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Abstract

Background: Recent studies have proposed several gene signatures as biomarkers for different grades of gliomas
from various perspectives. However, most of these genes can only be used appropriately for patients with specific
grades of gliomas.

Methods: In this study, we aimed to identify survival-relevant genes shared between glioblastoma multiforme
(GBM) and lower-grade glioma (LGG), which could be used as potential biomarkers to classify patients into different
risk groups. Cox proportional hazard regression model (Cox model) was used to extract relative genes, and
effectiveness of genes was estimated against random forest regression. Finally, risk models were constructed with
logistic regression.

Results: We identified 104 key genes that were shared between GBM and LGG, which could be significantly correlated
with patients’ survival based on next-generation sequencing data obtained from The Cancer Genome Atlas for gene
expression analysis. The effectiveness of these genes in the survival prediction of GBM and LGG was evaluated, and the
average receiver operating characteristic curve (ROC) area under the curve values ranged from 0.7 to 0.8. Gene set
enrichment analysis revealed that these genes were involved in eight significant pathways and 23 molecular functions.
Moreover, the expressions of ten (CTSZ, EFEMP2, ITGA5, KDELR2, MDK, MICALL2, MAP 2 K3, PLAUR, SERPINE1, and SOCS3)
of these genes were significantly higher in GBM than in LGG, and comparing their expression levels to those of the
proposed control genes (TBP, IPO8, and SDHA) could have the potential capability to classify patients into high- and
low- risk groups, which differ significantly in the overall survival. Signatures of candidate genes were validated, by
multiple microarray datasets from Gene Expression Omnibus, to increase the robustness of using these potential
prognostic factors. In both the GBM and LGG cohort study, most of the patients in the high-risk group had the IDH1
wild-type gene, and those in the low-risk group had IDH1 mutations. Moreover, most of the high-risk patients with LGG
possessed a 1p/19q-noncodeletion.

Conclusion: In this study, we identified survival relevant genes which were shared between GBM and LGG,
and those enabled to classify patients into high- and low-risk groups based on expression level analysis. Both
the risk groups could be correlated with the well-known genetic variants, thus suggesting their potential
prognostic value in clinical application.
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Background
Glioma is a common type of primary central nervous
system (CNS) tumor which arises from glial cells [1].
Following the World Health Organization (WHO) clas-
sification in 2007, gliomas can be subdivided into grade
II, grade III, and grade IV (glioblastoma multiforme,
GBM), depending on the degree of aggressiveness [2, 3].
In “The Cancer Genome Atlas” (TCGA) database, grade
II and III are classified as lower-grade glioma (LGG),
and grade IV as GBM. Despite developments in therap-
ies that include surgical resection, chemotherapy, and
radiotherapy, the median survival and prognosis remain
poor, particularly for glioblastoma patients [4, 5]. The
median overall survival time (mOS) of GBM is approxi-
mately 1.25 years [5, 6], and that of LGG is 6.5–8 years
[7, 8]. Thus, it is important to elucidate the survival
events of glioma, which could potentially aid in the diag-
nosis and prognosis of glioma patients.
Patient survival time with regards to tumor progres-

sion is associated with various subtypes and grades of
the tumor [2]. The histological classification of tumor
subtypes is important to guide treatment decisions,
which are often combined with several clinical prognos-
tic features. In neuro-oncological practice, however, no
clear national consensus for adult glioma diagnosis has
been reached and the diagnosis is subject to interob-
server variation [9, 10]; only utilizing histological infor-
mation in studying various types of gliomas is restricted.
On the other hand, previous studies have shown that gene
expression profiling provides an objective method to clas-
sify tumors [11, 12]; it is better to correlate gene expres-
sion profiling, rather than tumor histology, with prognosis
[13]. Moreover, it may even be utilized to predict patients’
prognosis from various points of view [14–29]. Compar-
ing these gene lists published from 2004 to 2016, it is ob-
served that the genes identified from various research
groups are quite different. This observation indicates that
glioma patients’ overall survival (OS) is correlated with
many kinds of events caused by various expression profiles
of multiple genes. Therefore, extraction of comprehen-
sive survival-related genes associated with gliomas is
required, and it is possible for researchers to carry
out further relevant studies. In addition, most previ-
ous studies [14, 18–23, 25–27, 29] have only utilized
microarray datasets, rather than different kinds of datasets

such as next-generation sequencing (NGS) data, to screen
expression profiles of genes might have unexpected data
bias; generally, utilizing NGS to detect gene signatures
might be more precise than array data.
In this study, we aimed to identify common genes cor-

related with the overall survival of gliomas following the
association of their expression profiles and patients’ sur-
vival time. Candidate genes were extracted from GBM
and LGG study cohorts after analysis of NGS datasets
from TCGA and validation by microarray datasets from
Gene Expression Omnibus (GEO). Of these
survival-related genes, the critical ones, which were po-
tential biomarkers, were further analyzed and filtered,
and then used to construct the survival-relevant risk
models for clinical application against gliomas.

Methods
Patients and gene expression datasets
Publicly available gene expression datasets of patients
with glioma were obtained from TCGA (https://cancer
genome.nih.gov/) and the GEO (https://www.ncbi.nlm.
nih.gov/geo/). From TCGA projects (TCGA-LGG and
TCGA-GBM), level 3 RNA-Seq datasets and their clin-
ical information were used to investigate the relationship
between gene expression and patient survival. The
microarray datasets (GSE16011, GSE4412, and
GSE4271) from the GEO were utilized to confirm and
validate the results obtained based on the TCGA data-
sets. Notably, grades II and III of gliomas were included
in the TCGA-LGG project, whereas grade IV was stud-
ied in a separate project, namely TCGA-GBM. Following
the project definition, patients from GEO datasets could
be divided into LGG and GBM categories. The sample
sizes of various datasets are summarized in Table 1, and
the detailed clinical and histological characteristics of
patients are listed in Table 2.
In this study, NGS datasets were used for the main ana-

lysis because of their advantages of low data bias and large
sample size. The median OS of patients with gliomas
based on their various histological subtypes was estimated
using the Kaplan-Meier curve (Fig. 1). The median OS of
patients with LGG and those with GBM were determined
as approximately 2700 and 450 days, respectively.
The level-3 data (RNA-Seq) obtained from TCGA uti-

lized the fragments per kilobase of transcript per million

Table 1 Statistics of datasets from TCGA and GEO databases

TCGA (RNA-Seq) GEO GSE16011) GEO (GSE4412) GEO (GSE4271)

GBM 154 159 59 76

LGG 516 109 26 24

GBM with surv. Info. 152 155 59 56

LGG with surv. Info. 511 109 26 21

When the analysis of gene expression must be correlated to survival information, the sample size of datasets would be possible to become smaller
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mapped reads (FPKM) [30] to determine the expression
level of genes. The formula for FPKM is as follows:

FPKM ¼ total fragments
mapped reads millionsð Þ � exon length kilobase pairð Þ

After exclusion of genes that were not expressed in all
patients, 19,924 genes were eligible for further analysis
of the LGG and GBM cohorts from TCGA projects.
Gene expression analysis of microarrays belonging to
the GBM and LGG populations from the GEO database
were first normalized using the R function normalize.-
quantiles [31].

Analysis workflow of this study
This study was divided into two major parts. In the first
part, survival-related genes were identified and their ef-
fectiveness in relation to the survival of patients with
GBM and LGG was evaluated. In the second part, a rep-
resentative subset of these genes that could help in dif-
ferentiating between high- and low-risk patients was
identified (Fig. 2). The first part focused on profiling
gene signatures that corresponded with the patients’ OS;
these genes were termed survival-related genes. The per-
formance evaluation of survival predictors for GBM and
LGG indicated that these genes were closely correlated
with patient outcomes (survival time). Subsequently,

gene set enrichment analysis using various tools was
performed on these genes (not shown in the Fig. 2). In
the second part, we used additional microarray datasets
to further filter genes whose expression trends between
the LGG and GBM groups were consistent with the re-
sults of the analysis of the NGS datasets and may have
been applicable for classification of patients into risk
groups (high-risk patients have shorter OS; low-risk pa-
tients have longer OS). The size of the gene set was
gradually scaled down and is annotated in Fig. 2 after
several filtering steps using various criteria.

Identification of significant survival-related genes
The Cox proportional hazards regression model (“Cox
model” hereafter; survival analysis) was used to identify
possible factors that might be associated with patients’
OS duration. In this study, univariate Cox regression
analysis [32] was performed to assess the expression
profiles of genes that might be significantly correlated
with the survival time of patients with GBM or LGG.
Subsequently, these putative survival-related genes
were ranked and filtered by applying stringent criteria
(hazard ratio [HR] > 1; Wald test, p < 0.01). Each ex-
tracted gene was consequently analyzed to evaluate the
correlation of its expression level with various survival
durations in patients. Here, the median OS (in days) of

Table 2 Clinical and histological characteristics of patients with glioma

TCGA (RNA-Seq) GSE16011 GSE4412 GSE4271

LGG GBM LGG GBM LGG GBM LGG GBM

516 154 109 159 26 59 24 76

Sex

Male 285 99 72 108 6 26 16 52

Female 230 54 37 51 20 33 8 24

Unknown 1 1

Age

Median (LQ-UQ) 41 (32–53) 60 (52–70) 44 (37–55) 55 (46–64) 34 (31–41) 47 (39–61) 35 (32–43) 49 (40–55)

Histology

Astro. 194 (37.6%) 29 (24.8%) 8 (30.8%)

GBM 154 (100%) 159 (100%) 59 (100%)

Oligoastro. 130 (25.2%) 28 (23.9%) 7 (26.9%)

Oligodendro. 191 (37.0%) 52 (44.4%) 11 (42.3%)

Pilocytic Astro.

Unknown 1 (0.2%)

Tumor grade

G1

G2 249 (48.3%) 24 (20.5%)

G3 266 (51.6%) 85 (73.7%) 26 (100%) 24 (100%)

G4 153 (99.4%) 159 (100%) 59 (100%) 76 (100%)

Unknown 1 (0.1%) 1 (0.6%)
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GBM and LGG groups would be set as an important
time point for both groups, respectively, to separate pa-
tients into shorter or longer survival durations, to
recognize that the expression levels of genes differed sig-
nificantly between the survival durations (number of days
to death less or more than the median OS). The Student’s
t-test (p < 0.05) was conducted to select statistically signifi-
cant candidate genes.

Building survival predictive models for patients with GBM
and LGG
The predictive model for survival analysis in this study
was built using randomForestSRC [33–35], a nonpara-
metric machine learning method. Moreover, because it
can combine the results of many survival trees, this
model is arguably more objective than other methods.
Accordingly, the expression profiles of candidate genes
related to survival durations were used to construct sur-
vival predictors for GBM and LGG. To assess the per-
formance of the predictors, 1000 repetitions of five-fold
cross-validation were performed, 80% of the samples
were employed as the training dataset to train the
model, and the remaining 20% served as the validation
dataset. Receiver operating characteristic curves (ROC)

obtained from the 1000 iterations were evaluated using a
boxplot with their area under curve (AUC) values. The
performance could be used to realize the importance of
these candidate genes to GBM and LGG.

Gene set enrichment analysis
Ingenuity pathway analysis (IPA) software (Qiagen),
GeneAnalytics [36], and DAVID [37, 38] were used to
analyze the biological roles and molecular functions of
candidate genes identified from patients with glioma.
Survival-related genes common to both LGG and GBM
could be useful in realizing shared functions; the pathways
in both study cohorts were related to patient survival.
In this study, multiple gene set enrichment analysis

tools were applied to increase the consistency and accur-
acy of the results. The functions and pathways that the
gene set was involved were identified using at least two
kinds of tools.

Gene expression level analysis between GBM and LGG
The survival-related genes with varying expression levels
in case of relative high-risk (GBM) and relative low-risk
(LGG) of gliomas would be further analyzed and could
be used as putative biomarkers. A previous study

Fig. 1 OS curve of various histological subtypes of gliomas (TCGA samples). LGG was divided into three subtypes: astrocytoma, oligoastrocytoma,
and oligodendroglioma. X-axis: patients’ OS duration (days); Y-axis: patients’ survival rate
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demonstrated that the following five endogenous control
genes were not differentially expressed between the gli-
oma and normal brain: TBP, IPO8, GAPDH, RPL13A,
and SDHA [39]. Therefore, the log2-fold changes in the
expression of these survival-related genes relative to
those of the control genes were calculated; there were p ×
q unique features (the signatures of genes were higher
or lower than those of the control genes) for each pa-
tient, when p survival-related genes and q control genes
were present. For each feature, the percentages of pa-
tients with high and low expression were calculated and
screened. If a gene expression was both high (or low) in
over 50% of patients with GBM and low (or high) in
over 50% of those with LGG, compared with the expres-
sion of the control genes, the log2-fold change value was
used as a feature in this study. Subsequently, features
with different expression levels between GBM and LGG
were retained as the candidates of risk descriptors. For
instance, the survival-related gene TIMP1- which had
high expression in 98% of patients with GBM but low
expression in 60% of patients with LGG compared with
the reference gene TBP - was retained. In addition to
RNA-Seq datasets (TCGA), three distinct microarray
datasets (GEO) were utilized to validate the consistency
of various gene signatures in both classes of patients, in
order to increase the data strength.

Survival risk relevant genes identification
The median OS days of GBM and LGG were notably
different, implying that patients with GBM have a
shorter survival time (relative to high-risk) and those
with LGG have longer survival time (relative to
low-risk). Under this assumption, survival-related genes
were first filtered (using the method mentioned in the
previous section) as possible descriptors to classify pa-
tients into risk groups. However, the effectiveness of
these genes needed to be determined for further ana-
lysis using a statistical model. A logistic regression
model (Y = X1 × β1 + X2 × β2 + … + Xn × βn + k) was ap-
plied to evaluate the importance of these features,
namely the survival-related genes versus the control
genes. Here, Y is the estimated value of glioma progno-
sis risk (GBM defined as 1, LGG defined as 0), X repre-
sents the value of the log2-fold change of each feature,
β is the unknown coefficient, and k is the unknown
constant. The Akaike information criterion (AIC) was uti-
lized to evaluate the relative quality of all models, which
were constructed with various combinations of features.
While repeating the process (backward elimination) to
construct the logistic regression model, features with low
predictive value for glioma prognosis were excluded each
time until the number of features that provided the smal-
lest AIC values was reached. Consequently, these features

Fig. 2 System workflow. The left-hand-side figure was to identify the shared survival-related genes from LGG and GBM. The gene set was scaled
down against a series analysis method. Then, the importance of candidate genes was proved through the performance estimation of survival
predictors. The right-hand-side figure shows the extraction of survival-relevant biomarker representatives from these genes, which could be used
in clinical practice
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would be capable of recognizing the survival risk of pa-
tients with GBM or LGG; thus, the expression level of
those genes relative to that of the control genes could be
correlated to patients’ survival.

Differentiation of patients into different risk groups
After the candidate features (from previous section: Sur-
vival risk relevant genes identification) had been identi-
fied, they could be used directly to create risk models for

Table 4 Pathways summarized from the enrichment analysis of
the 104 survival-related genes

Pathway GeneAnalytics IPA DAVID

ERK signaling ✓ ✓

Integrin pathway ✓ ✓

Akt signaling ✓ ✓

Phospholipase-C pathway ✓ ✓

Inhibition of matrix metalloproteases ✓ ✓

TNF signaling pathway ✓ ✓

Hematopoietic cell lineage ✓ ✓

Jak-STAT signaling pathway ✓ ✓

Table 3 Capability estimation of 104 key genes for GBM and
LGG survival prediction

Type GBM LGG

Minimum 0.40 0.60

Maximum 0.94 0.91

Mean 0.70 0.77

Standard deviation 0.09 0.05

Fig. 3 Performance estimation of survival prediction models using the 104-gene group (TCGA samples). The X-axis represents two survival
prediction models that were constructed with the 104 survival-related genes; one model was constructed for GBM and the other, for LGG. The Y-
axis represents the distribution of AUC values after 1000 repetitions of 5-fold cross-validation
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GBM and LGG. Logistic regression was applied to con-
struct both risk models. Here, the outcome variable Y
was the estimated GBM or LGG prognosis risk (patients
can’t live over mOS are relative high risk and can live
longer than mOS are low risk); for the GBM risk model,
survival durations shorter than 450 days were defined as
1 and those longer than 450 days are defined as 0. Simi-
larly, for the LGG risk model, survival durations shorter
than 2700 days were defined as 1 and those longer than
survival durations longer than 2700 days were defined as
0. The variable X would be substituted into the log2-fold
change value of the candidate features. The other vari-
ables, such as β and k were then estimated with the R
package generalized linear models (glm) function for
GBM and LGG risk model, respectively. In addition, 1000
repetitions of the five-fold cross-validation were run to
evaluate the GBM and LGG models, which were used to
classify patients into different risk groups.

Results
GBM and LGG shared key survival-related genes
In this study, using gene expression profiling, we identi-
fied 104 genes that were significantly correlated with OS

in patients with GBM and those with LGG. After appli-
cation of the stringent criteria to filter the putative
survival-related genes using the Cox model, the expres-
sion signatures of 582 and 5461 genes were identified
and correlated to OS in case of GBM (n = 152) and LGG
(n = 511), respectively. Subsequently, 266 genes were ob-
tained through the gene lists from both study cohorts.
However, only 104 of these genes were also significantly
differentially expressed (t-test, p < 0.05) before and after
the median OS time in the GBM and LGG study co-
horts; these 104 survival-relevant genes are listed in
Additional file 1: Table S1.

Effectiveness estimation of 104 genes for GBM and LGG
survival
In order to estimate the effectiveness of the 104 shared
survival-related genes, two survival prediction models
were constructed with 1000 iterations of five-fold
cross-validation for the GBM and LGG cohorts. The
area under the curve (AUC) value distribution under the
1000-time simulation was illustrated using the boxplot
and summarized (Fig. 3; Table 3). The mean AUC values
of the GBM and LGG models were estimated

Table 5 Molecular and cellular functions summarized from the enrichment analysis of the 104 survival-related genes

Molecular and cellular function GeneAnalytics IPA DAVID

Endodermal cell differentiation ✓ ✓

Chemotaxis ✓ ✓

T-cell activation ✓ ✓

Extracellular matrix organization ✓ ✓

Decidualization ✓ ✓

Cytokine-mediated signaling pathway ✓ ✓ ✓

Heterotypic cell–cell adhesion ✓ ✓

Angiogenesis ✓ ✓

Adaptive immune response ✓ ✓

Integrin-mediated signaling pathway ✓ ✓ ✓

Positive regulation of cell-substrate adhesion ✓ ✓

Substrate-adhesion-dependent cell spreading ✓ ✓

Positive regulation of tyrosine phosphorylation of Stat3 protein ✓ ✓

Collagen fibril organization ✓ ✓

Negative regulation of JAK-STAT cascade ✓ ✓

Spongiotrophoblast differentiation ✓ ✓

Leukocyte migration ✓ ✓

Skeletal system development ✓ ✓ ✓

T-cell migration ✓ ✓

Positive regulation of T cell proliferation ✓ ✓ ✓

Regulation of vesicle-mediated transport ✓ ✓

positive regulation of T cell chemotaxis ✓ ✓

Movement of cell or subcellular component ✓ ✓
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approximately from 0.7 to 0.8 and the standard devia-
tions were from 0.05 to 0.09. Therefore, it was seen that
the 104 genes affected the survival durations of patients
with GBM and LGG to a certain extent.

Pathway involvement and function category of survival-
related genes
The 104 genes identified were common regulators re-
lated to the survival of GBM and LGG and were fur-
ther analyzed for their involvement in pathways and
possible biological roles. The results overlapped in at
least two of the three tools; eight pathways were
identified as core pathways (Table 4). Half of these
pathways were signal transduction pathways corre-
lated with cell survival, death, and growth. The mo-
lecular and cellular functions of the 104-gene group
could be characterized using 23 biological functions
(Table 5). In addition, IPA analysis revealed that these
genes were able to be correlated to several mechan-
ism disorders such as those related to immunity, in-
flammation, tissue connectivity, cellular movement,
immune cell trafficking, cell death and survival, and
cell-to-cell signaling and interaction.

The candidate patients’ severity-relevant features
Unsupervised clustering with the 104 survival-related
genes in all glioma patients (GBM and LGG) revealed
that the expression levels of these genes would be
higher in most of GBM cases and lower in LGG
cases. This property could be applied as an indicator
to distinguish patients’ risk (Fig. 4). Expression level
analysis of the 104 shared genes relative to the ex-
pression of the 5 control genes were conducted
among all patients with LGG (n = 516) and GBM (n =
154) from TCGA. Eighty-six of these genes, however,
were screened between the different study cohorts for
their signatures; subsequently, the other genes would
be skipped here because they could not be validated
with different datasets from GEO. For each feature,
the selection criteria applicable state that more than
50 % of patients with GBM and LGG must have a
different expression tendency relative to that of the
control genes. Consequently, 19 features (with 16
genes involved) that met these criteria were filtered
and then validated using various microarray datasets
(Table 6). Obviously, two control genes, GAPDH and
RPL13A, were filtered out in this study, because the
expression levels of survival-related genes relative to

Fig. 4 Heatmap view of the unsupervised clustering of 670 patients with glioma with expression profiles of the 104-gene group (TCGA samples).
In the heatmap, the Y-axis represents the 104 genes and the X-axis represents patients with glioma. The expression levels from low to high are
represented as a color gradient from green to red, respectively. There are three color bars of the heatmap utilizes different colors to represent
IDH status (wild type and mutation), risk group (high/low), and patients with LGG and GBM
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both these control genes did not have clear differ-
ences in case of GBM and LGG. Additionally, 16
genes involved in these features had a higher expres-
sion in GBM than in LGG.

Effectiveness features for evaluating risks of patients with
glioma
Based on the assumption that patients with GBM (n = 154)
have a higher risk (short median OS) than those with LGG
(n = 516) (longer median OS), the construction of a logistic
regression model with various combinations of features was
repeated. The ten smallest features, namely, CTSZ/IPO8,
EFEMP2/IPO8, ITGA5/IPO8, KDELR2/SDHA, MDK/IPO8,
MICALL2/TBP, MAP 2K3/TBP, PLAUR/TBP, SERPINE1/
TBP, and SOCS3/IPO8 were utilized to construct the risk
model with the lowest AIC value which was 239.51. There-
fore, utilizing the signatures of ten genes relative to the
three control genes would have the capability to evaluate
patient risks.

Patients’ risk distinguishable with ten gene signatures
After screening the importance of features with the
logistic regression model, ten of these features would
be used to construct the risk models for GBM and
LGG. In the GBM study cohort, when the probability

that patients belong to the high-risk group was less
than 0.35, they would be clustered into the relatively
low-risk group, whereas the LGG risk model
attempted to identify relatively high-risk patients
when this probability was larger than 0.9. Therefore,
GBM patients (n = 154) could be divided into the
high-risk group (n = 135) and low-risk group (n = 19);
LGG patients (n = 516) could also be divided into the
low-risk group (n = 364) and high-risk group (n =
152). The risk groups shown in the Kaplan-Meier
curve (Fig. 5 and Fig. 6) were significantly different
(Log rank test, p < 0.01). Moreover, the models were
evaluated by repeating the 5-fold cross-validation
1000 times; the average AUC value of ROC in GBM
was 0.986, and that in LGG was 0.982. In addition to
testing effectiveness of candidate genes which were
used to construct risk models against TCGA datasets
(RNA-Seq), microarray dataset GSE16011 which in-
clude large cases (GBM, n = 159; LGG, n = 109) and
with various grades (G2, G3, and G4) was used to
validate it. However, datasets from different platforms,
the distribution of overall gene expression level would
be varies. Thus, building different risk models for
GBM and LGG for various platforms is required. Con-
sequently, the Kaplan-Meier curve showed that GBM

Table 6 Candidate features have different expression level between GBM and LGG

TCGA GSE16011 GSE4271 GSE4412

GBM LGG GBM LGG GBM LGG GBM LGG

CTSZ/IPO8 + (79.22%) - (65.12%) + (62.71%) - (80.77%)

EFEMP2/IPO8 + (78.57%) - (89.15%) + (83.02%) - (64.22%)

EFEMP2/SDHA + (58.44%) - (96.12%) + (52.83%) - (85.32%) + (61.84%) - (83.33%)

EFEMP2/TBP + (94.16%) - (50.39%) + (81.76%) - (64.22%) + (79.66%) - (65.38%)

ITGA3/IPO8 + (52.60%) - (88.37%) + (62.71%) - (92.31%)

ITGA5/IPO8 + (56.49%) - (95.54%) + (60.38%) - (79.82%)

KDELR2/SDHA + (98.70%) - (70.74%) + (83.02%) - (64.22%)

LITAF/SDHA + (80.52%) - (79.46%) + (88.68%) - (54.13%)

MAP 2 K3/TBP + (90.26%) - (63.37%) + (69.49%) - (61.54%)

MDK/IPO8 + (85.06%) - (87.02%) + (76.73%) - (74.31%) + (79.66%) - (73.08%)

MICALL2/TBP + (83.77%) - (53.10%) + (81.76%) - (55.96%)

NRP1/IPO8 + (57.79%) - (92.83%) + (57.86%) - (73.39%) + (86.84%) - (70.83%)

P4HA2/TBP + (57.79%) - (85.27%) + (62.89%) - (86.24%)

PDIA4/SDHA + (94.81%) - (75.78%) + (78.95%) - (70.83%)

PLAUR/TBP + (71.43%) - (89.73%) + (67.80%) - (92.31%)

PLOD3/SDHA + (50.09%) - (92.25%) + (84.91%) - (55.96%)

SERPINE1/IPO8 + (68.18%) - (88.76%) + (67.30%) - (77.98%) + (76.32%) - (70.83%) + (84.75%) - (65.38%)

SERPINE1/TBP + (96.10%) - (60.08%) + (69.18%) - (79.82%)

SOCS3/IPO8 + (50.65%) - (92.64%) + (74.58%) - (69.23%)

The positive sign “+” means the expression level of survival-related gene comparing to the control gene (log2 ratio) was higher. The negative sign “-” means the
expression level of survival-related gene comparing to the control gene (log2 ratio) was lower. The percentage represents how many patients in GBM or LGG are
expressed higher/lower than the control genes
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and LGG from GSE16011 can be well distinguished
into different risk groups (log rank test, p < 0.01) using
the candidate features (Fig. 7).

Discussion
In this study, we identified 104 common survival-
related genes from patients with gliomas. The effect-
iveness of these genes was evaluated by constructing
prediction models, and the AUC values were esti-
mated to be approximately 0.7 and 0.8 for the GBM
and LGG models, respectively, after 1000 iterations of
5-fold cross-validation. The heatmap (Fig. 4) has
shown that expression profiles of these genes are as-
sociated with the IDH1 and risk status among pa-
tients with gliomas; most of patients with GBM are
wild-type IDH1 and have short survival time (high
risk), but patients with LGG are mutant-type IDH1
and survive long (low risk). Most of these genes were
involved in cell-related signaling pathways that affect
cellular proliferation, apoptosis, and angiogenesis.
Moreover, of the 104 survival-related genes, 10 could

potentially distinguish patients with GBM or LGG
into high- and low-risk groups. The expression levels
of these ten genes were higher and the survival dur-
ation was shorter in patients with high-grade glioma
than in those with lower grade glioma.
Identification of survival-related genes in gliomas has

been ongoing over the past decade. However, the gene
lists identified by our study and the other various re-
search groups [14–29] differ considerably; only 13 com-
mon genes (BMP2, CLIC1, EST, IGFBP2, LDHA,
LGALS1, MET, MSN, TGALN2, TIMP1, TNC, UPP1,
ZYX) could be identified in at least three studies. These
differences may be attributed to two major factors.
First, researchers have analyzed glioma datasets from
various perspectives; for instance, some studies have
discussed some aspects only in patients with high-grade
gliomas [14, 20, 23–27, 29], or LGG [21, 28], or at spe-
cific checkpoints such as the mitotic spindle checkpoint
[19] or ion channel [27]. Second, studies have analyzed
different types of datasets obtained from various
high-throughput platforms such as microarray or

Fig. 5 Patients with GBM were divided into high- and low-risk groups identified based on ten genes (TCGA samples). X-axis: patients’ OS duration
(days); Y-axis: patients’ survival rate. Log rank test between high-risk (n = 135) and low-risk (n = 19) groups was significant difference (p < 0.01)
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next-generation data. Because of technical limitations,
the expression profiles of the same genes detected from
different datasets may be inconsistent. For instance, the
sequencing data have higher stochastic variability than
array data, which would result in a lack of reads in
short or low abundance genes [40]. On the other hand,
microarray data of gene expression can be affected by
probes’ cross-hybridization, nonspecific hybridization,
redundancy, and annotation [41]. Rather than NGS,
microarray analysis has been selected as the initial
screening method in most relevant studies. Recently,
various research groups have started using NGS data
(e.g., RNA-Seq) as the main analysis platform and
microarray data as an adjuvant platform to verify
results.
Accurate survival prediction through comprehensive

indicators is vital for patients with glioma. However, the
104-gene group identified in this study would include
parts of those indicators and was also crucial for survival
prediction in both types of gliomas; its effectiveness in
analyzing the GBM and LGG cohorts demonstrated that

there other specific survival-related genes might exist.
However, these 104 genes were the basic factors for pa-
tients’ survival in case of GBM and LGG, because the
average AUC value under multiple times of simulation
could reach 0.7–0.8. These genes could be used together
with self-specific genes of each type of glioma, to elabor-
ate the regulation networks in various mechanisms. In
addition, recent studies have identified crucial glioma
imaging features from magnetic resonance imaging
(MRI) and have correlated them with patient survival
[42, 43]. The association of imaging and genomic fea-
tures could be realized and applied in the field of
radiogenomics.
The expression level analysis of survival-related genes

could have implications; high signatures of genes in pa-
tients would be indicative of shorter survival durations
in contrast to low signatures of genes, where patients
have a longer survival time. Moreover, most of these
genes were highly expressed in GBM and the converse
is true in case of LGG. However, it is difficult to set the
cutoff values to indicate whether gene expression was

Fig. 6 Patients with LGG were divided into high- and low-risk groups identified based on ten genes (TCGA samples). X-axis: patients’ OS duration
(days); Y-axis: patients’ survival rate. Log rank test between high-risk (n = 121) and low-risk (n = 395) groups was significant difference (p < 0.01)
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high or low, because of individual differences. There-
fore, the reference genes (called control genes in this
study) would be the target of comparison for
survival-relevant genes. Furthermore, in order to have
objective indicators consequently, different datasets
were used to validate the results from NGS and the

minor effectiveness of genes, which was decided by the
logistic regression model, was removed.
Survival-relevant risk models were constructed for

GBM and LGG; the evaluation related to model per-
formance was larger than 0.95 (average AUC value),
which means it could successfully classify patients into

Table 7 IDH1 and 1p/19q status of high- and low-risk groups of patients with LGG and those with GBM
LGG GBM

High risk Low risk High risk Low risk

n 121 395 135 19

IDH1 status

Wild type 73 (60.3%) 21 (5.3%) 130 (96.3%) 10 (52.6%)

Mutation 47 (38.8%) 372 (94.2%) 2 (1.5%) 8 (42.1%)

Unknown 1 (0.8%) 2 (0.5%) 3 (2.2%) 1(5.3%)

1p/19q status

Codel 13 (10.7%) 156 (39.5%)

Noncodel 108 (89.3%) 239 (60.5%) 130 (96.3%) 18 (94.7%)

Unknown 5 (3.7%) 1 (5.3%)

IDH1 and 1p/19q status

Wild type and noncodel 73 (60.3%) 21 (5.3%) 126 (93.3%) 10 (52.6%)

Mutation and noncodel 34 (28.1%) 216 (54.7%) 1 (0.7%) 7 (36.8%)

Mutation and codel 13 (10.7%) 156 (39.5%)

Wild type 4 (3.0%)

Mutation 1 (0.7%) 1 (5.3%)

Codel

Noncodel 1 (0.8%) 2 (0.5%) 3 (2.2%) 1 (5.3%)

Fig. 7 Patients with GBM and LGG were divided into high- and low-risk groups identified based on ten genes (GEO samples). X-axis: patients’ OS
duration (days); Y-axis: patients’ survival rate. a GBM, log rank test between high-risk (n = 142) and low-risk (n = 17) groups was significant
difference (p < 0.01). b LGG, log rank test between high-risk (n = 25) and low-risk (n = 84) groups was significant difference (p < 0.01)
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different risk groups. In GBM, the survival durations of
the low-risk group were better than the high-risk group,
and its median OS was larger than 450 days (1.2 years).
On the other hand, in LGG, the survival durations of the
high-risk group were worse than that in the low-risk
group and the median OS time was shorter than 2700
days (7.4 years). Recent studies [44–47] have demon-
strated that gliomas could be divided into multiple sub-
types based on various molecular features such as IDH1
mutation/wild type and chromosome 1p/19q noncodele-
tion/codeletion. Generally, IDH1 mutation and 1p/19q
codeletion are favorable prognostic factors for patients
with gliomas. Patients with GBM (n = 154) from TCGA,
in addition to the following status: chromosome 1p/19q
was not available (NA), all showed noncodeletion; only
10 patients showed IDH1 mutation. In the low-risk
group (n = 19) of GBM, as identified using the logistic
regression model, 8 patients had the IDH1 mutant. This
result indicated that 80% of patients with IDH1 mutation
would be clustered into the relative low-risk group of
GBM against the risk prediction model. Unlike GBM,

IDH1 was mutated in most patients (n = 419) and fewer
patients (n = 94) had the wild-type IDH1 in the LGG
(n = 516) datasets from TCGA. In addition, with regards
to the status observation of chromosome 1p/19q for
patients with LGG, parts (n = 347) of them were noncode-
letion and the others (n = 169) were codeletion. According
to the relative high-risk group (n = 121) of LGG clustered
by our constructed model, most of patients had wild-type
IDH1 (n = 73) and 1p/19q-noncodeletion (n = 108), ac-
counting for 60.3 and 89.3% of the cases, respectively
(Table 7). Therefore, the molecular features of the
high- and low-risk groups identified using the signa-
tures of these ten genes were in accordance with the
results of previous studies. However, the risk model
could not directly classify patients with wild-type
IDH1 into different risk groups well. For instance,
22.3% (n = 21) and 77.7% (n = 73) of patients with
wild-type IDH1 in the LGG cohort (n = 94) were
identified as low and high risk, respectively (Table 7);
the survival curves of both risk groups could not be
separated significantly, especially those representing

Fig. 8 High- and low-risk groups of patients with LGG having wild-type IDH1 identified based on ten genes (TCGA samples). X-axis: patients’ OS
duration (days); Y-axis: patients’ survival rate. Both risk groups could not be separated well; log rank test, p = 0.248 was not statistically significant
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less than 750 days of survival durations (Fig. 8).
Therefore, further identification of other effective pre-
dictors is required to evaluate how patients with bet-
ter survival can be efficiently distinguished from
patients with glioma having wild-type IDH1. However,
the risk model could classify patients with
mutant-type IDH1 into different risk groups well in
LGG cohort (n = 419). There are 47 (11.2%) and 372
(88.8%) of patients belong to high- and low-risk
groups, respectively (Fig. 9). The high-risk group of
patients with IDH1 mutation might be associated with
DNA methylation, which has indicated in the study
based on the molecular profiling analysis [48].
The expression level of the ten aforementioned genes

tended to gradually decrease from GBM to LGGs
(Fig. 10). The OS duration of patients decreased upon
high gene expression but increased upon low gene ex-
pression. Several of these genes have been reported in
previous studies; for instance, EFEMP2 was indicated as
a potent oncogene in glioma and a target for glioma

treatment [49], the overexpression of SERPINE1 (PAI-1)
was significantly correlated with shorter survival dura-
tions in patients with GBM [50], the expression of
ITGA5 might be correlated to the regulation of cell pro-
liferation and invasiveness in GBM, because targeting
ITGA5 using miR-330-5p could affect these cell events
[51], and the biological function of PLAUR could be re-
lated to glioma cell invasion and angiogenesis [52]. In
addition, the ten genes could be mapped to the various
hallmarks of cancer with literature survey (Table 8).
Therefore, this 10-gene group might have potential
prognostic value for patients with glioma.

Conclusions
In summary, the 104 genes identified, which are com-
mon between patients with GBM and those with LGG,
can be used as core genes related to patient survival. Of
these, 10 genes (CTSZ, EFEMP2, ITGA5, KDELR2,
MDK, MICALL2, MAP 2 K3, PLAUR, SERPINE1, and
SOCS3) can potentially serve as indicators to classify

Fig. 9 High- and low-risk groups of patients with LGG having mutant-type IDH1 identified based on ten genes (TCGA samples). X-axis: patients’ OS
duration (days); Y-axis: patients’ survival rate. Log rank test between high-risk (n = 47) and low-risk (n = 372) groups was significant difference (p < 0.05)
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Table 8 The cancer hallmarks mapping of the ten genes

Gene symbol MSigDB (Hallmark) [53] Hallmarks of cancer Ref.

CTSZ IL2/JAK/STAT5 signaling sustaining proliferative signaling,
activating invasion and metastasis

[54]

EFEMP2 Epithelial mesenchymal transition sustaining proliferative signaling,
activating invasion and metastasis

[49]

ITGA5 Epithelial mesenchymal transition, Inflammatory response All [55]

KDELR2 activating invasion and metastasis [56]

MDK Estrogen response late, Apical junction sustaining proliferative signaling,
activating invasion and metastasis

[57]

MICALL2 sustaining proliferative signaling [58]

MAP 2 K3 TNF-a signaling via NF-kB, PI3K/AKT/mTOR signaling, mTORC1 signaling,
Heme metabolism

sustaining proliferative signaling [59]

PLAUR TNF-alpha signaling via NF-kB, Cholesterol homeostasis activating invasion and metastasis,
inducing angiogenesis

[52, 60–62]

SERPINE1 TNF- alpha signaling via NF-kB, Hypoxia, TGF-beta signaling,
Complement, Epithelial mesenchymal transition, Inflammatory response,
Xenobiotic metabolism, UV response down, Coagulation

inducing angiogenesis [63]

SOCS3 TNF- alpha signaling via NF-kB, IL6/JAK/STAT3 signaling,
Interferon gamma response

sustaining proliferative signaling,
tumor-promoting inflammation

[64]

Fig. 10 Expression levels of ten genes decreased from GBM to LGGs (TCGA samples). All patients with glioma (n = 247) were dead (121 patients
with GBM and 126 patients with LGG). The X-axis represents the patients’ OS duration and the Y-axis represents their gene expression levels
(FPKM). The X-axis labels from left to right are: “Before median overall survival (OS) of GBM,” “After median OS of GBM,” “Before median OS of
LGG,” and “After median OS of LGG”
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patients with gliomas into different risk groups and
could be used to estimate the prognosis of patients with
gliomas. Moreover, the expression profiles of these po-
tential biomarkers could be correlated to the molecular
subtypes of patients, such as IDH1/2 mutation/wild type
and chromosome 1p/19q codeletion/noncodeletion.
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