs 
is unequal, then the decomposed subfrequency signals cannot be directly applied for the 
subsequent study. This also leads to the similar oscillation modes appearing in multiple 
IMFs (Fig. 3a).

The mode-alignment effect focuses on the cross-channel dependence. In order to 
compare the same indexed IMFs among muscle channels, a similar subfrequency band 
of the same indexed IMFs should also be observed. The statistics show that there is a sig-
nificant difference among three methods (F = 32.022, p = 0.000). Moreover, the effect of 
NA-MEMD is the best among three methods. In addition, the effect of MEMD is better 
than that of EEMD.

For the assessment of the mode-mixing effect, there are significant differences between 
two methods (EEMD vs. MEMD, EEMD vs. NA-MEMD, and MEMD vs. NA-MEMD). 
Specifically, NA-MEMD achieves the best mode-mixing performance compared to 
EEMD and MEMD, and the effect of MEMD outperforms that of EEMD.

Limitation
The experimental data in this study was obtained from the Center for Machine Learning 
and Intelligent Systems, UCI. The data was donated by the Nueva Granada Military Uni-
versity and the Technopark node Manizales in Colombia. The physical characteristics of 
the participants were not recorded in the datasets. There also was no information about 
the prior nutritional intake, physical activity and environment conditions before all par-
ticipants engaged in the experimental sessions. In addition, as the exercise programs 
(i.e., sitting, standing, and walking) are only taken from one measurement, the intra-
subject variability such as random errors may not be avoided. The experiment descrip-
tion contained in the datasets did not clearly specify the location of electrodes placed on 
muscles BF, VM, RF, and ST.

Conclusions
This study proposed the noise-assisted multivariate empirical mode decomposition 
(NA-MEMD) approach for the preprocessing of multiple channel EMG signals, by 
which the temporal and spatial characteristics across multiple muscle groups can be 
quantitatively depicted. The four muscle groups of BF, VM, RF, and ST associated with 
lower limb exercises (sitting, standing, and walking) of 11 healthy subjects were utilised 
for the assessment of the EMD-based approaches. A comparative study was provided by 
assessing the NA-MEMD with Ensemble Empirical Mode Decomposition (EEMD), and 
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Multivariate EMD (MEMD). Three criterions were used to assess the comparative out-
comes, i.e., the number of intrinsic mode functions (IMFs), mode-alignment and mode-
mixing. The results indicated that the current EMD-based approach of using EEMD was 
suboptimal for multichannel EMG signals due to its poor performance in relation to the 
three criterions. When compared with MEMD and NA-MEMD, both approaches with 
data from lower limb EMG signals would guarantee an equal number of IMFs across 
channels. In addition, the statistical results showed that both the mode-alignment and 
mode-mixing effects of NA-MEMD were superior to those of MEMD. This finding 
implied that NA-MEMD is effective for simultaneously analysing IMFs based frequency 
bands. It has a vital clinical implication in terms of exploring the neuromuscular pat-
terns that enable the coordination of multiple muscle groups for the purposes of per-
forming daily activities.
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