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Abstract

Background: Recurrent pregnancy loss (RPL) is a significant adverse pregnancy complication, with an incompletely
understood pathology. While many entities were proposed to elucidate the pathogenic basis of RPL, only few were
significant enough to warrant investigation in all affected couples.. The aim of this study was to provide novel
insights into the biological characteristics and related pathways of differentially expressed miRNA (DEMs) and genes
(DEGs), in RPL, and construct a molecular miRNAs–mRNAs network.

Methods: miRNAs and gene expression data were collected, and a number of DEMs and (DEGs) were obtained,
and regulatory co-expression network were constructed. Function and enrichment analyses of DEMs were
conducted using DIANA-miRPath. DEGs were screened, and were used in generation of protein-protein interaction
(PPI) network, using STRING online database. Modularity analysis, and pathway identification operations were used
in identifying graph clusters and associated pathways. DEGs were also used for further gene ontology (GO) analysis,
followed by analysis of KEGG pathway.

Results: A total of 34 DEMs were identified, and were found to be highly enriched in TGF-β signaling pathway,
Fatty acid metabolism and TNF signaling pathway. Hub miRNAs were selected and were found to be involved in
several functional pathways including progesterone-mediated oocyte maturation and Thyroid hormone signaling
pathway. Five dysregulated feedback loops involving miRNA and TFs were identified and characterized. Most
notably, PPI network analysis identified hub-bottleneck protein panel. These appear to offer potential candidate
biomarker pattern for RPL diagnosis and treatment.

Conclusions: The present study provides novel insights into the molecular mechanisms underlying RPL.
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Background
Recurrent pregnancy loss (RPL), defined as two or more
consecutive pregnancy losses before the 20th week of
gestation, is a significant pregnancy complication, affect-
ing 2–5% of pregnancies [1]. While its exact etiology re-
mains poorly understood [2] several risk factors were
shown to influence the risk of RPL These include
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endocrine, immunologic, infectious, and genetic factors
[3]. Whereas increased RPL susceptibility was linked
with carriage of select gene variants, few of these at-risk
variants was confirmed to contribute to RPL
pathogenesis.
MicroRNAs (miRNA) are short (22–23 nucleotides)

non-coding RNA, which regulate post-transcriptional ac-
tivities [4], reportedly regulating ~ 60% of all protein-
coding human genes, and are involved in diverse physio-
logical processes and pathological states [5]. Their activ-
ity is attributed to their gene silencing capacity, by
which miRNA binds > 100 target mRNA sites with par-
tial base complementarity, thus preventing de novo
translation, and/or accelerating mRNA degradation. Col-
lectively, this constitutes an important regulatory feature
of the transcriptome [6]. miRNAs are co-expressed with
their host genes [7], and thus influence downstream sig-
naling events [8]. Dysregulated miRNA expression was
associated with physiological and pathological processes,
including cellular differentiation, angiogenesis, apoptosis,
and embryogenesis [9, 10].
There is growing interest in the contribution of gene-

environmental interaction in RPL, and miRNA were pro-
posed to constitute RPL at-risk factors [11, 12]. Given
their diversity in regulating gene expression, the exact
scope of action and influence of co-regulators and asso-
ciated factors on miRNA activity remained poorly
understood. Network modelling was proposed as key for
deciphering miRNA activity. While this was described
for number of pathological processes, miRNA network
analysis in RPL pathogenesis was not previously
reported.
The aims of the current study were to integrate the in-

dependent and different datasets in the analysis, thus
overcoming the limitations caused by sample size and
bias of statistical method. By summarizing large-scale
gene expression data into limited modules, the study
also aims to simplify data complexity, thus clarifying sys-
tematically the pathogenic mechanisms underlying RPL.
Using direct association rationale, we provide for
organization or connection information within module
miRNA-genes. This may underscore the contribution of
unannotated miRNA and genes to RPL pathogenesis.

Methods
Data collection and preprocessing
In the present study, the differentially expressed genes
(DEGs) included genetically mutated genes, abnormally
expressed protein genes, copy number variants, genes
that alter DNA methylation, single nucleotide polymor-
phisms (SNPs), downregulated and upregulated genes.
DEGs in the RPL were extracted from multiple databases
(Additional file 1: Table S1). These databases include
Online Mendelian Inheritance in Man (OMIM: catalog

of human genes and genetic disorders that is freely avail-
able and updated daily) [13], GeneCards [14], Orphanet
[15], Genetic Association Database (GAD, database of
genetic association data from complex diseases and dis-
orders) [16], and HuGE Navigator (provides a disease-
centered view of genetic association studies and infor-
mation about genes explored in relation to a unique dis-
ease) [17]. We conducted a systematic review aimed at
identifying genes with differential expression in RPL pa-
tients and tissues, using a combination of the key terms
recurrent pregnancy loss, habitual abortion, idiopathic
RPL, spontaneous recurrent miscarriage, associated poly-
morphisms, gene mutations, and gene expression
profiling.
A list of genes associated with RPL included genes as-

sociated with cell adhesion (trophoblast/endometrium
interaction), dysregulated immunity, coagulation and
angiogenesis, and cell survival were also collected from
literature search (Additional file 1: Table S1). P-match
tool which is closely interconnected with the TRAN
SFAC® database, was utilized in identifying DNA tran-
scription factor binding sites (TFBS) [18]. We focused
only on TFs obtained using TransmiR. Prior to P-match,
1000 nt promoter sequences of differentially expressed
miRNAs were downloaded from Ensembl [19], using
Regulatory Sequence Analysis Tools (RSAT) [20]. P-
match matrix library comprises known TFBSs extracted
from TRANSFAC [21], which allows searching of dis-
tinct TFBS. The “high quality vertebrate matrices only”
option was selected as default, to reduce false-positive
validation using P-match.

Differentially expressed miRNAs in RPL
Differentially expressed miRNA (DEM) linked with
RPL were extracted from miR2Disease [22], Pheno-
miR [23], and the Human microRNA Disease Data-
base (HMDD) [24], using the following keywords:
recurrent pregnancy loss, idiopathic RPL, spontan-
eous recurrent miscarriage AND microRNA (Add-
itional file 1: Table S1). Additionally, we performed
a secondary research based on systematic literature
review of articles published between 2010 and 2017,
and re-analyzed experimentally validated human
miRNAs expression signatures in RPL from various
biological sources (peripheral blood, and cell lines
e.g., extravillous cytotrophoblast-derived cell line
HTR8/SVneo (HTR8)) and information on aberrantly
regulated miRNAs in patients with RPL as compared
to healthy individuals. Our total search revealed 72
DEMs in RPL, as compared to healthy controls.
Conflicting results have been found regarding ex-
pression levels of miRNAs. In order to increase the
accuracy of our findings, only 37 of the most fre-
quent DEM were collected (Table 1).
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Experimentally validated miRNA associations
Experimentally validated human miRNAs and miRNA-
target interaction (MTI) datasets were extracted from
miRtarbase and miRecords [25], and were validated by re-
porter assays, Western blotting, or microarrays with
miRNA over-expression or knockdown [26]. Individual
TFs were mapped to human TF list in ChIPBase, to distin-
guish among target genes [27]. Experimentally-confirmed
TF-miRNAs regulations were extracted from TransmiR
for assessing TF-miRNAs interplay [28]. This included

information about miRNAs function, disease associations,
and type of regulation (activation/repression). This associ-
ation mapping between miRNAs and their host genes was
done using NCBI, and miRBase, the latter containing in-
formation on 38,589 mRNA by March 2018 [29].

Construction of differentially expressed and
transcriptional networks
A global network was constructed using CyTargetlinker
[30], following extraction of regulatory associations

Table 1 Differentially expressed microRNAs list

Name State Sequence Fold change P-Value

hsa-miR-146a-5p UP UGAGAACUGAAUUCCAUGGGUU 4.45436783 0.0009

hsa-miR-125a-5p UP UCCCUGAGACCCUUUAACCUGUGA 2.79 < 0.001

hsa-miR-155-5p UP UUAAUGCUAAUCGUGAUAGGGGUU 3.96 < 0.001

hsa-miR-221-3p UP AGCUACAUUGUCUGCUGGGUUUC 7.409 0.0070

hsa-miR-146b-5p UP UGAGAACUGAAUUCCAUAGGCUG 5.108 0.0087

hsa-miR-320b UP AAAAGCUGGGUUGAGAGGGCAA 2.637 0.0022

hsa-miR-133a-3p UP UUUGGUCCCCUUCAACCAGCUG 0.009684 < 0.001

hsa-miR-101-3p UP UACAGUACUGUGAUAACUGAA 3.614 0.0193

hsa-miR-223-3p UP UGUCAGUUUGUCAAAUACCCCA 5.7 < 0.001

hsa-miR-92a-3p UP UAUUGCACUUGUCCCGGCCUGU 2.662 0.0308

hsa-miR-148b-3p UP UCAGUGCAUCACAGAACUUUGU 4.595 0.0434

hsa-miR-30d-5p UP UGUAAACAUCCCCGACUGGAAG 4.361 0.0285

hsa-miR-23b-3p UP AUCACAUUGCCAGGGAUUACCAC 3.430 0.0210

hsa-miR-423-3p UP AGCUCGGUCUGAGGCCCCUCAGU 2.01 0.0332

hsa-miR-145-5p UP GUCCAGUUUUCCCAGGAAUCCCU 0.722968 0.5116

hsa-miR-16-5p UP UAGCAGCACGUAAAUAUUGGCG 0.879078 0.3559

hsa-miR-181a-5p UP AACAUUCAACGCUGUCGGUGAGU 2.854288 0.0925

hsa-miR-424-5p UP CAGCAGCAAUUCAUGUUUUGAA 0.127032 0.8565

hsa-miR-30d-5p UP UGUAAACAUCCCCGACUGGAAG 0.604136 0.1879

hsa-miR-143-3p UP UGAGAUGAAGCACUGUAGCUC 1.336424 0.2162

hsa-miR-27b-3p UP UUCACAGUGGCUAAGUUCUGC 1.052276 0.4425

hsa-miR-17-5p Down CAAAGUGCUUACAGUGCAGGUAG 0.35 0.0020

hsa-miR-19b-3p Down UGUGCAAAUCCAUGCAAAACUGA 0.34 < 0.001

hsa-miR-559 Down UAAAGUAAAUAUGCACCAAAA 0.390 0.0150

hsa-miR-365a-3p Down UAAUGCCCCUAAAAAUCCUUAU 0.321 0.0318

hsa-miR-1182 Down GAGGGUCUUGGGAGGGAUGUGAC 0.238 0.0186

hsa-miR-4284 Down GGGCUCACAUCACCCCAU 0.428 0.0079

hsa-miR-4264 Down ACUCAGUCAUGGUCAUU 0.113 0.0013

hsa-miR-4474-5p Down UUAGUCUCAUGAUCAGACACA 0.196 0.0399

hsa-miR-22-5p Down AGUUCUUCAGUGGCAAGCUUUA 0.337 0.0172

hsa-miR-372-5p Down CCUCAAAUGUGGAGCACUAUUCU 0.22803727 0.0021

hsa-miR-451a Down AAACCGUUACCAUUACUGAGUU −1.31401 0.0592

hsa-miR-21-5p Down UAGCUUAUCAGACUGAUGUUGA −1.45161 0.4086

hsa-miR-149-5p Down UCUGGCUCCGUGUCUUCACUCCC −1.530395 0.1853

hsa-miR-181b-5p Down AACAUUCAUUGCUGUCGGUGGGU −2.329242 0.0434
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between TFs, miRNAs, target genes and host genes.
BridgeDb identifier mapping framework [31] was
employed in standardizing miRNAs and genes designa-
tion, while Cytoscape was used in constructing differen-
tially expressed networks (Additional file 1: Table S1).
Lines between differentially-expressed nodal factors sig-
nify the interaction between different TFs, genes, and
miRNAs in RPL; single nodes lacking regulatory miRNA
association wereexcluded.

Protein–protein interaction (PPI) network
Protein–protein interaction (PPI) network, which identi-
fies key elements in RPL based on interaction level, was
acquired from STRING (Search Tool for Retrieval of
Interacting Genes) database. DEG were mapped to
STRING to evaluate PPI information, and visualized
with Cytoscape. In addition, clusters of network highly
intra-connected nodes were searched by MCODE (Mo-
lecular Complex Detection) Cytoscape network plug-in
(Additional file 1: Table S1) [32].

Functional enrichment analysis
Gene ontology (GO) functional enrichment analysis was
done using BiNGO (Biological Networks Gene Ontol-
ogy) [33]. P values were correct for false discovery rate
(FDR) using Benjamini-Hochberg multiple testing cor-
rection. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis of differentially
expressed miRNA was performed by DNA Intelligent
Analysis (DIANA)-miRPath v2.0 (Additional file 1: Table
S1). Following DEMs inclusion miRNAs targets pre-
dicted with DIANA-microT-CDS and/or experimentally
validated transcripts from TarBase v6.0 were selected; P-
value for each pathway was obtained by Fisher’s method
[34]. The combinatorial effect of co-expressed miRNAs
was evaluated by simultaneous analysis of multiple miR-
NAs; default settings were score cutoff of 0.8 for target
prediction of 350 mRNA targets per miRNA, FDR to
correct multiple hypothesis testing, and P-value of 0.05.

Results
The occurrence and development of RPL are a complex
process that involves genetic and epigenetic disorders. In
the current study, a system-based networks’ approach
was used to examine the key regulatory associations be-
tween miRNAs, their target genes, their host genes, and
TFs in RPL process. Experimentally validated data from
databases and literature was collected and networks were
constructed. Due to their complexity, data associated
with this network does not provide for a clear descrip-
tion of the findings. Accordingly, we focused on analysis
of differentially expressed network, RPL transcriptional
network, and PPI network.

Differentially expressed miRNA and gene network of RPL
A regulatory network for up- and down-regulated miR-
NAs and genes, was constructed for interpreting their
differential expression in RPL at the transcriptional level
(Fig. 1). This network, comprising 133 nodes/206 edges,
consisted of 44 TFs, 36 target genes, 37 miRNAs, and as-
sociated host genes (Additional file 2: Table S2). Except
for host genes, all other nodes were differentially
expressed. The network nodes, directly or indirectly,
affect other nodes. When combined, the interactions re-
veal the primary cause of RPL. The unaltered genes and
miRNAs suggest that they are not related to RPL, they
might not be actually protective. This suggests that RPL
may be prevented by targeting these differentially
expressed elements. miRNAs with high connectivity and
module membership within a module were defined as
“hub miRNAs”, and were assumed to be functionally
relevant. The top-10 hub miRNAs with the highest con-
nectivity and module membership, were (in order): hsa-
miR-21-5p, hsa-miR-155-5p, hsa-miR-16-5p, hsa-miR-
17-5p, hsa-miR-146a-5p, hsa-miR-92a-3p, hsa-miR-145-
5p, hsa-miR-19b-3p, hsa-miR-221-3p and hsa-miR-101-
3p (Additional file 2: Table S2). These were selected
based on the module sizes as hub miRNAs for further
study.
As individual miRNA regulates gene expression, and

multiple miRNAs modulate specific pathways, we ex-
plored the pathways regulated by hub miRNAs in RPL.
Following inclusion of upregulated miRNAs, DIANA-
miRPath identified 60 pathways as significantly enriched
(P < 0.05). For simplicity and specificity, we focused only
on pathways linked to RPL, the top 30 of which are
shown in Table 2 (Additional file 2: Table S2). The most
significantly enriched pathways regulated by hub miR-
NAs were TGF-β signaling, cell cycle, adherens junction,
fatty acid elongation, progesterone-mediated oocyte
maturation, thyroid hormone signaling, and MAPK sig-
naling pathways, which in turn target NF-κB1, MYC and
E2F1 hub genes. Interestingly, the estrogen signaling
pathway, which modulates reproductive functions, in-
cluding progesterone production, utero placental blood
flow, female secondary sexual characteristics, and main-
tenance of pregnancy, is also regulated by the selected
hub miRNAs. Alteration in this pathway represents a
cause of implantation failure and recurrent miscarriage.
Significant enrichment was seen in 15 pathways influ-
enced by hsa-miR-21-5p, hsa-miR-17-5p, and hsa-miR-
19b-3p (Table 2).

Proposed transcriptional network of predicted TFs
We predicted that DEM may contribute to targeting TF,
since differentially expressed genes affect nucleic acid
binding, and thus TF protein-binding activities. This al-
lows assessment of the regulatory relationship between
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DEM and key TF genes. Analysis with predicted (P-
match) and validated (transmiR) databases provided for
construction of complex network, in which motifs be-
tween DEM and popular TFs were the building blocks
(Fig. 2). A total of 44 TFs co-regulate 37 DEMs. Most
proteins in this network are TFs that affect diverse cellu-
lar processes, such as angiogenesis, DNA damage re-
sponse, development, morphogenesis, differentiation,
and survival. Deregulated feedback in STAT3, NF-κB1,
ESR1, MYC and E2F1 5 loops were also identified in this
network.
Targeting NF-κB1 by hsa-miR-92a-3p, hsa-miR-16-

5p, hsa-miR-155-5p, hsa-miR-146a-5p, hsa-miR-21-5p,
and hsa-miR-146b-5p, regulating hsa-miR-21-5p, hsa-
miR-155-5p, hsa-miR-146a-5p, and hsa-miR-17-5p ex-
pression. NF-κB1 is involved in two distinct appar-
ently counter-regulatory feedback loops. The first
involves NF-κB1 alone, and the second involving hsa-
miR-155-5p and hsa-miR-146a-5p. Heightened expres-
sion of hsa-miR-155-5p decreases NF-κB1 gene ex-
pression, resulting in reduced hsa-miR-155-5p
expression. This increases NF-κB1 and subsequently
hsa-miR-155-5p expression, and reactivates the loop.
Similarly, feedback loop operates for NF-κB1/hsa-miR-
146a-5, which oscillates between increased and de-
creased states. This suggests that mixed regulation
existing between hsa-miR-155-5p and hsa-miR-146a-5
with NF-κB1 involves multiple targets and pathways

contributing to RPL. NF-κB1 is also involved in a
double negative feedback loop with hsa-miR-21-5p,
allowing for “switch” type behavior, in which either
NFKB1 or hsa-miR-21-5p, but not both, is expressed.
The transition from one expression state to another
state in this loop represents external modification of
NF-κB1 or hsa-miR-21-5p expression.
On the other hand, hsa- miR-21-5p forms a separ-

ate feedback loop in targeting its regulators, NF-κB1
and STAT3. IntAct database and our PPI network
confirm direct binding of NF-κB1 to several TFs, in-
cluding STAT3, p53, ESR1, ATF3, SMAD3 and
SMAD4. This suggests the existence of forward loop
between ESR1, NF-κB1 and has-miR-21-5p, which
precipitates a deregulated mechanism. This three-
gene pattern comprises an inducer (ESR1), which
regulates the transcription of hsa-miR-21-5p, and
both jointly regulating NF-KB1 activation. By target-
ing the same genes, the predicted network demon-
strates that cross TF cooperation is needed for
miRNA expression, highlighted by the regulation of
hsa-miR-17-5p by STAT5, hsa-miR-21-5p by STAT3,
and both hsa-miR-17-5p and hsa-miR-21-5p target-
ing MMP-2 expression.
Specific TF can cooperate with other TF in regulating

the same miRNA, hence influencing the activity of the
same target genes, exemplified by the regulation of hsa-
miR-17-5p by E2F1 and NFKB1, subsequently targets

Fig. 1 Differentially expressed network in RPL. Symbols used and their indications were: miRNA ( ), T ( ), Target gene ( ), host gene ( ),

miRNA host gene ( ), transcriptional regulation ( ), and miRNA targeting ( )
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MMP2, VEGFA, IL-8, and E2F1. These findings may be
explained by temporary, but spatial interactions among
mRNAs and miRNAs. TF, via miRNA, may indirectly in-
fluence the activity of other genes. This includes REL
which regulates hsa-miR-21-5p, which targets STAT3,
E2F1, NFKB1, MMP-2 and VEGFA. The TF-DEM net-
work demonstrates that miRNA target TF sets, which
physically interact with each other to silence the func-
tional unit. The existence of a direct negative feedback
loop between miRNA and TF highlights the limitation of
functional units, as illustrated for NF-KB1, the limiting
factor in the transcriptional regulation protein complex.
It is noteworthy that miRNA and TF have similar

regulatory nature, such as pleiotropy, regulation, and
network motifs, which yield specific interactions that are
propagated throughout the network.
While not abnormally expressed, a number of the net-

work host genes and associated miRNAs appear to be
involved in RPL. Accordingly, a single miRNA is
depicted to be localized within multiple host genes, ex-
emplified by the presence of hsa-miR-101-3p in RCL1
and within LOC100129106, and the localization of hsa-
miR-149-5p in GPC1 and PP14571. This provides for ex-
ploring more in depth the possible relationships between
host genes and associated miRNA, especially when their
miRNAs are differentially expressed.

Table 2 Top 15 pathways significantly influenced by upregulated and downregulared miRNAs in RPL

KEGG pathway p-value Genes miRNAs

Upregulated miRNAs

TGF-beta signaling pathway 3.89 × 10−11 52 7

Adherens junction 1.93 × 10−10 51 7

Cell cycle 5.00 × 10−8 78 7

p53 signaling pathway 4.11 × 10−5 44 7

FoxO signaling pathway 5.05 × 10−5 73 7

Protein processing in endoplasmic reticulum 5.05 × 10−5 88 7

Fatty acid biosynthesis 1.38 × 10−4 4 4

Oocyte meiosis 1.85 × 10−4 58 7

Fatty acid metabolism 3.93 × 10−4 21 5

TNF signaling pathway 7.64 × 10−4 60 7

Estrogen signaling pathway 6.65 × 10−3 49 7

NOD-like receptor signaling pathway 0.018 30 7

HIF-1 signaling pathway 0.030 51 7

MAPK signaling pathway 0.040 111 7

Circadian rhythm 0.042 18 7

Downregulared miRNAs

Thyroid hormone signaling pathway 9.24 × 10−7 50 3

ECM-receptor interaction 3.72 × 10−6 24 3

Fatty acid elongation 8.50 × 10−5 9 3

Signaling pathways regulating pluripotency of stem cells 1.24 × 10−4 50 3

Prolactin signaling pathway 1.96 × 10− 4 32 3

mRNA surveillance pathway 3.98 × 10−4 37 3

Lysine degradation 7.17 × 10−4 18 3

Insulin signaling pathway 1.80 × 10−3 52 3

Progesterone-mediated oocyte maturation 2.40 × 10− 3 36 3

Apoptosis 2.80 × 10−3 32 3

Ubiquitin mediated proteolysis 3.45 × 10−3 52 3

PI3K-Akt signaling pathway 4.35 × 10−3 102 3

RNA degradation 6.25 × 10−3 31 3

RNA transport 0.012 54 3

Endocytosis 0.033 67 3
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Fig. 2 The Transcriptionnal Network in RPL. Symbols used and their indications were: miRNA ( ), TF ( ) host gene ( ), miRNA host gene

( ), transcriptional regulation ( ), and miRNA targeting ( )

Fig. 3 RPL-PPI Network
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Analysis of PPI network of the significantly RPL-
associated proteins
PPI networks of the significantly RPL-associated pro-
teins, identified 77 nodes and 763 edges (Fig. 3). In
addition, the power law of node degree distribution and
centrality distribution were also performed (Fig. 4). Inso-
far as PPI networks are scale-free networks with
power-law degree distribution, most nodes (proteins)
have few connections to other node, whereas other
nodes (specifically hubs) are connected to other

nodes in the network. Common proteins (13 pro-
teins), selected in hub and bottleneck states, and
represented as hub-bottleneck proteins (Fig. 5), in-
cluded EGFR, IL8, TP53, VEGFA, STAT3, TGFB1,
CCND1, CTNNB1, CASP3, IL1B, MYC, ESR1 and
NF-κB1.
Protein complexes (clusters) were identified by

MCODE algorithm, and the global network was parti-
tioned into three clusters, evaluated according to func-
tionality (Table 3); function annotation performed using

Fig. 4 Degree and betweenness Centrality Distribution Curve of the PPI Network of RPL is Illustrated. The red line indicates the power law. (A)
Degree distribution: The degree distribution in the scale-free network in logarithmic scale represents the existence of a small number of nodes
with high degree (hubs) and a large of nodes with a low degree. (B) Betweenness centrality distribution

Fig. 5 The List of hub-bottleneck proteins. Common proteins (13 proteins), selected in hub and bottleneck states, and represented as
hub-bottleneck proteins
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BiNGO plugin of Cytoscape (Table 4). Cluster 1 focused
on regulation of cell proliferation, positive regulation of
biological and developmental processes. Cluster 2 pro-
teins were related to negative regulation of striated
muscle tissue and muscle organ development. On the
other hand, Cluster 3 members dealt with positive regu-
lation of transcription from RNA polymerase II pro-
moter, and DNA-dependent and positive regulation of
RNA metabolic process.

Discussion
Bioinformatics analysis was utilized in identifying key
miRNAs and genes to RPL. While earlier studies focused
mostly on specific genes or metabolic pathways, our
study included plethora of data generated to elucidate
the role of interacting elements, and to understand their
functional contribution in RPL. Our results identified se-
lect miRNA and TFs, and mapped their interaction and
regulation for experimental validation in RPL. This study
is the first to use bioinformatics in identifying and char-
acterizing miRNA and gene expression profile in RPL. It

is also the first to analyze the interaction among gene
products, and to address the potential functionality of
these genes in RPL.
The use of “omics” for identifying genes and effector

mechanisms in RPL has challenges, mainly selection of
study subjects (female patients, couple with miscarriages,
fetus/placenta, and controls). The rely on genetic associ-
ation studies focusing on candidate genes with patho-
logical effect in RPL has limitations. While polymorphic
variants of∼100 genes were investigated for possible as-
sociation with RPL, results obtained were often incon-
clusive, and their diagnostic and prognostic utility
remains questionable. Future directions in investigating
biomolecular risk factors for RPL needs to integrate
high-throughput profiling of genomes, transcriptomes,
proteomes, metabolomes, and interactomes.
We identified 10 real hub miRNAs, and a further 80

mRNAs to be associated with RPL, and addressed their
functionality through identification of miRNA-mRNA
signaling pathways contributing to RPL pathogenesis.
TGF-β was the most significant pathway enriched by the
upregulated miRNAs, namely hsa-miR-155-5p, hsa-miR-
16-5p, hsa-miR-92a-3, hsa-miR-145-5p, hsa-miR-221-3p,
hsa-miR-101-3p, and hsa-miR-146a-5p. These miRNA
target MYC gene, previously shown to be involved in
trophoblast proliferation and apoptosis in RPL [35]. The
anti-invasive action of TGF-β on trophoblast is mediated
by multiple mechanisms, including up-regulation of in-
tegrin expression, and reduction in migratory ability of
invasive trophoblast [36]. TGF-β also reduces matrix
degradation via upregulating MMP tissue inhibitor
expression.
Upregulated hsa-miR-16-5p targeted 31 genes in

TGF-β signaling, and was involved in > 5 pathways,
including adherens junction pathway. Differently
expressed miRNAs affecting Wnt signaling, cell cycle,
and adhesion molecules, were linked with defective
embryo implantation in RPL [37]. Other pathways in-
cluded MAPK pathway, which contributes to main-
tenance of normal pregnancy, and alteration in this
pathway precipitates RPL [28]. MAPK pathway was
influenced by hsa-miR-16-5p and p53 pathways, and
modulated by hsa-miR-16-5p and hsa-miR-155-5p. In
addition, altered p53 signaling pathway, involved in
apoptosis and cell cycle regulation [38], results in en-
hanced placental apoptosis, and RPL through upregu-
lation of hsa-miR-155-5p [39]. As overexpression of
hsa-miR-155-5p enhances, while its antagonism im-
pairs NK cell-mediated cytotoxic activity, this suggest-
ing targeting hsa-miR-155 in managing RPL [40].
Similarly, 15 pathways affected by downregulated
miRNAs were noted, including thyroid hormone sig-
naling and prolactin signaling pathways. Altered thy-
roid hormone level can lead to abnormal sexual

Table 3 Significant Clusters Related to the PPI Network of RPL
and Their Properties

Clusters Details

Rank: 1
Nodes: 27
Edges: 308
Cluster Score: 23.692
Seed node: P35222
Seed Protein: CTNNB1
Seed MCODE score: 18.0

Rank: 2
Nodes: 3
Edges: 3
Cluster Score: 3
Seed node: -
Seed Protein: -
Seed MCODE score: 9.0

Rank: 3
Nodes: 7
Edges: 8
Cluster Score: 2.667
Seed node: Q13485
Seed Protein: SMAD4
Seed MCODE score: 13.450
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development, menstruation irregularity, and likely
RPL, while hyperprolactinemia affects hypothalamic-
pituitary-ovarian axis, resulting in a shorter luteal
phase [41].
Regulation of transcriptional and post-transcriptional

events were obtained by constructing curated miRNA-
TF regulatory network, the smaller significant sub-
network modules centering on NF-κB1 gene was key.
Direct TF-miRNA feedback loops identified two NF-κB1
loops involving hsa-miR-155-5p and hsa-miR-146a-5p,
and a third involving NF-κB1 and hsa-miR-21-5p. NF-
κB1 regulates innate and adaptive immunity, and in-
duces inflammation by stimulating the expression of

pro-inflammatory genes, especially IL-6 and IL-8 [42].
Similarly, hsa-miR-146a-5p negatively regulates the ex-
pression of IL-6 and IL-8 [43]. Moreover, NF-κB1 activ-
ity is regulated by the ubiquitin-protein ligase pellino
homolog 1, the expression of which is negatively regu-
lated by hsa-miR-21-5p and thus is inhibitory of NF-κB1
[44]. On the other hand, hsa-miR-21-5p was shown to
be activated by IL-6 in a STAT3-dependent manner
[45]. A strong link between miR-146a-5p and hsa-miR-
21-5p, and with NF-κB1 was seen, predicting that NF-
κB1 interaction with hsa-miR-146a-5p affects IL-8 ex-
pression, suggesting feedback loops involving NF-κB1
and hsa-miR-146a-5p or hsa-miR-21-5p for controlling

Table 4 Functional annotations of the protein complexes (clusters)
GO-ID corr p-value x Description

Module 1

42,127 4.3349E-18 20 regulation of cell proliferation

48,518 6.0837E-18 25 positive regulation of biological process

50,793 1.8202E-17 19 regulation of developmental process

48,522 1.8202E-17 24 positive regulation of cellular process

42,221 2.9470E-17 22 response to chemical stimulus

51,239 6.8692E-17 20 regulation of multicellular organismal process

9893 9.7918E-16 19 positive regulation of metabolic process

51,173 1.0140E-15 17 positive regulation of nitrogen compound metabolic process

42,981 1.1601E-15 18 regulation of apoptosis

43,067 1.2325E-15 18 regulation of programmed cell death

10,941 1.2938E-15 18 regulation of cell death

31,328 1.9038E-15 17 positive regulation of cellular biosynthetic process

9891 2.2668E-15 17 positive regulation of biosynthetic process

10,628 3.7320E-15 16 positive regulation of gene expression

10,604 4.0493E-15 18 positive regulation of macromolecule metabolic process

Module 2

45,843 2.1117E-4 2 negative regulation of striated muscle tissue development

48,635 2.1117E-4 2 negative regulation of muscle organ development

Module 3

45,944 5.4874E-7 6 positive regulation of transcription from RNA polymerase II promoter

45,893 9.0278E-7 6 positive regulation of transcription, DNA-dependent

51,254 9.0278E-7 6 positive regulation of RNA metabolic process

45,941 1.4582E-6 6 positive regulation of transcription

10,628 1.5514E-6 6 positive regulation of gene expression

45,935 1.9401E-6 6 positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process

10,557 1.9401E-6 6 positive regulation of macromolecule biosynthetic process

51,173 1.9401E-6 6 positive regulation of nitrogen compound metabolic process

31,328 2.3309E-6 6 positive regulation of cellular biosynthetic process

9891 2.3309E-6 6 positive regulation of biosynthetic process

10,552 2.3309E-6 4 positive regulation of gene-specific transcription from RNA polymerase II promoter

6357 2.3309E-6 6 regulation of transcription from RNA polymerase II promoter

43,193 6.8613E-6 4 positive regulation of gene-specific transcription

10,604 7.9390E-6 6 positive regulation of macromolecule metabolic process

31,325 8.6648E-6 6 positive regulation of cellular metabolic process
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RPL-associated inflammation. Earlier studies docu-
mented negative feedback comprising hsa-miR-21-5p
with NF-κB1, which was linked with altered NF-κB1 and
IL-6 activity, and additional negative feedback loop pro-
vided by hsa-miR-146 [46]. Accordingly, differences in
the strength of the two loops provides for the needed
signals for RPL development.
By providing target-specific post-transcriptional re-

pression mechanisms, miRNA-TF network underscores
the complexity of TF-miRNA motifs. Compared to TF,
miRNA can quickly terminate, or alternatively resume
protein translation by binding to, or disassociating from
an already transcribed mRNA. This provides for rapid
and adaptive changes in gene expression. Although they
are subject to differential expression, the exact role of
miRNA in RPL remains to be seen. The proposed tran-
scriptional network could explain this involvement. For
example, while NF-κB1-hsa-miR-146a-5p loops under-
score miRNA effect in sustaining normal immune
homeostasis, abnormal hsa-miR-146a-5p expression can
drive inflammation; a hypothesis that could not have
been made otherwise.
PPI network analysis allows for discrimination of key

nodes, and is useful as network biomarker discovery in
RPL. Based on their significance in the network, PPI net-
work of 77 RPL-associated proteins were constructed as
predictors of drug targets. Crucial nodes which inter-
acted with and controlled the expression of other net-
work nodes, were introduced as essential in RPL PPI
network. Localized in Cluster 1, 13 key nodes were
found to be related to RPL, individually or in combin-
ation, of which CTNNB1 appears the most significant.
Mothers against decapentaplegic homolog 4 (SMAD4)
protein was also found to be a crucial node in the PPI
network, and was also found as a seed protein in Cluster
3. SMAD4, previously reported as key component in
TGF-β signaling [47], are intracellular transducers of
TGF-β superfamily, and PSG9/SMAD4 complex recruite
cytoplasmic SMAD2/3 forming a complex, which en-
hanced SMAD4 nuclear retention [48]. PSG9-SMAD4
complex was shown to activate the expression of
angiogenesis-related genes, including VEGFA, thus con-
tributing to the endometrial angiogenesis affecting both
conception and fetal development [49].
STAT3 is a crucial hub-bottleneck protein involved in

cytokine and growth factor signaling, and is a key regula-
tor of anti-inflammatory signaling pathway. Altered
STAT activity was implicated in adverse pregnancy out-
comes, and a 3′-UTR STAT3 variant contributes to RPL
by precipitating a local inflammatory state [50]. Since
endometrium signaling involves STAT pathway [50], de-
fective STAT signaling due to attenuated endometrial
STAT3-associated tyrosine kinase activity [51, 52], or al-
tered availability of cytokine/growth factor-driven

receptor engagement was seen in RPL, suggesting a role
in unexplained infertility. CTNNB1, identified as the
seed node in Cluster 1, is present in 21 KEGG pathways,
including Wnt signaling pathway, suggest that altered
CTNNB1 expression contributed to RPL pathogenesis.
With regards to apoptosis-related genes and pathways,
several evidences confirmed apoptosis of trophoblast
cells in early pregnancy [53]. Implantation and growth of
blastocyst, regression and reconstruction of decidual tis-
sues, remodeling of placental structure and other pro-
cesses are closely related to apoptosis, were also present
[53]. A balance between apoptosis and proliferation of
villous and decidual cells during pregnancy and adverse
pregnancy outcome, including RPL, are commonly asso-
ciated with the excessive apoptotic cells.

Conclusions
Using bioinformatics, results of the present study pro-
vides for theoretical framework toward personalized RPL
therapy. Hub-bottleneck proteins, had critical role and
high importance in physiopathology of RPL, can serve a
diagnostic, even prognostic, role in RPL pathobiology. It
is tempting to speculate that several of the identified
miRNAs and proteins can potentially serve as diagnostic
or therapeutic agents. To this end, prioritization of these
targets, and validation of the results using direct cellular
analysis, and where possible examination of the impact
of the blockade of their expression and activity will be
needed for further examination. We favor the notion
that drugs designed against these proteins can be im-
portant in controlling and managing of RPL.
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