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Abstract

Fine chemicals that are physiologically active, such as pharmaceuticals, cosmetics, nutritional supplements, flavoring
agents as well as additives for foods, feed, and fertilizer are produced by enzymatically or through microbial
fermentation. The identification of enzymes that catalyze the target reaction makes possible the enzymatic
synthesis of the desired fine chemical. The genes encoding these enzymes are then introduced into suitable
microbial hosts that are cultured with inexpensive, naturally abundant carbon sources, and other nutrients.
Metabolic engineering create efficient microbial cell factories for producing chemicals at higher yields. Molecular
genetic techniques are then used to optimize metabolic pathways of genetically and metabolically well-characterized
hosts. Synthetic bioengineering represents a novel approach to employ a combination of computer simulation and
metabolic analysis to design artificial metabolic pathways suitable for mass production of target chemicals in host
strains. In the present review, we summarize recent studies on bio-based fine chemical production and assess
the potential of synthetic bioengineering for further improving their productivity.

Keywords: Fine chemical, Synthetic bioengineering, Metabolic engineering, Enzymatic synthesis, Microbial
fermentation, Bioinformatics
Introduction
Physiologically active fine chemicals such as pharma-
ceuticals, cosmetics, nutritional supplements, flavoring
agents as well as additives for foods, feed, and fertilizer
are produced enzymatically or through microbial fermen-
tation. Although many of these compounds are present
naturally, few are commercially available, because most
are present in low abundance and may be difficult and
expensive to purify. These disadvantages are overcome
by bio-based fine chemical synthesis.
Bio-based fine chemical production is summarized in

Figure 1. The enzymes are isolated from diverse orga-
nisms and are used in purified form in vitro or expressed
by a suitable host cell.
The advantage of microbial fermentation is that the

supply of components required for growth of the host
strain and synthesis of the product can be derived from
inexpensive sources of carbon, nitrogen, trace elements,
and energy [1]. In particular, coproduction of several fine
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chemicals from common carbon sources is more eco-
nomical. The conditional requirements to fulfill the price
advantages for the production of target fine chemicals
are rapid cell growth to high density, and high cellular
content and easy extraction of target fine chemicals. The
bio-production of fine chemicals is typically performed
at lower temperatures compared with those required for
chemical syntheses, and important advantages of bio-based
fine chemical production are cost-effectiveness and the use
of processes that are not hazardous to the environment.
Synthetic bioengineering represents a recently deve-

loped novel approach to create optimized microbial cell
factories for efficient production of target compounds
through fermentation (Figure 1). Synthetic bioenginee-
ring is achieved using genetic engineering strategies de-
signed according to artificial metabolic maps generated
by computer simulation. Metabolomic data are critical
to redesign a rational artificial metabolic map in which
metabolic sources flow efficiently into the target com-
pound. The concentrations of enzyme and substrates are
readily controlled in an enzymatic reaction mixture; how-
ever, this is difficult in fermentations because precursors
may be shunted through different metabolic pathways.
is is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,
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Figure 1 Bio-based fine chemical production through synthetic bioengineering. Enzymes convert substrates to the fine chemical of interest with
or without a coenzyme. The enzymatic synthesis system is introduced into a microbial host strain to develop a microbial cell factory (blue arrow). The
microbial system converts a common source into various fine chemicals, and they are accumulated in cells or in the medium. The productivity of a
microbial cell factory is improved by genetic engineering of metabolic pathways (e.g. heterologous expression, overexpression, down-regulation, deletion,
or mutation) according to an artificial metabolic map designed by computer simulation. Further, synthetic bioengineering (gray arrows) improves
productivity by additional metabolic engineering according to the artificial map redesigned by the metabolic data of the microbial cell factory.
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Thus, synthetic bioengineering plays a critical role in
controlling metabolic pathways to supply the optimal sub-
strate ratios. To develop highly productive microbial fer-
mentation systems for producing fine chemicals, the genes
encoding the required enzymes are introduced into an ap-
propriate host strain (Figure 1). Thus, the key for selecting
the host strain, target metabolic pathways, or both to im-
prove the production of fine chemicals by fermentation is
the ability to genetically engineer modifications to the
relevant metabolic pathways. Escherichia coli is often se-
lected as the first candidate for producing target enzymes
because of its well-developed genetic engineering system
and its ability to express high levels of genes encoding tar-
get enzymes. In contrast, microorganisms such as Saccha-
romyces cerevisiae, Bacillus strains, Streptomyces strains,
Corynebacterium glutamicum, and Aspergillus oryzae are
selected as a host for fermentations depending on their
specific metabolic pathways that are required to synthesize
target products.
Here we summarize recently developed, well-characterized

bio-based systems for producing the compounds as fol-
lows: γ-aminobutyric acid (GABA), isoprenoids, aromatics,
peptides, polyphenols, and oligosaccharides (Table 1). The
developmental stages of these systems are different, and
they illustrate the great potential of synthetic bioengineer-
ing approaches for producing all bio-based fine chemicals
in the future.

GABA
The microbiological production of GABA serves as an
excellent first example of how a system can be improved
to increase yields (Table 2). GABA is an amino acid,
which is not present naturally in proteins, that is synthe-
sized by microorganisms, animals, and plants [2]. GABA
functions as a neurotransmitter signals decreases blood
pressure [3] and is used in functional foods and phar-
maceuticals [4]. GABA, which was originally identified
in traditional fermented foods such as cheese, yogurt
[5] and kimchi [6], is synthesized through the alpha-
decarboxylation of L-glutamate catalyzed by glutamate
decarboxylase (GAD, EC 4.1.1.15) [2]. GABA is produced
by lactic acid bacteria (LABs) such as Lactobacillus para-
casei [7], L. buchneri [6], and L. brevis [8,9] (Table 2), and
the latter produces high yields of GABA through fed-
batch processes [10].
Corynebacterium glutamicum is an important industrial

microorganism because of its ability to produce high levels
of L-glutamate, and recombinant strains of C. glutamicum
that express GADs from L. brevis [12,14] or Escherichia
coli [13] produce GABA from glucose (Table 2). Disrupting
the gene that encodes protein kinase G affects the function
of 2-oxoglutarate dehydrogenase in the TCA cycle, alters
metabolic flux toward glutamate [16], and enhances the
yields of GABA produced by a GAD-expressing strain of
C. glutamicum [15]. Because C. glutamicum is generally
recognized as safe, the system for GABA fermentation can
be applied to the production of GABA as a component of
food additives and pharmaceuticals.

Isoprenoids
Isoprenoids represent the most diverse group of natural
products comprising more than 40,000 structurally



Table 1 Bio-based fine chemicals

Chemical category Example structure Function Production types

γ-aminobutyric acid (GABA)

GABA

Cosmetics Microbial fermentation

Nutritional supplement

Food additive

Isoprenoid

Isoprene

Medicine Microbial fermentation

Cosmetics

Nutritional supplement

Flavoring agent

Food additive

Feed additive

Fertilizer additive

Aromatic compound

Cinnamic acid

Medicine Microbial fermentation

Cosmetics

Nutritional supplement

Flavoring agent

Food additive

Alkaloid

Reticuline

Medicine Microbial fermentation

Peptide

Glutathione

Medicine Enzymatic production/
Microbial fermentation

Cosmetics

Nutritional supplement

Food additive

Feed additive

Fertilizer additive

Polyphenol

Resveratrol

Medicine Microbial fermentation

Cosmetics

Nutritional supplement

Flavoring agent

Food additive

Feed additive

Fertilizer additive
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Table 1 Bio-based fine chemicals (Continued)

Oligosaccharide

2’-fucosyllactose

Medicine Enzymatic production

Cosmetics

Nutritional supplement

Flavoring agent

Food additive

Feed additive

Fertilizer additive
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distinct compounds that are present in all classes of
living organisms. These molecules play key roles in respir-
ation and electron transport, maintenance of membrane
fluidity, hormone signaling, photosynthesis, antioxidation
as well as subcellular localization and regulation of protein
activities [17]. Certain isoprenoids such as carotenoids are
produced commercially as nutritional and medicinal addi-
tives [18].
Despite their enormous structural diversity, isoprenoids

are biologically synthesized through consecutive con-
densations of five-carbon precursors, isopentenyl diphos-
phate (IPP), and its allyl isomer dimethylallyl diphosphate
(DMAPP) (Figure 2). IPP and DMAPP are synthesized via
either the mevalonate (MVA) pathway in most eukaryotes
or the 2-C-methyl-D-erythrito-l,4-phosphate (MEP) path-
way in prokaryotes. In higher plants, the MVA and MEP
pathways function in the cytosol and plastid, respectively
[19-21]. The five-carbon precursors are condensed by pre-
nyltransferase to form prenyl pyrophosphates such as gera-
nyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP),
Table 2 Microbial fermentation of GABA

Strains Source or engineered phenotype Substrates

L. paracasei NFRI 7415 Isolated from fermented crucians MSG

L. buchneri MS Isolated from Kimchi MSG, Sacchar

S. salivarius subsp.
thermophilus Y2

Starter for yoghurt and cheese MSG

L. brevis NCL912 Isolated from Paocai MSG

L-glutamate (

TCCC13007 Isolated from pickles MSG (2-step f

E. coli gadB (L. lactis) MSG

C. glutamicum gadRCB2 (L. brevis) Glucose

gadB (E. coli) Glucose

gadB1B2 (L. brevis) Glucose, urea

ΔpknG, gadB (E. coli) Glucose
geranylgeranyl pyrophosphate (GGPP), and several polypre-
nyl pyrophosphates [17]. The prenyl pyrophosphates are
converted into monoterpenes, sesquiterpenes, diterpenes,
triterpenes, tetraterpenes, and polyprenyl side chains. The
chemical diversity of isoprenoids is determined by specific
terpene synthases and terpene-modifying enzymes, particu-
larly cytochromes P450 [22].
Various synthetic bioengineering approaches improve

isoprenoid production by microorganisms such as E. coli
and S. cerevisiae. Examples include the synthesis of triter-
penoids amorpha-4,11-diene and artemisinic acid, pre-
cursors of the antimalarial agent artemisinin and the
precursor of the major antineoplastic agent taxol diter-
penoid taxa-4(5),11(12)-diene [23-31]. The tetraterpenoids
(carotenoids) such as astaxanthin are also synthesized by
synthetic bioengineering approaches [32,33].
Isoprene, the simplest isoprenoid, is used to synthesize

pharmaceuticals, pesticides, fragrances, and synthetic
rubber. E. coli strains engineered to express the Poplus
alba gene (IspS) encoding isoprene synthase and the
Yield (g/L) Scale (L) Reference

31.1 - Komatsuzaki et al.,
2005 [7]

ides 25.8 - Cho et al., 2007 [6]

7.98 0.4 Yang et al., 2008 [5]

35.6 0.1 Li et al., 2010 [4]

fed-batch fermentation) 102.8 3.0 Li et al., 2010 [10]

ermentation) 61 3.0 Zhang et al., 2012 [8]

76.2 1.5 Park et al., 2013 [11]

2.15 0.02 Shi et al., 2011 [12]

12.3 0.02 Takahashi et al.,
2012 [13]

27.1 1.2 Shi et al., 2013 [14]

31.1 0.02 Okai et al., 2014 [15]



Figure 2 Biosynthetic pathway of isoprenoids produced by recombinant microorganisms. Abbreviations: DXP, 1-deoxy-D-xylulose-5-phosphate;
MEP, 2-C-methyl-D-erythritol-4-phosphate; HMBPP, hydroxymethylbutenyl-4-diphosphate; IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate;
GPP, geranyl diphosphate; FPP, farnesyl diphosphate; GGPP, geranylgeranyl diphosphate; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA.
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S. cerevisiae MVA pathway genes produce 532 mg/L of
isoprene under fed-batch conditions [34]. A strain of the
cyanobacterium Synechocystis, which was engineered to
express IspS from kudzu, synthesizes isoprene photosyn-
thetically [35].
Monoterpenes are used as aromatic additives in food,

wine, and cosmetics. Certain monoterpenes exhibit anti-
microbial, antiparasitic, and antiviral activities [36]. In
S. cerevisiae, geraniol and linalool are produced from GPP
by the expression of genes encoding geraniol synthase and
linalool synthase (LIS), respectively [37-40]. Expression of
the gene encoding Picea abies 3-carene cyclase in E. coli
generates a range of monoterpenes, including α-pinene,
myrcene, sabinene, 3-carene, γ-terpinene, limonene, β-
phellandrene, α-terpinene, and terpinolene [41].
Sesquiterpenes exhibit anticancer, cytotoxic, and anti-

biotic properties as well as their characteristic flavors and
aromas, making them industrially relevant compounds
[17]. Valencene, cubebol, patchoulol, and α-santalene are
produced by expressing heterologous sesquiterpene
synthase genes in S. cerevisiae [42-47]. Coexpression of
the genes encoding valencene synthase gene and a P450
mono-oxygenase in S. cerevisiae generates nootkatone
that is industrially produced as a flavoring agent and fra-
grance [48]. The diterpenoid levopimaradiene is produced
at high yield (700 mg/L) through combinatorial protein
engineering of plant-derived GGPP synthase and levo-
pimaradiene synthase expressed by an E. coli strain with
enhanced carbon flux toward IPP and DMAPP [49].
Miltiradiene, the precursor of tanshinones that belongs to
a group of bioactive diterpenoids present in the Chinese
medicinal herb Salvia miltiorrhizha, accumulates in a S.
cerevisiae strain that expresses genes encoding S. miltior-
rhiza copalyl diphosphate synthase and kaurene synthases
homolog [50,51]. Few attempts were made to metabo-
lically engineer triterpene production, because the genes
encoding components of its biosynthetic pathway are
unknown; Kirby et al. isolated a gene encoding β-amyrin
synthase from Artemisia annua and used it to produce
β-amyrin in S. cerevisiae [52].
Elevating the levels of precursor pools based on

improving carbon flux are efficient strategies to enhance
isoprenoid production by recombinant microbial strains
(Table 3). Scalcinati et al. adopted multiple metabolic
engineering strategies for α-santalene production that
were designed to increase precursor and cofactor supply
by improving metabolic flux toward FPP and modifying
the ammonium assimilation pathway, respectively
[45,46]. The gene encoding 3-hydroxy-3-methyl-glutaryl-
CoA reductase lacking its transmembrane region was
expressed to avoid feedback regulation by sterols [45,46].
Repression of ERG9 that encodes squalene synthase and



Table 3 Strategies of synthetic bioengineering for the microbial production of isoprenoids

Compounds Host strains Genetic engineeringa Strategy for flux control Titer Reference

Isoprene E. coli He: B. subtilis dxs, dxr and P. alba IspS -Improvement of MEP pathway flux 314 mg/L Zhao et al., 2011 [30]

E. coli He: P. alba IspS -Integration of heterologous
MVA pathway

532 mg/L Yang et al., 2012 [34]

Oe: MVA pathway genes

Monoterpene

Carene E. coli He: H. pluvialis IPI isomerase and
P. abies 3- carene cyclase genes

-Improvement of flux toward GPP 3 μg/L/OD600 Reiling et al., 2004 [41]

Oe: dxs, IspA variant

Geraniol S. cerevisiae He: O. basiilcum geraniol synthase gene -Repression of FPP synthesis 5 mg/L Fischer et al., 2011 [40]

Mu: ERG20

Linalool S. cerevisiae He: C. breweri LIS -Improvement of MVA pathway flux 132.66 μg/L Rico et al., 2010 [39]

Oe: tHMG1

Sesquiterpene

Artemisinic acid (Amorpha-4,11-diene) E. coli He: S. cerevisiae HMGS, tHMG1, ERG12,
ERG8, MVD1, H. pluvialis ispA and
A. annua ADS

-Integration of heterologous
MVA pathway

111.2 mg/L Martin et al., 2003 [53]

-Overexpression of FPP synthase gene
Oe: atoB and idi

S. cerevisiae He: A. annua ADS and CYP71AV1 -Overexpression of tHMGR and
FPP synthase genes

153 mg/L Ro et al., 2006 [54]

Oe: tHMG1, ERG20 and Upc2-1
-Up regulation of global transcription
activityDr: ERG9

-Repression of squalene synthesis

He: A. annua ADS, CYP71AV1, CPR1,
CYB5, ALDH1 and ADH1

-Integration of heterologous MVA
pathway

25 g/L Paddon et al., 2013 [55]

-Overexpression of tHMGR and FPP
synthase
genes

-Repression of

squalene synthesisOe: MVA pathway genes, tHMGR,
and ERG20

Dr: ERG9
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Table 3 Strategies of synthetic bioengineering for the microbial production of isoprenoids (Continued)

Levopi-maradiene E. coli He: G. biloba GGPPS and LPS -Improvement of flux toward
IPP/DMAPP

700 mg/L Leonard et al., 2010 [49]

Oe: dxs, idi, ispD and ispF -Combinatorial mutation in GGPP
synthase
and LPS

Patchoulol S. cerevisiae Oe: S. cerevisiae FPPS/P. cablin
PTS (chimera)

-Avoidance of intermediate loss 40.9 mg/L Albertsen et al., 2011 [43]

-Repression of squalene synthesis
Dr: ERG9

α-Santalene S. cerevisiae He: C. lansium santalene synthase -Overexpression of tHMGR and FPP
synthase

92 mg/L Scalcinati et al., 2012 [42]

Oe: tHMG1, FPPS, GDH2 and Upc2-1
-Increment of cofactor supply

Dr: ERG9

De: GDH1, LPP1, DPP1 -Up regulation of global
transcription activity

-Repression of squalene synthesis

-Minimization of flux toward farnosol

He: C. lansium santalene synthase -Improvement of flux toward
acetoacetyl-CoA from ethanol

8.3 mg/L Chen et al., 2013 [44]

-Avoidance of acetyl-CoA
consumption

Oe: Adh2, Ald6, ACS variant,
Erg10 and tHMG1

De: CIT2 and MLS1

Valencene S. cerevisiae He: A. thaliana FPP synthase and
C. sinensis TPS1 genes in
mitochondria

-Overexpression of tHMGR 1.5 mg/L Farhi et al., 2011 [44]

-Mitochondrial expression of FPP
synthase and valencene synthase
genesOe: tHMG1

Diterpene

Casbene E. coli Oe: dxs, IspA variant -Improvement of flux toward GGPP 0.3 mg/L Reiling et al., 2004 [41]

He: H. pluvialis IPI isomerase and
R. communis casbene cyclase genes

Miltiradiene S. cerevisiae He: S. acidocaldarium GGPPS and
S. miltiorrhizha CPS and KSL

-Overexpression of tHMGR, FPP synthase
and GGPP synthase genes

8.8 mg/L Dai et al., 2012 [47]

Oe: tHMG1, ERG20, BTS1 and Upc2-1 -Up regulation of global transcription
activity
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Table 3 Strategies of synthetic bioengineering for the microbial production of isoprenoids (Continued)

Taxadiene E. coli He: S. acidocaldariums GGPP synthase and
T. chinensis taxadiene synthase genes

-Improvement of MEP pathway flux 1 g/L Ajikumar et al., 2010 [24]

-Overexpression of GGPP synthase
Oe: dxs, ispC, ispF, idi, tHMG1 and Upc2-1

S. cerevisiae He: S. acidocaldariums GGPP synthase and
T. chinensis taxadiene synthase genes

-Overexpression of tHMGR 8.7 mg/L Engels et al., 2008 [31]

-Up regulation of global transcription
activityOe: tHMG1 and Upc2-1

Triterpene

β-Amyrin S. cerevisiae Oe: tHMG1 -Overexpression of tHMGR 6 mg/L Kirby et al., 2008 [52]

He: A. annua β-amyrin synthase gene -Repression of lanosterol synthesis

Dr: ERG7
aTypes of genetic engineering: He, Heterologous expression; Oe, Overexpression of self-cloning gene(s); Dr, down regulation; De, Deletion; Mu, Mutation.
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the deletion of LPP1 and DPP1 that encode enzymes
that dephosphorylate FPP minimized the formation
of by-products such as sterols and farnesol. Efficient
provision of acetyl-CoA, the precursor of the MVA path-
way, was critical to improve α-santalene synthesis [47].

Aromatics
Aromatic compounds such as vanillin, cinnamic acid,
p-hydroxycinnamic acid, and caffeic acid are used as
flavoring agents or food ingredients (Table 4). Vanillin,
which was originally extracted from cured seed pods of
the orchid Vanilla planifolia, is mainly synthesized from
petroleum oil or lignin. Alternatively, vanillin is produced
by bioconversion of fossil carbon, guaiacol, eugenol, or
isoeugenol [56]. Vanillin was produced from glucose by
fermentation using an engineered strain of barker’s yeast
[57]. To decrease the cytotoxic effects of converting inter-
cellular 3-dehydroshikiminate to vanillin, genes encoding
UDP-glucose transferase and o-methyltransferase were
introduced into baker’s yeast to produce vanillyl glucoside
(VG) [58]. Further, the Minimization of Metabolic Adjust-
ments (MOMA) [59] and OptGene [60] algorithms were
used to improve VG production in yeast strains [58,61].
Cinnamic acid is used as a cinnamon flavoring agent and

is antibacterial. Although cinnamic acid occurs abundantly
in plants as a precursor of phenylpropanoids, it is produced
industrially using synthetic organic chemistry. Cinnamic
acid is produced from sugar by phenylalanine-ammonia
lyase (PAL, EC 4.3.1.24) expressed in a solvent-tolerant
Pseudomonas putida strain [62] or by Streptomyces
lividans, which is an ideal host, because its endogenous
polyketide synthesis (PKS) pathways synthesize phenyl-
propanoids [64]. A phenylpropanoid, p-hydroxycinnamic
acid (p-coumaric acid), a constituent of the plant cell wall,
which is covalently linked to polysaccharides and lignins,
acts as an antioxidant in humans [63]. E. coli and S. cerevi-
siae strains engineered to express PAL/tyrosine-ammonia
lyase (TAL, EC 4.3.1.23) [68] or P. putida engineered to
express PAL [69] produce p-hydroxycinnamic acid from
glucose. Further, p-hydroxycinnamic acid can be produced
from cellulose by S. lividans coexpressing TAL and endo-
glucanase (EG, EC 3.2.1. 4) [70].

Alkaloids
Alkaloids are nitrogen-containing compounds derived
from amino acids such as histidine, lysine, ornithine,
tryptophan, and tyrosine [71] that are present in plants.
Most are used in biological and medicinal applications.
They are mainly extracted from plants for practical use,
but the yields are very low because low levels of alka-
loids are produced by plants. Further, alkaloids consist
of complex chemical backbones and structures with one
or more chiral centers, which make it difficult to supply
sufficient amounts of alkaloids for practical use through
chemical synthesis. Therefore, development of alterna-
tive approaches is expected to characterize and engineer
the biosynthetic pathways in microbial and plant cells.
Benzylisoquinoline alkaloids (BIAs) such as (s)-reticuline
and (s)-scoulerine, which are categorized into one of the
major alkaloid subclasses, include the analgesics codeine
and morphine, the antimicrobial berberine, and the anti-
cancer drug noscapine (Figure 3 right). Both (s)-reticuline
and (s)-scoulerine are synthesized through the production
of (R, S)-norlaudanosoline from aromatic amino acids
(tyrosine and phenylalanine). The increasing volume of in-
formation on the genome sequences of alkaloid-producing
plants makes it possible to identify and engineer genes in
biosynthetic pathways to produce BIAs in E. coli [72,73]
and S. cerevisiae [74] through the production of (R, S)-
norlaudanosoline from aromatic amino acids.
Minami et al. reconstructed the (S)-reticuline bio-

synthetic pathways in E. coli using monoamine oxidase
(MAO) from Micrococcus luteus and four genes from
Coptis japonica to produce (S)-reticuline from dopamine.
They introduced the genes encoding BBE (berberine
bridge enzyme) and CYP80G2 (plant cytochrome P450
enzyme) of C. japonica into S. cerevisiae, because active
forms of certain plant enzymes cannot be expressed in
E. coli. S. cerevisiae provides the advantage of compart-
mentalizing these proteins in the cytosol and endoplasmic
reticulum (ER). The engineered S. cerevisiae is co-cultured
with E. coli to produce BIA derivatives (S)-scoulerine and
magnoflorine. Nakagawa et al. engineered the shikimate
(SK) pathway in E. coli to increase the amount of L-tyrosine
and produced (S)-reticuline from glucose or glycerol [73].
The BIA pathways downstream of the precursor (R, S)-
norlaudanosoline were assembled in S. cerevisiae [74]. The
expression levels of norcoclaurine 6-O-methyltransferase
(6-OMT), coclaurine-N-methyltransferase (CNMT), and
3′-hydroxy- N-methylcoclaurine 4′-O-methyltransferase
(4′-OMT), and a hydroxylation reaction catalyzed by cyto-
chrome P450 80B1 (CYP80B1) derived from Thalictrum
flavum or Papaver somniferum were optimized to produce
(S)-reticuline. A human cytochrome P450 (CYP2D6) was
expressed as well to produce the morphinan intermediate
salutaridine [71]. Most recently, 10 genes from plant BIA
pathways were introduced into S. cerevisiae to produce
dihydrosanguinarine and its oxidized derivative sangui-
narine from (R,S)-norlaudanosoline [75].
Coumarins are present in plants and are used as

antibacterials, anticancer drugs, and anticoagulants. The
biosynthetic pathways of coumarins diverge from that of
phenylalanine/tyrosine as well as BIA (Figure 3 left).
Recent findings that coumarin is formed by the action of
two hydroxylases allowed reconstruction of its biosyn-
thetic pathway in microbial cells. Lin et al. designed arti-
ficial biosynthetic pathways in E. coli [76] and produced
scopoletin and umbelliferone from the corresponding



Table 4 Microbial fermentation of aromatic compounds

Compounds Strains Genetic engineeringa Substrates Yield (g/L) Reference

Vanillin S. pombe He: 3-dehydroshikiminate
dehydratase (3DSD), Aryl
carboxylic acid reductase
(ACAR, Nocardia sp.),
o-methyltransferase (OMT),
UDP-glycosyltransferase (UGT,
A. thaliana)

Glucose 0.065 Hansen et al., 2009 [51]

S. cervisiae He: 3DSD, ACAR, OMT, UGT

Vanillin β-D-glucoside S. cervisiae He: 3DSD, ACAR,
phosphopantetheine
transferase (PPTase), hsOMT
(Homo sapiens), UGT

Glucose 0.5 Brochado et al., 2010 [52]

De: pdc1gdh1↑GDH2

S. cervisiae He: ACAR, hsOMT, Glucose 0.38 Brochado et al., 2013 [58]

Oe: GDH2

De: pdc1 gdh1 yprC

Cinnamic acid P. putida He: Phenylalanine ammmonia
lyase (PAL, Rhodosporidium
toruloides)

Glucose 0.74 Nijkamp et al., 2005 [62]

Glycerol 0.8

S. lividans He: PAL (Streptomyces
maritimus)

Glucose 0.12 Noda et al., 2011 [60]

Starch 0.46

Xylose 0.3

Xylan 0.13

p-hydroxycinnamic acid
(p-coumaric acid)

S. cervisiae He: PAL/TAL (Rhodotorula
glutinis), plant Cytochrome
P450 (Cyt P450), Cyt reductase

Glucose Vannelli et al., 2007 [62]

E. coli He: PAL/TAL (R. glutinis) 0.10

S. lividans He: Tyrosine ammmonia lyase
(TAL, Rhodobacter sphaeroides)

Glucose 0.75 Kawai et al., 2013 [63]

Cellobiose 0.74

He: TAL (R. sphaeroides),
Endoglucanase (Thermobifida
fusca)

PASC 0.5

P. putida He: PAL (Rhodosporidium
toruloides)

Glucose 1.7 Nijkamp et al., 2007 [64]

Mu: phenylalanine
bradytrophic

De: fcs

E. coli He: TAL (Saccharothrix
espanaensis)

Glucose 0.97 Kang et al., 2012 [65]

Mu: tyrAfbraroGfbr

De: tyrR

Caffeic acid E. coli He: Cyt P450
(Rhodopseudomonas palustris)

p-hydroxycinnamic acid 2.8 Furuya et al., 2012 [66]

He, Mu: Cyt P450 Cinnamic acid

He: TAL, 4-coumarate
hydroxylase (Sam5,
S. espanaensis),

Glucose 0.15 Kang et al., 2012 [65]

Mu: tyrAfbraroGfbr

De: tyrR
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Table 4 Microbial fermentation of aromatic compounds (Continued)

He: TAL (R. glutinis codon-
optimized), 4-coumarate: CoA
ligase (4CL), 4-coumarate
3-hydroxylase (Coum3H, S.
espanaensis)

Glucose 0.10 Zhang et al., 2013 [67]

Xylose 0.07

Mu: tyrAfbraroGfbr

De: tyrR pheA
aTypes of genetic engineering: He, Heterologous expression; Oe, Overexpression of self-cloning gene(s); Mu, Mutation; De, Deletion.
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phenylpropanoid acids, ferulic acid, caffeic acid, and
4-coumaric acid. They used TAL to produce scopoletin
and umbelliferone from aromatic amino acids. Further
work was extended to identify a β-ketoacyl-acyl carrier
protein synthase III-like quinolone synthase from P.
aeruginosa that contributes to the biosynthesis of high
levels of 4-hydroxycoumarin by E. coli [77].

Peptides
Enzymatic hydrolysis of proteins generates mixtures of
peptides. In contrast, purified carnosine (β-alanine-L-
histidine) and antimicrobial peptides (e.g. gramicidin S,
actinomycin, polymixin B, and vancomycin) are prepared
from organisms that contain higher amounts compared
with other organisms [78] (Table 5). Carnosine is synthe-
sized from H-β-Ala-NH2 using β-aminopeptidase expressed
PhenylalanineTyrosine

Aromatic amino acids

4-coumaric acid Caffeic acid

Umbelliferone Scopoletin

Coumarins

Figure 3 Production of benzylisoquinoline alkaloids (BIAs) and couma
from aromatic amino acids (tyrosine and phenylalanine) through correspon
by E. coli and Pichia pastoris [79]. Physiologically active
polypeptides such as ε-poly-L-lysine (ε-PL) and poly-γ-
glutamic acid (γ-PGA) are produced by microbial fermen-
tation. ε-PL is characterized by the peptide bond between
the α-carboxyl and ε-amino groups of 25–35 L-lysine resi-
dues [80] and is produced by secretory fermentation of
Streptomyces strains isolated from soil [81]. The yield of
ε-PL was enhanced using genome shuffling [82]. γ-PGA is
an unusual anionic polypeptide comprising D/L-glutamate
monomers polymerized through γ-glutamyl bonds [83].
γ-PGA is produced by Bacillus strains from glutamate or
glucose [84,85]. B. subtilis was engineered to increase
γ-PGA production by overexpression of γ-PGA synthetase
[86] or by deletion of γ-PGA-degrading enzymes [87].
B. amyloliquefaciens was engineered to enhance γ-PGA
production by heterologous expression of the Vitreoscilla
Benzylisoquinoline alkaloids (BIAs)

Dopamine 3,4-DHPAA

(s)-reticuline

Norlaudanosoline

(s)-scoulerine

rins from aromatic amino acids. BIAs and coumarins are synthesized
ding intermediates.



Table 5 Enzymatic conversion and microbial fermentation of peptides

Compounds Strains Typesa Genetic engineeringb Substrates and components Maximum yield Scale Reference

Carnosine E. coli or Pichia pastoris E He: Ochrobactrium anthropi
β-aminopeptidase or Sphingosinicella
xenopeptidilytica L-aminopeptidase-

H-β-Ala-NH2 4.5 g/L 200 mL Heyland et al., 2010 [79]

D-amidase

ε-poly-lysine (εPL) Streptomyces strains F He: Genome shuffling Glucose 24.5 g/L 3 L Li et al., 2013 [82]

poly-gamma-glutamate
(γ-PGA)

Bacillus subtilis F Oe: γ-PGA synthetases Xylose 9.0 g/L 50 mL Ashiuchi et al., 2006 [86]

Arabinose

Glutamate

F De: γ-PGA degradation enzymes Glutamate 48 g/L 20 mL Scoffone et al., 2013 [87]

Bacillus amyrolique-haciens F He: Vitreoscilla hemoglobin Sucrose 3.5 g/L 100 mL Zhang et al., 2013 [67]

F He: Vitreoscilla hemoglobin Sucrose 5.1 g/L 100 mL Feng et al., 2014 [88]

De: cwlO and epsA-O cluster

E. coli F He: Β. licheniformis γ-PGA synthetases,
glutamate racemase

Glutamate 0.65 g/L 100 mL Cao et al., 2013 [89]

F He: Β. amyloliquefaciens γ-PGA
synthetases, glutamate racemase

Glucose 0.52 g/L 100 mL

Glutathione E. coli E De: Single genes related to ATP
regenerating activity

Glucose, Glutamate,
Cysteine, Glycine

2.9 g/L 1 mL Hara et al., 2009 [90]

S. cerevisiae E Oe: GCS, GS Glucose, Glutamate,
Cysteine, Glycine

0.8 g/L 20 mL Yoshida et al., 2011 [91]

S. cerevisiae F Oe: GCS Glucose 168 nmol/OD600 300 mL Suzuki et al., 2011 [92]

De: pep12

S. cerevisiae F Oe: GCS, Sulfate assimilation pathway
genes

Glucose 43.9 mg/L 20 mL Hara et al., 2012 [93]

Alanyl-glutamine E. coli E He: B. subtilis L-amino acid α-ligase Alanine, Glutamate 4.7 g/L 1 mL Tabata et al., 2005 [94]

E. coli F He: B. subtilis L-amino, α-ligase,
L-alanine dehydrogenase

Glucose 24.7 g/L 2 L Tabata et al., 2007 [95]

De: dipeptidases, aminopeptidases

E. coli E He: Sphingobacterium siyangensis
α-amino acid ester acyltransferase

L-alanine methyl ester
hydrochlorid, Glutamine

79.3 g/L 300 mL Hirao et al., 2013 [96]

Dipeptides E. coli E He: Ralstonia solanacearum RSp1486a Amino acids, ATP, MgSO4 2.9 g/L (Phe-Cys) 500 μL Kino et al., 2008a [97]

E He: B. licheniformis BL00235 Amino acids, ATP, MgSO4 1.2 g/L (Met-Ala) 1.6 mL Kino et al., 2008b [98]

E He: B. subtilis RizA Amino acids, ATP, MgSO4 0.8 g/L (Arg-Ser) 300 μL Kino et al., 2009 [99]
aProduction types: E, Enzymatic production including permeable cell conversion; F, Fermentation.
bTypes of genetic engineering: He, Heterologous expression; Oe, Overexpression of self-cloning gene(s); De, Deletion.
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gene (vgd) encoding hemoglobin to overcome the low
concentration of dissolved oxygen [67,88]. In contrast,
Chao et al. developed a γ-PGA-producing E. coli strain
by heterologous expression of γ-PGA synthetase and
glutamate racemase from B. licheniformis or B. amyloli-
quefaciens [89].
The tri-peptide glutathione, which is the most abundant

antioxidant, thiol-containing compound among organisms
[100], is produced enzymatically and by microbial fer-
mentation. Glutathione is synthesized from glucose via
glutamic acid, cysteine, and glycine through two consecu-
tive ATP-consuming reactions catalyzed by ATP consu-
ming two enzymes: γ-glutamylcysteine synthetase (GCS)
and glutathione synthetase (GS). Enzymatic conversion
of these substrates to glutathione was developed using
permeabilized S. cerevisiae or E. coli overexpressing GCS
and GS [91,101,102]. ATP regeneration is critical for im-
proving the yields of glutathione, and a permeable cellular
ATP-regenerating system was studied to provide an eco-
nomical supply of ATP [101]. However, the efficiency of
ATP regeneration for glutathione production is low [101].
To address this problem, the products of genes that in-
crease ATP regeneration were systematically identified by
generating E. coli mutants each with single deletions of
nlpD, miaA, hcp, tehB, nudB, glgB, yggS, pgi, fis, add, rfaB,
ydhL, or ptsP [90] from a single-gene deletion mutant
library using high-throughput measurements of ATP re-
generating activity [103]. Certain deletion mutants syn-
thesized increased levels of glutathione [102]. These genes
were classified into the following groups: (1) glycolytic
pathway-related genes, (2) genes related to degradation
of ATP or adenosine, (3) global regulatory genes, and
(4) genes with unknown contributions to ATP regene-
ration. In contrast, improving ATP generation enhanced
the enzymatic synthesis of glutathione by S. cerevisiae of
about 1.7-fold [91]. Industrial glutathione production
mainly uses yeast fermentation, because enzymatic synthe-
sis of glutathione requires addition of substrates. Over-
expression of GCS is critical for enhancing glutathione
fermentation [92,93]. Enhancement of cysteine synthesis
by engineering of sulfate metabolism also improved gluta-
thione production [93]. In contrast, the overexpression of
the transcription factors YAP1 and MET4 increased gluta-
thione production [104-106]. Kiriyama et al. developed a
fermentation system to efficiently produce extracellular
glutathione by overexpression of a novel glutathione
export ABC protein (Adp1p, Gxa1p) in S. cerevisiae [107].
A dipeptide L-alanyl-L-glutamine was enzymatically

produced by Sphingobacterium siyangensis α-amino acid
ester acyltransferase from L-alanine methyl ester hydro-
chlorid and glutamine [96]. Α Bacillus subtilis α-dipeptide
synthase processing specificity for L-amino acids was dis-
covered by Tabata et al. through in silico screening based
on its amino acids similarity with members of the
carboxylate-amine/thiol ligase superfamily, such as those
that catalyze the synthesis of D-alanyl-D-alanine and
γ-peptides [94]. They searched for the presence of an ATP
grasp motif encoded by functional unknown genes in B.
subtilis, because this motif is present in all enzymes of this
superfamily [108,109] and showed that YwfEp exhibited
dipeptide synthesis activity [94]. A variety of dipeptide
synthases were subsequently identified using in silico
screening based on amino acid sequence similarities to
YwfEp [97-99]. Such screening approaches are useful for
identifying peptide synthases with different substrate
specificities. A microbial dipeptide fermentation system
was developed by introducing the gene encoding YwfEp
into E. coli and achieved [95].

Polyphenols
Polyphenols such as phenolic acids, stilbenes, and flavo-
noids are secondary metabolites present in plants [110].
Polyphenols were traditionally extracted from plant
sources using solvents or were chemically synthesized.
Moreover, these methods are expensive and may be det-
rimental to the environment [111]. Recently, a metabolic
engineering approach makes possible effective produc-
tion of bio-based polyphenols. Phenolic acids are simple
polyphenols. For example, ferulic acid and caffeic acid
are produced by genetically engineered E. coli strains
[65,112] (see “Aromatics” section). These phenolic acids,
which form the skeletal structures of complex poly-
phenols, stilbenes, and flavonoids are biosynthesized
through further genetic engineering (see [113] for an
excellent review).
The biosynthetic pathway of the complex polyphenols

requires coenzyme A (CoA)-esterified cinnamates and
malonyl-CoA. Recently, the stilbene resveratrol was bio-
synthesized at high yields (2.3 g/L) by an E. coli strain
[114] that was genetically engineered to enhance the
production of malonyl-CoA to increase the supply of
malonyl-CoA, which is used to synthesize fatty acids
(see [115] for a review). Such metabolic engineering may
further improve production. For example, the shikimic
acid pathway, which produces phenylalanine and tyro-
sine as starting materials in the de novo production of
polyphenols, would serve as a target. Actinomycetes may
serve as useful hosts for producing aromatic amino
acids. Further, Aspergilli, for which genetic engineering
tools are available, may serve as promising hosts for pro-
ducing antibacterial polyphenols, because Aspergillus
oryzae was used to produce fine chemicals [116,117].
In general, producing high yields of polyphenols by

microorganisms is difficult, because these compounds are
strong antioxidants, and some are antibacterials, anti-
fungals, or both [118]. Therefore, further improvements
require using insensitive hosts and the development of an
on-site recovery method for continuous fermentation. A
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membrane-purification process, which concentrates a tar-
get compound, would be implemented in such an on-site
recovery and fermentation system. The combination of
bio-based and engineering-based improvements would be
required for producing high yields of polyphenols.

Oligosaccharides
Oligosaccharides and rare sugars derived from the hydroly-
sis of plant polysaccharides are functionally diverse. Such
oligosaccharides are categorized according to their mono-
saccharide subunits. For example, fructo-, xylo-, and
gentio-oligosaccharides consist of short chains of fructose,
xylose, and glucose, respectively, and are produced by en-
zymatic hydrolysis of extracts of natural sources, because
they are difficult to synthesize de novo using microorga-
nisms. For example, xylo-oligosaccharides are produced
from xylan by enzymatic hydrolysis [119,120]; however, the
quality and quantity of products strongly depend on the
source compared with de novo synthesis.
Because of this, bio-based fermentation is under study.

For example, the thermophilic fungus Sporotrichum
thermophile and a genetically engineered E. coli strain
produce fructo-oligosaccharides [121] and inulo-oligosac-
charides (derived from insulin) [122], respectively. These
bioconversions are advantageous, because the host cells do
not metabolize the oligosaccharide products. Moreover, the
specific functional monosaccharide L-arabinose was pre-
pared from xylose [123]. Further, the microbial fermen-
tation of 2′-fucosyllactose from lactose by a genetically
engineered E. coli strain has been reported [124]. 2′-Fuco-
syllactose is a functional oligosaccharide present in human
milk and protects newborns against infection by enteric
pathogens [125].
The production of oligosaccharides requires the decom-

position of polysaccharides or the polymerization of
monosaccharides. Polymer-producing microorganisms
would serve as promising hosts in a strategy based on the
decomposition of polysaccharides. For example, the halo-
philic cyanobacterium Arthrospira platensis produces spir-
ulan, which is an inhibitor of enveloped virus replication
[126]. Moreover, it produces glycogen by fixing carbon
dioxide, and the glycogen content reaches 65% of dry cell
weight under optimum conditions [127]. Such photosyn-
thetic microorganisms would serve as promising hosts for
the de novo production of oligosaccharides. Specifically,
the genetic engineering of microorganisms that produce
polysaccharide-degrading enzymes, glycosyltransferases,
or both may facilitate attaining this goal. In addition to
fermentation, such polysaccharide-accumulating micro-
organism would be useful as a sugar source for bio-based
production. In the future, combinations of polysaccharide-
producing microorganism and decomposing, transferase-
producing microorganism, or both would improve the
bio-based production of oligosaccharides.
Conclusion and future perspectives for the production of
fine chemicals
Synthetic bioengineering employs molecular genetic
approaches to engineer metabolic pathways to enhance
the biosynthetic capabilities of well-characterized host
strains to produce fine chemicals. These efforts include
identifying the genes in plants and microbes encoding
enzymes that catalyze the reactions of interest. Conver-
ting bio-based production of fine chemicals from enzy-
matic reactions to microbial fermentation reduces costs,
because the latter uses less expensive substrates. Com-
putational approaches are essential for synthetic bio-
engineering to increase yields, and an important aspect
of designing strategies is to identify the initial key en-
zymatic reactions of a biosynthetic pathway (Figure 1).
Using bioinformatics to mine genome and transcriptome
data is the method of choice to identify novel enzymes
and biosynthetic pathways to generate a wide range of
compounds [128,129]. Sequence comparisons of putative
and authentic genes allow the prediction of catalytic ho-
mologs and motifs with potentially new functions. Struc-
tural analyses such as active site modeling and docking
simulation are alternative approaches. The availability of
high-throughput sequencing technology and improved
computational resources should accelerate synergy bet-
ween bioinformatics and structural analyses to identify
key enzymes from the vast reservoir of genetic and
environmental data [130,131].
Once key enzymes are identified, one can move to path-

way design and optimization for microbial production
of the target compound. Several computational tools are
available, such as BNICE [132], FMM [133], RetroPath
[134], and DESHARKY [135] and M-path [136] for de-
signing de novo metabolic pathways. These resources
provide different views of metabolic pathways for micro-
bial production that are generated using the enormous
amount of information in metabolic pathway databases
such as KEGG [137], MetaCyc [138] and BRENDA [139].
However, there are still limitations because of the

computational complexity of possible combinations, and
further improvements or other approaches will be re-
quired for precise and practical design of metabolic
pathways. A standard method to optimize metabolic
pathways is available as an alternative that is called flux
balance analysis [140], which was developed to indicate
how gene deletions and expression might be manipu-
lated to distribute carbon toward chemicals of interest
without inhibiting cell proliferation. Genome-scale mo-
dels for some model organisms and an open-source plat-
form (e.g. OptFlux) based on flux balance analysis allow
the precise control of engineered metabolic pathways
[141,142]. The extension of these tools will lead to fur-
ther efficient production of fine chemicals by microbial
cell factories.
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