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Abstract 

Background: Knowing the extent and spread of insecticide resistance in malaria vectors is vital to successfully 
manage insecticide resistance in Africa. This information in the main malaria vector, Anopheles funestus sensu stricto, 
is completely lacking in the most populous country in Africa, Nigeria. This study reports the insecticide susceptibility 
status and the molecular basis of resistance of An. funestus as well as its involvement in malaria transmission in Akaka-
Remo, a farm settlement village in southwest Nigeria.

Results: Plasmodium infection analysis using TaqMan protocol coupled with a nested PCR revealed an infection 
rate of 8% in An. funestus s.s. from Akaka-Remo. WHO susceptibility tests showed this species has developed multiple 
resistance to insecticides in the study area. Anopheles funestus s.s. population in Akaka-Remo is highly resistant to 
organochlorines: dieldrin (8%) and DDT (10%). Resistance was also observed against pyrethroids: permethrin (68%) 
and deltamethrin (87%), and the carbamate bendiocarb (84%). Mortality rate with DDT slightly increased (from 10 to 
30%, n = 45) after PBO pre-exposure indicating that cytochrome P450s play little role in DDT resistance while high 
mortalities were recorded after PBO pre-exposure with permethrin (from 68 to 100%, n = 70) and dieldrin (from 8 to 
100%, n = 48) suggesting the implication of P450s in the observed permethrin and dieldrin resistance. High frequen-
cies of resistant allele, 119F in F0 (77%) and F1 (80% in resistant and 72% in susceptible) populations with an odd ratio 
of 1.56 (P = 0.1859) show that L119F-GSTe2 mutation is almost fixed in the population. Genotyping of the A296S-RDL 
mutation in both F0 and F1 samples shows an association with dieldrin resistance with an odd ratio of 81 (P < 0.0001) 
(allelic frequency (R) = 76% for F0; for F1, 90 and 10% were observed in resistant and susceptible populations, respec-
tively) as this mutation is not yet fixed in the population.

Conclusion: The study reports multiple insecticide resistance in An. funestus from Akaka Remo. It is, therefore, neces-
sary to pay more attention to this major malaria vector for effective malaria control in Nigeria.
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Background
Malaria remains the most severe infectious disease and 
a major public health challenge in Nigeria [1, 2]. It is 
the main cause of morbidity and mortality in this most 

populous Africa country, with 97% of the national popu-
lation at risk: it is responsible for an estimated 300,000 
deaths annually in Nigeria; and it contributes to an esti-
mated 11% maternal mortality as well as 25% of infant 
mortality [1, 3]. Malaria transmission in Nigeria has been 
attributed mainly to Anopheles gambiae sensu stricto 
(s.s.) and Anopheles funestus s.s. [4–6] with consistent 
Plasmodium infection rates of 1.0–2.7% (An. funestus) 
and 3.0–8.1% (An. gambiae) previously reported in case 
studies in Ogun, Oyo and Lagos states [4, 5]. Although, 
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there was also a high sporozoite infection rate of 25% 
reported in Lagos state [7]. In Nigeria, malaria control 
relies hugely on the use of indoor residual spraying (IRS) 
and insecticide-treated nets (ITNs) [2, 3]. However, 
resistance against the main insecticides used in public 
health (pyrethroids, carbamates and organochlorines) 
in malaria vectors is threatening the effectiveness of 
these control tools. Anopheles gambiae s.s resistance to 
insecticides, notably against pyrethroids [8], DDT [9, 10] 
and bendiocarb [11], has been documented in Nigeria, 
however, little is known so far concerning the insecti-
cide susceptibility of the other major malaria vector An. 
funestus s.s. in the country. Pyrethroid insecticide is the 
class of insecticide mainly used in Nigeria for both ITNs 
and IRS [2]. Two types of pyrethroids are mainly used 
in Nigeria for insecticide nets treatment: permethrin 
(Type 1) and deltamethrin (Type 2). In recent years, 
An. funestus s.s. populations have increasingly been 
reported to be resistant to these insecticides in other 
African countries, such as Uganda in East Africa [12]; 
Mozambique, Zambia, Zimbabwe and Malawi in South-
ern Africa [13–19], Cameroon in Central Africa [20, 
21] and some West African countries, including Benin 
[22], Ghana [23] and Burkina-Faso [24]. Resistance pat-
terns against these insecticides vary significantly across 
Africa. For example, An. funestus was resistant to pyre-
throids and carbamate but fully susceptible to DDT and 
dieldrin in southern Africa [20, 25]. However, a recent 
study in Malawi showed that this mosquito species has 
now began to develop resistance against organochlorines 
(dieldrin and DDT) [17]. Anopheles funestus is resistant 
to pyrethroids and DDT, but remains susceptible to car-
bamate in Uganda and western Kenya [12]. High resist-
ance profiles were recorded with dieldrin in Cameroon 
[20]. In the neighbouring country of Benin, resistance 
firstly reported in 2011 [22] from the coast (Pahou) and 
was recently shown to have extended to the inland as 
the Kpome population was shown to be resistant to all 
insecticide classes apart from organophosphates [26]. 
It remains to be established whether these resistances 
are also present in Nigeria and if yes information on the 
resistance pattern will be useful for the malaria control 
programs especially on the suitable insecticides to use 
for the control of this species.

Metabolic resistance mechanisms have so far been 
implicated in insecticide-resistant An. funestus across 
Africa [12, 22, 27] with cytochrome P450 genes con-
ferring pyrethroid resistance and also cross-resistance 
to carbamates in southern African [28] as previously 
reported also for An. gambiae [29]. DDT resistance 
mechanisms in An. funestus on the other hand have been 
associated with an up-regulation of glutathione S-trans-
ferases notably GSTe2 coupled with a point mutation 

L119F [27]. No L1014F-kdr mutation has been impli-
cated in pyrethroids and DDT resistance [12, 22], and no 
association exists between G119S and F455W mutations 
of the Ace-1 gene and carbamate resistance in this mos-
quito species [12, 22, 25]. However, the recent discovery 
of a new Ace-1 mutation (N485I) associated with carba-
mate resistance in southern African An. funestus popula-
tions [28] coupled with the presence of the A296S-RDL 
mutation in the GABA receptor of An. funestus [20] are 
evidence that target-site resistance mechanism also play 
a role in insecticide resistance profiles recorded in this 
malaria vector.

In order to help malaria control programmes, to design 
evidence-based strategies to control An. funestus in 
Nigeria, and to manage potential existing resistance, this 
study aims to establish the insecticides susceptibility pro-
file and investigate the molecular basis of resistance of 
this species population in Akaka Remo: a farm settlement 
in southwest Nigeria.

Methods
Ethical statement
No ethical permit was required for this study. However, 
there was a focus group discussion with the community 
and household heads where verbal consent was obtained 
for mosquito collections in the community after the 
study aims and objectives were explained.

Study site and mosquito collection
Study site description
Akaka-Remo (6°57′N, 3°43′E) is a rural locality in Remo-
North local government of Ogun state in the South-
west of Nigeria, a region of about 71.4  km from Lagos 
and about 215  km from Pahou in Benin where resist-
ance has previously been reported. This locality is sur-
rounded with a permanent medium-size slow moving 
stream, called Erititi stream, that leads to the popular 
river Ona in Ibadan (Oyo state) with vegetation such 
as bananas, vegetables, maize, shrubs, trees and crops 
bordering the water bodies at almost all the locations, 
which serves as suitable breeding sites for An. funestus. 
The inhabited area of Akaka-Remo is about 0.25 square 
kilometres and its habitants are mainly the Yorubas and 
a small community of the Eguns. The main commercial 
activity is agriculture, which has attracted the use of 
pesticides (insecticides and herbicides) in this locality. 
Houses here are mainly made of mud and very few are 
made of cement, and are constructed at an average of 5 m 
away from one other. Most houses have either detached/
destroyed or no ceilings. The selection criteria described 
above were mainly entomological as the main target for 
this research was to characterise populations of malaria 
vectors in this part of Nigeria.
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Mosquito collection
Adult female Anopheles mosquitoes resting indoor were 
collected in thirty rooms, with the use of electric aspi-
rators and torches between 06.00 a.m. and 10.00 a.m. 
from October, 2014 end of rainy season to April, 2015 
beginning of rainy season except in January, 2015 due to 
intense harmattan (a short period of a very dry and dusty 
wind observed between the end of November and early 
March in West Africa). The 30 rooms were selected in a 
way to cover the various micro-ecologies found at Akaka 
Remo. The room was defined as a demarcated area in the 
house where inhabitants do sleep. Blood-fed mosquitoes 
collected were kept into cups until fully gravid before 
being subjected to the forced-egg laying technique [30] 
at a temperature of 25–28  °C with a relative humidity 
of 80% in the insectary. Hatched eggs were pooled and 
reared together in a mineral water, which was replaced 
every two days to reduce mortality as resulting larvae 
were daily fed with Tetramin™ baby fish. During these 
periods, a good number of eggs were also sent via courier 
to the Liverpool School of Tropical Medicine (LSTM) for 
rearing into F1 and for subsequent experiments.

Seasonal determination of mosquito densities per room
Mosquito density per room was estimated during four 
(4) annual climatic seasons: rainy season, transition from 
rainy to dry season, dry season and transition from dry to 
rainy season. The total number of An. funestus collected 
for each season were pooled and counted to estimate the 
seasonal number of An. funestus per room. The estimated 
density of An. funestus was now obtained by dividing the 
number of mosquitoes collected during each season by 
the number of rooms surveyed during that same season. 
This estimation of the density was done for the 4 sur-
veyed seasons of the year.

PCR‑species identification
A total of 96 mosquito females that were morphologically 
identified as An. funestus group [31] and had oviposited, 
were identified to species level using the PCR cocktail for 
An. funestus group described by Koekemoer et  al. [32] 
after the genomic DNA was extracted [33].

Estimation of Plasmodium infection in wild caught (F0) 
Anopheles funestus
Ninety-three (93) F0 adult female An. funestus were 
analysed for Plasmodium infection using the TaqMan 
assay as previously described [34]. Briefly, a plate was 
run at one cycle of 95 °C for 10 min in the first segment 
and the second segment was 40 cycles at 92  °C for 15 s 
and 60  °C for 1  min. Two fluorophore-labelled specific 
TaqMan probes (Applied Biosystems, California, USA) 
were used: FAM to detect Plasmodium falciparum, while 

HEX was used to detect the combination of Plasmodium 
ovale, Plasmodium vivax and Plasmodium malariae. A 
negative control (water) and positive controls (known 
FAM and OVM) were also used. A nested PCR [35] was 
subsequently performed for the samples to validate the 
TaqMan analysis.

Insecticide susceptibility tests
2–5 day old F1 adult female and male mosquitoes pooled 
from different F0 mosquitoes were used for this test 
according to the WHO [36]. 20–25 mosquitoes per tube 
with at least 4 replicates were exposed to insecticide-
impregnated or control papers for 1  h before transfer-
ring into clean holding tube with 10% sugar solution 
where mortality was determined after 24 h post insecti-
cide exposure [37]. Six insecticides belonging to the four 
classes of insecticides used for malaria vector control 
were tested: the pyrethroids permethrin (0.75%) and del-
tamethrin (0.05%), the organochlorines DDT (4%) and 
dieldrin (4%), the carbamate bendiocarb (0.1%) and the 
organophosphate malathion (5%).

PBO synergist tests
Due to the level of resistance observed against DDT, 
dieldrin and permethrin and because of previous stud-
ies showing strong involvement of P450 genes in pyre-
throids resistance as well as its potential contribution to 
DDT resistance, 2–5 days old F1 adult mosquitoes were 
pre-exposed to 4% piperonyl butoxide (PBO) paper for 
1  h and immediately exposed to 0.75% permethrin, 4% 
DDT and 4% dieldrin for 1 h. Although, there is no pre-
vious data linking P450 families to dieldrin resistance in 
this mosquito population but with the high resistance 
observed in this study, it became necessary to assess the 
potential effect of oxidase in diedrin resistance. Mortali-
ties were later assessed after exposure; synergized group 
was compared to the un-synergized group after 24  h 
post-exposure. This comparison was used to evaluate the 
potential role of cytochrome P450 genes in the observed 
resistance. Two controls were used during this experi-
ment: control 1 was constituted of mosquitoes exposed 
to papers neither with insecticides nor with PBO while 
control 2 was constituted of mosquitoes exposed to 
papers treated with PBO only.

Genotyping of resistance markers L119F‑GSTe2 
and A296S‑RDL in females of An. funestus 
from Akaka‑Remo
TaqMn assay [34] was used to genotype L119F-GSTe2 
as a potential DDT resistance marker in Akaka-Remo, 
which was recently shown to confer DDT resistance in 
Benin [27] and also used to screen for A296S-RDL muta-
tion known to confer dieldrin resistance [20]. F0 and F1 
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(alive and dead) samples were used for both genotyping. 
Two fluorophore-labelled specific TaqMan probes were 
used: FAM to detect the homozygous resistant geno-
type, HEX to detect the homozygous susceptible geno-
type while both FAM and HEX were used to detect the 
heterozygous genotype. A negative control (water) and 
positive controls (known FAM, HEX and both) were also 
used in a 10  µl volume that also contains the SensiMix 
(Applied Biosystems, California, USA). The endpoint flu-
orescence was evaluated using the Agilent MXPro soft-
ware and the relationship between the frequency of the 
resistant alleles and the insecticides (DDT and Dieldrin) 
resistance phenotypes were assessed.

Data analysis
Resistance status of mosquito classified as recommended 
by WHO [37] are as follows:

  • Susceptible mosquito population = Mortality >98%.
  • Suspected resistance in mosquito population = Mor-

tality ranging from 90 to 98%.
  • Resistant mosquito population = Mortality <90%.

Chi square (using R software) was used to test for signif-
icant difference in percentage mortalities between female 
and male mosquito populations used for WHO suscepti-
bility test and the distribution of the genotype frequencies 
(F1) between the resistant and susceptible mosquito sam-
ples. Had2know online statistical software [38] was used 
to test for significant difference between the observed 
genotypic frequencies (F0) and to confirm if the observed 
genotypic frequencies are according to Hardy–Weinberg 
equilibrium. Excel was used to compute percentage mor-
talities and standard errors while VassarStats online sta-
tistical software [39] was used to generate odd and risk 
ratios, and confidence levels of the frequency data.

Results
Species identification
Molecular (PCR) analysis of ninety-six (96) morphologi-
cally identified female An. funestus sensu lato collected 
from Akaka-Remo between October, 2014 (late rainy 
season) and April, 2015 (early rainy season) revealed that 
they all belong to An. funestus s.s. Anopheles funestus is 
the most abundant mosquito species (84%; n = 315 from 
a total of 376 mosquitoes collected) amongst other mos-
quito species and much more abundant (92%; An. funes-
tus = 315 and 8%; An. gambiae = 26) than An. gambiae 
when compared within the Anopheles group. Figure  1 
shows the seasonal variation of An. funestus s.s. per room 
at Akaka-Remo. The seasonal density of An. funestus per 
room (m/r) out of thirty (30) rooms aspirated are as fol-
lows: 0.03 m/r for rainy season, 1.8 m/r during transition 

from rainy to dry, 4 m/r during dry and 4.7 m/r during 
the transition from dry to rainy season. Other mosquito 
species also collected during these periods include An. 
gambiae spp. (7%; n = 26), Culex spp. (6%; n = 21), Man-
sonia spp. (2%; n = 9) and Aedes spp. (1%; n = 5).

Plasmodium infection rates
Seven, 7 (8%) out of ninety-three (93) wild-caught (F0) 
An. funestus s.s. analysed were positive for Plasmodium 
infection (Table  1). Six (7%) mosquitoes of which were 
infected with P. falciparum, while a mixed infection of 
P. ovale, P. vivax and P. malariae was found in only one 
mosquito (1%). The nested PCR analysis showed the 
presence of P. falciparum in 4 (4%) mosquitoes.

WHO susceptibility tests
A total of 96 F0 An. funestus oviposited out of the 315 
samples collected on the field producing 1269 F1 adults 
(679 females and 590 males), which were all exposed 
to six different insecticides (Fig.  2). The highest level of 
resistance was recorded with organochlorines. Diel-
drin exposure resulted into mortalities of 8%  ±  3.24 
(females) and 22% ± 1.73 (males). Likewise, DDT expo-
sure produced mortalities of 10% ± 2.66 in females and 
17%  ±  2.45 in male populations. Resistance was also 
observed against both type I and II pyrethroids (without 
and with cyano group), with a mortality of 68% ±  5.64 
in females (85% ±  3.15 for males) for permethrin (type 
I) and a mortality of 87% ± 10.96 (94% ± 3.98 for males) 
for deltamethrin (type II). In addition, bendiocarb (car-
bamate) resistance was also observed with mortalities 
of 84% ±  5.67 in females and 90% ±  2.36 for males. In 
contrast, a full susceptibility of 100% mortality was 
recorded in both females and males populations exposed 
to the organophosphate malathion. Overall, there was no 
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significant difference (χ2 = 7.73, df = 5, P = 0.172) in the 
percentage mortalities between the exposed females and 
males mosquitoes.

Synergist tests with PBO
There was a recovery of susceptibility to permethrin as 
mortality rose from 68 to 100% (n =  70) when perme-
thrin was combined with the P450 inhibitor, PBO (Fig. 3). 
This suggests a likely significant role of cytochrome 
P450s in the pyrethroid resistance. Similarly, 100% mor-
tality was recorded when PBO was combined with diel-
drin. This unexpected recovery of susceptibility from 
8 to 100% (n =  48) also implicates oxidases in dieldrin 
resistance. However, the combination of DDT with PBO 
only showed a slow increase in mortality from 10 to 30% 
(n  =  45) suggesting a limited implication of P450  s in 
DDT resistance. No mortality was observed in the con-
trol mosquitoes exposed to control paper with no insecti-
cide or only to PBO.

Genotyping and allelic distribution of L119F‑GSTe2 
mutation in the An. funestus population from Akaka‑Remo
The L119F-GSTe2 mutation was detected in 94% of the 
F0 mosquitoes (n  =  88) that were genotyped (Fig.  4a). 
Over half (52) of the total mosquitoes analysed were 

homozygous resistant RR, 31 were heterozygous RS while 
just 5 were homozygous susceptible, SS with allelic fre-
quencies of R = 77% and S = 23%. Similarly, when the F1 
generations (25 resistant and 25 susceptible after bioas-
says with DDT) were screened for L119F-GSTe2 muta-
tion, a genotypic frequency of 64% RR, 32% RS, and 4% 
SS and 48% RR, 48% RS and 4% SS were produced in 
the resistant and susceptible populations respectively. 
These resulted into allelic frequencies (119F) of 80% 
in the resistant and 72% in the susceptible populations 
(Fig.  4b). The observed genotypic frequency was shown 
to be at Hardy–Weinberg equilibrium (P  =  0.8935). 
However, there was no significant difference (χ2 =  1.37, 
df  =  2, P  =  0.5037) in the frequency of L119F-GSTe2 
mutation between the susceptible and resistant samples 
and consequently the correlation was also not significant 
(OR = 1.56; P = 0.1859).

Genotyping and allelic distribution of A296S‑RDL mutation 
in An. funestus s.s. from Akaka‑Remo
The A296S-RDL mutation was high in the F0 population 
(92 individuals genotyped) with homozygote RR claim-
ing over half of the total mosquito analysed (50). Like-
wise, 40 samples were heterozygous RS and just 2 being 
homozygote susceptible SS (Fig.  5a). The high presence 
of A296S-RDL mutation in F0 mosquitoes correlates with 

Table 1 Plasmodium infection rates of An. funestus from Akaka-Remo

fal falciparum, OVM the combination of ovale, vivax and malariae

Locality Species Id F0 tested +ve P. fal +ve P. OVM +ve P. fal and OVM Total infected  
with TaqMan  
(% infection)

Total infected  
with nested PCR  
(% infection)

Akaka-Remo An. funestus s.s. 93 6 1 – 7 (8) 4 (4)
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the elevated phenotypic dieldrin resistance in this popu-
lation (8 and 22% for females and males, respectively). 
But when F1 mosquitoes generated after bioassays with 
dieldrin (15 alive and 5 dead) were genotyped for A296S-
RDL mutation, there was a high presence of the mutation 
in resistant population (genotypic frequency of 80% RR 
and 20% RS) with a relatively low presence in susceptible 
(genotypic frequency of 10% RS) sample. These produced 
allelic frequencies (296S) of 90% and 10% in the resist-
ant and susceptible populations respectively (Fig.  5b). 
The observed genotypic frequency was also shown to 
be at Hardy–Weinberg equilibrium (P =  0.0617). There 
was a significant difference (χ2 = 16, df = 2, P = 0.00034) 
in the frequency of A296S-RDL mutation in the resist-
ant population compared to the susceptible sample and 
consequently correlation was also significant (OR =  81; 
P < 0.0001).

Discussion
Role of An. funestus in malaria transmission at Akaka‑Remo
Anopheles funestus is the most abundant mosquito spe-
cies (84%) recorded at Akaka-Remo during the sampling 
period. Other mosquito species identified include An. 
gambiae s.l., Culex spp, Aedes spp. and Mansonia spp.; 
these represent 26% of sampled mosquitoes. Among the 
malaria vectors identified in this locality, An. funestus 
density was over 10 times higher that An. gambiae (92 
and 8% respectively). This present report is in contrast 
with the report of Oyewole et al. [4] in 2005, where An. 
funestus collected, n = 85 was nowhere near that of An. 
gambiae, n = 500. This study supports previous reports 
in Ogun [4], Lagos [6], Oyo and Kwara states [5] that An. 

funestus s.s. is a major malaria vector in Nigeria with a 
confirmation of 8% Plasmodium infection in this mos-
quito species. It therefore emphasizes the importance of 
this vector and the threat it could pose to malaria trans-
mission in the Southwest of Nigeria. The 8% infection 
rate observed in Akaka-Remo is similar to high levels 
of infection rates recorded previously for An. funestus 
across the continent such as the 20% [24] and 50% [40] 
observed in Burkina Faso, the 13.6% [41] and 18% [26] 
observed in Benin and 12.5% in Ghana [42]. Although, 
some of the variations between these rates could be down 
to the differences in the methods used (TaqMan, ELISA 
and Nested-PCR) and the consistent high levels support 
a high vectorial capacity of An. funestus exhibits across 
the continent.

Another common member of the An. funestus group, 
Anopheles rivulorum that was previously identified both 
indoor and outdoor at Akaka-Remo [4] was absent in 
this study potentially due to a change in resting prefer-
ence of this species although more entomological stud-
ies are needed to explain this change. Previous reports 
on the other known malaria vector, An. gambiae in 
Nigeria have shown that infection rates range mostly 
between 2 and 8.1% [4–6, 43]. This research has shown 
the in-houses abundant presence of An. funestus at 
Akaka-Remo compared to An. gambiae during all cli-
matic seasons. It has also revealed the consistent level 
of mosquito infections with Plasmodium species (8% 
infected mosquitoes) in this locality hence, highlight-
ing the fact that An. funestus plays a significant role in 
malaria transmission in this community in southwest 
Nigeria.
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Multiple insecticide resistance at Akaka‑Remo
This study reports that An. funestus s.s. in Akaka-Remo 
has developed resistance to most common public health 
insecticides. Results from this research highlight the 
presence of multiple insecticide resistance in this malaria 
vector. Most studies on insecticide resistance in Nige-
ria have focused on An. gambiae with less interest on 
An. funestus as this vector was essentially thought to be 
susceptible to pyrethroids, the main insecticide used for 
malaria vector control. This study has shown that this 
An. funestus population has not only become resistant 
to pyrethroids but to a wide range of public health insec-
ticides from other families. The multi-insecticide resist-
ance pattern observed in Akaka-Remo is similar to what 
was previously reported in Benin [22, 26].

The level of DDT resistance observed from Akaka 
Remo is as high as the case in Benin. This present report 
is higher than what was observed in Uganda and Kenya 
(40–42% mortality) [12], and in Malawi (69.9% mortality) 
[17] among others. The high DDT resistance recorded 
in Benin (Pahou) and now in Nigeria (Akaka Remo), 
both in West Africa compare to a relatively lower resist-
ance profiles in the East and the Southern Africa might 
be as a result of different genetic make-up of this spe-
cies between regions of Africa. Resistance recorded with 
dieldrin is not only the highest of all the six insecticides 
tested but also the highest recorded in Africa until now. 
Resistance level (8% mortality) is higher than Burkina-
Faso (30% mortality) [20] and Benin (93.3% mortality) 
populations [22]. In Southern Africa, dieldrin suscepti-
bility has been frequently observed until a recent report 

of resistance in Malawi (83.9% mortality) [17]. Organo-
chlorines resistance recorded in this vector at Akaka-
Remo coupled with reports of DDT resistance in An. 
gambiae [10] will obviously further disapproves the re-
introduction of this insecticide family as an alternative 
to pyrethroids for mosquito control in Nigeria. DDT and 
dieldrin resistance recorded in this study could be associ-
ated with the residual effect of the long historical usage 
of this insecticide family (organochlorine) in agriculture 
when this sector was a key source of income in Nigeria 
[44]. The oil boom in the 1970s latter shifted the national 
attention from agriculture to the oil and gas sectors. This 
economic sector (oil production) was more lucrative 
than agriculture and became the main asset for Nigeria 
[45]. One could also argue that resistance may be due to 
the poor attitudes and/or ignorance of farmers towards 
observing good farming practices when using this insec-
ticide family to control pests [46, 47]. During mosquito 
collections, it was observed that some of the villagers 
even make use of these agrochemicals to control insects 
at home. Such ignorance could add-on to the high DDT 
and dieldrin resistance in this study area. It is therefore 
important to determine the extent to which An. funes-
tus has developed resistance to this insecticide family 
by investigating its spread across different geographical 
regions in Nigeria.

In Nigeria, agrochemicals use are approved by the 
National Agency for Food and Drug Administration 
and Control, NAFDAC [48]. It is possible that the mis-
use and/or over use of these chemicals by farmers could 
be fundamental for the multi-resistance selection in this 
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locality. The indiscriminate use of agro-chemicals by 
farmers could have also generated high chemical residues 
and other environmental pollutants that are washed into 
the water bodies (mosquito breeding sites) generating 
several xenobiotics that exercise a resistance selection 
in mosquitoes at larval stage [49–52]. Similarly, spilled 
petroleum products found in several mosquito breeding 
sites in the south–western Nigeria [53] might have also 
contributed to resistance selection in An. funestus from 
Akaka Remo through cross resistance mechanisms. Both 
environmental factors (generation of chemical pesticides 
and spillage of petroleum products) are common in Nige-
ria and can certainly contribute to the local selection 
of the observed insecticide resistance profiles. Further 
assessments are still needed to clearly map out the actual 
factor(s) contributing to the multi-insecticide resistance 
in An. funestus population from Akaka-Remo.

Pyrethroid resistance on the other hand is high but not 
as the previous two insecticides (DDT and dieldrin). Sus-
ceptibility test with pyrethroids is important because the 
country depends on this insecticide family for malaria 
vector control [2]. Mortalities recorded with permethrin 
(68%) and deltamethrin (87%) are similar to what was 
reported in Pahou (permethrin  =  66.7% and deltame-
thrin  =  88.60%) [22] but higher than Kpome (perme-
thrin  =  13.03% and deltamethrin  =  46.49) [26]. These 
reports show that pyrethroids resistance is increasing in 
the West Africa population of An. funestus. The pattern 
of pyrethroids resistance in Western Africa is different 
from East [12] and Southern Africa [14], where resistance 
to deltamethrin is higher than permethrin. Pyrethroids 
resistance recorded in An. funestus from Akaka-Remo is 
a great concern for malaria control programs and there 
is a risk that this mosquito species would have developed 
resistance to pyrethroids in different regions of Nigeria 
due to the current heavy use of this class of insecticide 
both in agriculture and public health all over the country. 
If this happens, it will constitute more ordeals for future 
malaria vector control interventions through the use of 
pyrethroid-based insecticides for both ITNs and IRS. 
These findings therefore suggest further studies to deter-
mine the extent of pyrethroid resistance in An. funestus 
populations in Nigeria.

Bendiocarb resistance (84% mortality) in this species 
population is also a concern because carbamate-based 
insecticide interventions were recently introduced as an 
alternative to pyrethroid-based in West Africa. Bendio-
carb resistance was also reported in Pahou (65% mortal-
ity) in 2011. Bendiocarb resistance is higher in Southern 
Africa: Zambia, Zimbabwe and Mozambique [16, 25, 54] 
but lower in East Africa [12] compared to West Africa. 
The current level of bendiocarb resistance raises an alarm 
as it might affect the success of the recently introduced 

bendiocarb-based IRS in West Africa. Hence, it will 
be important to have more information on the poten-
tial spread of resistance across different regions and 
some underlying factors that might be responsible. This 
information will guide the malaria control programs to 
improve its subsequent release of bendiocarb-based IRS. 
The organophosphate malathion is really proving to be 
the most reliable insecticide considering similar records 
of full susceptibility in An. funestus population all over 
Africa. This insecticide could, therefore, be used as an 
alternative insecticide to manage resistance.

Underlying mechanisms of the observed multiple 
insecticide resistance patterns at Akaka‑Remo
The proven absence of the kdr mutation in An. funestus 
populations from Benin (a neighbouring country) [22] 
and other regions in Africa [12] coupled with the high 
mortality observed when permethrin was combined 
with PBO in this study support the fact that pyrethroid 
resistance is still driven by metabolic resistance mecha-
nisms. The use of the synergist PBO revealed the role of 
oxidase, notably cytochrome P450s, in pyrethroid resist-
ance of this mosquito population similar to what have 
been reported so far in Africa [12, 26]. However, the glu-
tathione S-transferase gene, GSTe2 was shown to play 
a higher role in DDT resistance in Benin through over-
transcription and also the selection of the resistant allele 
L119F [27]. The high frequency of L119F in Akaka-Remo 
(77% in F0) associated with the high DDT resistance level 
support a significant role for the L119F-GSTe2 muta-
tion in the DDT resistance in this An. funestus popu-
lation. However, this high frequency of L119F in this 
location is probably the reason why a lack of correlation 
was observed when comparing resistant and susceptible 
samples as observed regularly for kdr mutations such 
as L1014F in An. gambiae in  situation when the 1014F 
resistant allele is nearly fixed [55]. The L119F-GSTe2 
mutation has also been detected in other DDT resistant 
populations such as Ghana (44.2%) and Burkina-Faso 
(25%) in West Africa, and Cameroon (48.2%) in Cen-
tral Africa [20, 23] as well as Uganda (20.4%) and Kenya 
(7.8%) in East Africa [12]. In Southern Africa (Malawi) 
however, L119F allele is absent despite the recent detec-
tion of DDT resistance in this region suggesting a dif-
ferent DDT resistance mechanism in this An. funestus 
population [17].

Dieldrin resistance on the other hand showed a strong 
association with oxidase. This is unexpected because 
dieldrin resistance has always been linked with target-
site insensitivity [20]. Also, mutation detected on GABA 
receptor (A296S-RDL) gene in the parent and first filial 
generation of this An. funestus population indicates that 
this mosquito species adopts more than one mechanism 



Page 9 of 10Djouaka et al. Malar J  (2016) 15:565 

for dieldrin resistance. More screening of dieldrin sus-
ceptibility should be done and further studies should be 
conducted to determine the geographical distribution of 
dieldrin resistance in An. funestus from Nigeria.

Conclusion
This study reports the presence of multiple insecticide 
resistance in An. funestus population from Akaka-Remo 
in the southwestern Nigeria. Molecular analysis con-
ducted in the course of this research have revealed that 
this An. funestus population have developed multiple 
resistance mechanisms to withstand lethal doses of insec-
ticides used in public health. The consistent implication 
of An. funestus in malaria transmission at Akaka-Remo 
was also established in this study. Nevertheless, further 
studies are needed to determine the spread of insecticide 
resistance and to conduct more investigations on under-
lying mechanisms of insecticides resistance for improved 
malaria control strategies in Nigeria.
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