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Abstract

Background: Microarray datasets are an important medical diagnostic tool as they represent the states of a cell at
the molecular level. Available microarray datasets for classifying cancer types generally have a fairly small sample
size compared to the large number of genes involved. This fact is known as a curse of dimensionality, which is a

challenging problem. Gene selection is a promising approach that addresses this problem and plays an important
role in the development of efficient cancer classification due to the fact that only a small number of genes
are related to the classification problem. Gene selection addresses many problems in microarray datasets such
as reducing the number of irrelevant and noisy genes, and selecting the most related genes to improve the
classification results.

Methods: An innovative Gene Selection Programming (GSP) method is proposed to select relevant genes for
effective and efficient cancer classification. GSP is based on Gene Expression Programming (GEP) method with
a new defined population initialization algorithm, a new fitness function definition, and improved mutation

and recombination operators. . Support Vector Machine (SYM) with a linear kernel serves as a classifier of the

GSP.

time.

Results: Experimental results on ten microarray cancer datasets demonstrate that Gene Selection
Programming (GSP) is effective and efficient in eliminating irrelevant and redundant genes/features from
microarray datasets. The comprehensive evaluations and comparisons with other methods show that GSP
gives a better compromise in terms of all three evaluation criteria, i.e., classification accuracy, number of
selected genes, and computational cost. The gene set selected by GSP has shown its superior performances
in cancer classification compared to those selected by the up-to-date representative gene selection methods.

Conclusion: Gene subset selected by GSP can achieve a higher classification accuracy with less processing

Keywords: Gene selection, Gene expression programming, Support vector machine, Microarray cancer dataset
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Background

The rapid development of microarray technology in the
past few years has enabled researchers to analyse thou-
sands of genes simultaneously and obtain biological in-
formation for various purposes, especially for cancer
classification. However, gene expression data obtained
by microarray technology could bring difficulties to clas-
sification methods due to the fact that usually the num-
ber of genes in a microarray dataset is very big, while
the number of samples is small. This fact is known as
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the curse of dimensionality in data mining [1-4].
Gene selection, which extracts informative and
relevant genes, is one of the effective options to over-
come the curse of dimensionality in microarray data
based cancer classification.

Gene selection is actually a process of identifying a
subset of informative genes from the original gene set.
This gene subset enables researchers to obtain substan-
tial insight into the genetic nature of the disease and the
mechanisms responsible for it. This technique can also
decrease the computational costs and improve the can-
cer classification performance [5, 6].
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Typically, the approaches for gene selection can be
classified into three main categories: filter, wrapper and
embedded techniques [6, 7]. The filter technique ex-
ploits the general characteristics of the gene expressions
in the dataset to evaluate each gene individually with-
out considering classification algorithms. The wrapper
technique is to add or remove genes to produce sev-
eral gene subsets and then evaluates these subsets by
using the classification algorithms to obtain the best
gene subset for solving the classification problem.
The embedded technique is between the filter and
wrapper techniques in order to take advantage of the
merits of both techniques. However, most of the em-
bedded techniques deal with genes one by one [8],
which is time consuming especially when the data di-
mension is large such as the microarray data.

Naturally inspired evolutionary algorithms are more
applicable and accurate than wrapper gene selection
methods [9, 10] due to their ability in searching for the
optimal or near-optimal solutions on large and complex
spaces of possible solutions. Evolutionary algorithms also
consider multiple attributes (genes) during their search
for a solution, instead of considering one attribute at a
time.

Various evolutionary algorithms [11-19] have been
proposed to extract informative and relevant cancer
genes and meanwhile reduce the number of noise and
irrelevant genes. However, in order to obtain high ac-
curacy results, most of these methods have to select a
large number of genes. Chuang et al. [20] proposed
the improved binary particle swarm optimization
(IBPSO) method which achieved a good accuracy for
some datasets but, again, selected a large number of
genes. An enhancement of BPSO algorithm was pro-
posed by Mohamad et al. [21] by minimizing the
number of selected genes. They obtained good classi-
fication accuracies for some datasets, but the number
of selected genes is not small enough compared with
other studies.

Recently, Moosa et al. [22] proposed a modified
Artificial Bee Colony algorithm (mABC). Another
study [15] proposed a hybrid method by using Infor-
mation Gain algorithm to reduce the number of
irrelevant genes and using an improved simplified
swarm optimization (ISSO) to select the optimal
gene subset. These two studies were able to get a
good accuracy with small number of selected genes.
However, the number of selected genes is still high
compared with our method.

In recent years, a new evolutionary algorithm known
as Gene Expression Programming (GEP) was initially in-
troduced by Ferreira [23] and widely used in many appli-
cations for classification and decision making [24-30].
GEP has three main advantages
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— Flexibility, which makes it easy to design an optimal
model. In other words, any part of GEP steps can be
improved or changed without adding any complexity
to the whole process.

— The power of achieving the target that is inspired
from the ideas of genotype and phenotype

— Data visualization. It is easy to visualize each step of
the GEP and that distinguishes it from many
algorithms

These advantages make it easy to use GEP process to
create our new gene selection program and simulate the
dynamic process of achieving the optimal solution in de-
cision making.

A few studies applied GEP as a feature selection
method and obtained some promising results [31, 32]
which encourage us to do further research.

GEP algorithm, based on its evolutionary structure,
faces some computational problems, when it is applied
to complex and high dimensional data such as micro-
array datasets. Inspired by the above circumstances, to
enhance the robustness and stability of microarray data
classifiers, we propose a novel gene selection method
based on the improvement of GEP. This proposed algo-
rithm is called Gene Selection Programming (GSP). The
idea behind this approach is to control the GEP solution
process by replacing the random adding, deleting and
selection with the systematic gene-ranking based se-
lection. In this paper four innovative operations are
presented: attributes/genes selection (initializing the
population), mutation operation, recombination oper-
ation and a new fitness function. More details of GSP
are presented in the Methods section.

In this work, support vector machine (SVM) with a
linear kernel serves to evaluate the performance of GSP.
For a better reliability we used leave-one-out cross valid-
ation (LOOCY). The results were evaluated in terms of
three metrics: classification accuracy, number of selected
genes and CPU time.

The rest of this paper is organized as follows: The
overview of GEP and the proposed gene selection algo-
rithm GSP are presented in the Methods section (section
2). Results section (section 3) provides the experimental
results on ten microarray datasets. Discussion section
(section 4) presents the statistical analysis and discussion
about the experimental results. Finally, Conclusion sec-
tion (section 5) gives the conclusions and directions of
future research.

Methods

Gene expression programming

Gene Expression Programming (GEP) algorithm is an
evolutionary algorithm. GEP consists of two parts. The
first part is characteristic linear chromosomes
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(genotype), which are composed of one or more
genes. Each gene consists of a head and a tail. The
head may contain functional elements like {Q, +, -,
x, /} or terminal elements, while the tail contains ter-
minals only. The terminals represent the attributes in
the datasets. In this study, sometimes we use the
term attribute to represent the gene in microarray
dataset to avoid the possible confusion between the
gene in microarray datasets and the gene in GEP
chromosome. The size of the tail (t) is computed as t
= h (n-1) + 1, where h is the head size, and n is the
maximum number of parameters required in the
function set. The second part of GEP is a phenotype
which is a tree structure also known as expression
tree (ET). When the representation of each gene in
the chromosome is given, the genotype is established.
Then the genotype can be converted to the phenotype
by using specific languages invented by the GEP
author.

GEP process has four main steps: initialize the popula-
tion by creating the chromosomes (individuals), identify
a suitable fitness function to evaluate the best individual,
conduct genetic operations to modify the individuals
to achieve the optimal solution in the next

_’[ Initialize the Population ]
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Prepare new chromosomes
of next generation

[ Execute each chromosome ]

A 4

[ Evaluate fitness ]

No

[ Select best chromosomes ]

v

Replication and genetic
modification

N

Fig. 1 The flowchart of the GEP modelling
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generation, and check the stop conditions. GEP flow-
chart is shown in Fig. 1.

It is worth mentioning that the GEP algorithm
faces some challenging problems, especially the
computational efficiency, when it is applied on the
complex and high-dimensional data such as a
microarray dataset. This motivates us to solve these
problems and further improve the performance of
the GEP algorithm by improving the evolution
process. The details of the proposed gene selection
programming (GSP) algorithm, which is based on
GEP, for cancer classification are given in the fol-
lowing sub-sections.

Systematic selection approach to initial GSP population
Initializing population is the first step in our gene se-
lection method for which candidates are constructed
from two sets: terminal set (ts) and function set (fs).
Terminal set should represent the attributes of the
microarray dataset. The question is what attributes
should be selected into the terminal set. Selecting all
attributes (including the unrelated attributes) will
affect the computational efficiency. The best way to
reduce the noise from the microarray data is to
minimize the number of unrelated genes. There are
two commonly used ways to do that: either by identi-
fying a threshold and the genes ranked above a
threshold are selected, or by selecting the n-top
ranked genes (e.g. top 50 ranked genes). Both ways
have disadvantages: defining a threshold suitable for
different datasets is very difficult and deciding how
many genes should be selected is subjective. To avoid
these disadvantages, we use a different technique
named systematic selection approach.

The systematic selection approach consists of three
steps: rank all the attributes, calculate the weight of
each attribute, and select the attributes based on their
weight using the Roulette wheel selection method.
The details of these steps are shown in the following
sub-sections.

Attribute ranking

We use the Information Gain (IG) algorithm [33] to
rank the microarray attributes. IG is a filter method
mainly used to rank and find the most relevant genes
[15, 34, 35]. The attributes with a higher rank value
have more impact on the classification process, while
the attributes with a zero rank value are considered
irrelevant. The rank values of all attributes are calcu-
lated once and saved in the buffer for later use in the
program.
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Weight calculation
The weight (w) of each attribute (i) is calculated based
on Eq (1)

ri

w;, =

s €[0,1] (1)

where sum = ,;r; Viets and r is the rank value, and
Z (Wi = 1.

The attributes with a higher weight contain more in-
formation about the classification.

Attribute selection

In our systematic selection approach, we use the
Roulette wheel selection method, which is also
known as proportionate selection [36], to select
the strong attributes (i.e., the attributes with a
high weight). With this approach all the attributes
are placed on the roulette wheel according to
their weight. An attribute with a higher weight
has a higher probability to be selected as a ter-
minal element. This approach could reduce the
number of irrelevant attributes in the final ter-
minal set. The population is then initialized from
this final terminal set (ts) and the function set
(fs).

Each chromosome (c) in GSP is encoded with the
length of N*(gene_length), where N represents the
number of genes in each chromosome (c) and the
length of a gene (g) is the length of its head (h) plus
the length of its tail (t). In order to set the effective
chromosome length in GSP, we need to determine the
head size as well as the number of genes in each
chromosome (details are in the Results section). The
process of creating GSP chromosomes is illustrated in
Algorithm 1

Algorithm. 1: Creating chromosomes

Calculate the weight (w) of each attribute (i) as shown in equation (1).
1- Select the terminal set (ts) using the systematic selection approach.
2- Define the function set fs= {Q, +, -, /}, where Q is the square root function.
3- Randomly select elements from the candidate solution set tf= {ts , fs} to create the head
of a gene.
4- Randomly select elements from ts to create the tail of a gene.
5- Repeat step 3 and 4 until all the required genotypes are created.

6- Create the phenotypes of all the genotypes.

Fitness function design

The objective of the gene selection method is to
find the smallest subset of genes that can achieve
the highest accuracy. To this end, we need to de-
fine a suitable fitness function for GEP that has the
ability to find the best individuals/chromosomes.
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We define the fitness value of an individual
chromosome i as follow:
. I-s;
fi=2r«AC(i) +r= (2)

This fitness function consists of two parts. The first
part is based on the accuracy result AC(i). This accuracy
is measured based on the support vector machine
(SVM) classifier using LOOCV.

For example, if chromosome i is +/Qasa;jasasas, its ex-

pression tree (ET) is
+
N
A
a2 a1 as

Then, the input values for the SVM classifier are the
attributes a,, a; and as.

The second part of the fitness function is based on the
number of the selected attributes s; in the individual
chromosome and the total number ¢ of attributes in the
dataset . Parameter r is a random value within the range
(0.1, 1) giving an importance to the accuracy with respect
to the number of attributes. Since the accuracy value is
more important than the number of selected attributes in
measuring the fitness of a chromosome, we multiply the
accuracy by 2r.

Improved genetic operations

The purpose of the genetic operations is to improve the
individual chromosomes towards the optimal solution.
In this work, we improve two genetic operations as
shown below.

Mutation

Mutation is the most important genetic operator. It
makes a small change to the genomes by replacing an
element with another. The accumulation of several
changes can create a significant variation. The random
mutation may result in the loss of the important attri-
butes, which may reduce the accuracy and increase the
processing time.

The critical question of mutation is which attributes
are to be added or deleted. Ideally, each deleted ter-
minal/function in the mutation operation should be cov-
ered by some other selected terminals/functions. This
requirement can be fulfilled by using our method. To
clarify the GSP mutation operation, we provide a simple
example in Fig. 2.
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In the example, the chromosome c has one gene. The
head size is 3, so the tail length is h (n-1) + 1=4 and the
chromosome length is (3+4) =7. The weight table shows
that the attribute with the highest weight in the chromo-
some is ag and the attribute with the lowest weight is a;.
With the mutation GSP method selects the weakest ter-
minal /¢ (the terminal with lowest weight) which is a; in
our example. There are two options to replace a;: the
program could select either a function such as (/) or a
terminal to replace it. In the latter option, the terminal
should have a weight higher than that of a;, and the fit-
ness value of the new chromosome ¢’ must be higher
than the original one. This new mutation operation is
outlined in Algorithm 2.

Algorithm.2: Mutation operation for GSP

1- Randomly select an individual chromosome ¢
2- Find the lowest terminal (/7) in the chromosome ¢
3- Replaced /t with an element (e) from the candidate solution set to generate a new
chromosome ¢, i.e.,
a. If eis a terminal AND w, > wi , then replaced /t with e. Here we and wy are the
weights of terminal e and /7 respectively.
b. If e is a function, then replaced /¢ with e.
4-  If the fitness value of the new chromosome ¢’ is higher than that of the chromosome c,

then replace ¢ with ¢’ and repeat step 2 and 3; otherwise return the chromosome c.

Recombination

The second operation that we use in our gene se-
lection method is the recombination operation. In
recombination, two parent chromosomes are ran-
domly chosen to exchange some material (short se-
quence) between them. The short sequence can be
one or more elements in a gene (see Fig. 3). The
two parent chromosomes could also exchange an
entire gene in one chromosome with another gene
in another chromosome.

In this work, we improve the gene recombination by
controlling the exchanging process. Suppose ¢; and ¢,
are two chromosomes (see Fig. 4). The fitness value of
¢; = 80% and the fitness value of ¢, = 70% based on
our fitness function (2). We select the “strong” gene
(the one with the highest weight summation) from the
chromosome that has the lowest fitness value (Ic) and
exchange it with the “weak” gene (the one with the
lowest weight summation) from another chromo-
some that has the highest fitness value (hc). In gen-
eral, this process increases the fitness of hc. We
repeat the exchange process until we get a new
chromosome (hc’) with a higher fitness value than
that of both parent chromosomes. The hc' has a
higher probability of being a transcription in the
next generation. This idea comes from the gene
structure [37].

Based on the above innovative improvements for
the GSP method in this section, we present the steps
of GSP in Algorithm 3 with pseudocode.
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Fig. 3 Recombination of 3 elements in gene 1 (from position 0 to 2)

Algorithm.3: Gene Selection Programming Process

Input: Microarray data set, the initial number of genes in GSP chromosome (g), the head size (h),
and population size
Begin:
1- Calculate the weights for all attributes by using equation (1).
2- Use the systematic selection to select the terminal elements.
3- While (the accuracy<100% or the number of generations <2000) do {
4- Create all the genotypes (GEP liner chromosomes)
5- Create the phenotypes (GEP trees)
6- Create the generation using Algorithm 1
7- Find the fitness for each chromosome (c) in the generation
8- Select the best chromosome cy (the one that has the highest fitness value), and keep it for
the next generation.
9- Apply the GSP genetic operations on the current population to get ¢*
a. Apply GSP Mutation.
b. Apply GSP Recombination.
10-If fitness of ¢ < fitness of ¢* ; replace ¢ with ¢': else return 9
11- Select the best 50% individuals (chromosomes) to generate the next generation
12-} End While
13- Return: Accuracy and the number of genes (attributes) from the best individual (For

example, if +-Qasasa; is the best individual then the number of selected genes is 3).

Results

In this section, we evaluate the performance of GSP
method using ten microarray cancer datasets, which
were downloaded from http://www.gems-system.org.
Table 1 presents the details of the experimental datasets
in terms of diverse samples, attributes and classes.

Our experimental results contain three parts. Part 1
(Ev.1) evaluated the best setting for GSP based on the
number of genes (g) in each chromosome and the head
size (h). Part 2 (Ev.2) evaluated the GSP performance in
terms of three metrics: classification accuracy, number

of selected genes and CPU Time. To guarantee the
impartial classification results and avoid generating bias
results, this study adopted cross validation method
LOOCYV to reduce the bias in evaluating their perform-
ance over each dataset. Our gene selection results were
compared with three gene selection methods using the
same classification model for the sake of fair competi-
tion. Part 3 (Ev.3) evaluated the overall GSP perform-
ance by comparing it with other up-to-date models.

Ev.1 the best setting for gene and head

To set the best values for the number of genes (g) of
each chromosome and the size of the gene head (h) in
the GSP method, we evaluated nine different settings to
show their effect on the GSP performance results. For g
we selected three values 1, 2 and 3, and for each g value
we selected three h values: 10, 15 and 20. We increased
the values of h by 5 to make it clear to observe the effect
of h values on the GSP performance, especially when the
effect of increasing h is very slight. For more reliability,
we used three different datasets (11_Tumors, Leukaemia
1, Prostate Tumor). The parameters used in GSP are
listed in Table 2.

The average results across the three experimental
datasets are presented in Table 3. AC,y, Ny and T,
represent the average accuracy, number of selected attri-
butes and CPU time respectively for ten runs, while
ACg, » Nga. and Ty represent the standard deviation
for the classification accuracy, number of selected attri-
butes and CPU time respectively.

Figure 5 shows the evaluation values in terms of
ACuyg Tyg and N, for three different numbers of
genes in each chromosome.

It is observed from the results in Table 3 that:

1- Comparing g with h: g has a stronger effect on the
results than h.
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Table 1 Description of the experimental datasets
No.  Dataset Samples  Attributes  Classes  Reference
1 11_Tumors 174 12533 1 [38] Table 2 Parameters used in GSP
2 9_Tumors 60 5726 9 39] Parameter Setting
3 Bran_Tumorl 90 5920 5 [40] Function set o 7Q
4 Brain_Tumor2 50 10367 4 [41] Terminal set Se\ectgd informative genes from
the microarray dataset using
5 Leukemia 1 72 5327 3 [42] systematic selection.
6 Leukemia 2 72 11225 3 [43] Number of chromosomes 200
7 Lung_Cancer 203 12600 5 [44] Maximum Number of generations 2000
8 SRBCT 82 2308 4 [45] Genetic operators
9 Prostate_Tumor 102 10509 2 [46] Mutation 0.044
10 DLBCL 77 5469 2 [47] Recombination 03
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Table 3 The results of different setting for g and h. Bold font
indicates the best results

g h Alag  AGua Nayg Nia  Tavg Tt

1 10 87587 3423 5567 2.16 151.1202  0.00594
15 94.787 2757 10067 1977 1541243 0.00334
20 96317 2147 1 1.6 1577917  0.00277
average 92897 2776 8878 1912 1543454 0.004016

2 10 97453 1033 11633 1637 266789 0.00162
15 99.543 0.183 13.267 0973 2751234 000146
20 99.543 0.183 13633 0987  280.1246 0.00149
average 98847 0467 12844 1199 2740125 0001522

3 10 98397 0853 13133 09737 381.0373 0.00445
15 99.21 0.19 133 0973 3823714 000143
20 99.21 0.177 133 0973  388.7084 0.00133
average 98939 0407 13244 0973 384039  0.002404

2- Regarding g results: when g was increased, AC,,,
T, and N,,, were increased as well (positive
relationships). The results of ACy, Tgy and Ny
were decreased when g was increased (negative
relationships). The results became stable when the g
value was greater than 2.

Regarding h results: h has positive relationships

with AC,,p Tayg and N, and negative relationships
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with ACyp, Tsq and Ny, The results became
stable when the h value was over 15.

Increasing h values would increase the complexity
of the model while the AC and N results would not
show a notable enhancement.

5- The best setting for g and h was 2 and 15 respectively.

Ev.2: Comparison of the GSP performance with
representative gene selection algorithms

In order to evaluate the performance of our GSP algo-
rithm objectively, we first evaluated its performance in
terms of three evaluation criteria: classification accur-
acy (AC), number of selected attributes (N) and CPU
Time (7). Then we compared the results with three
popular gene selection algorithms named Particle
Swarm Optimization (PSO) [48], GEP and GA [49]
using the same model for the sake of a fair compari-
son. The parameters of the comparison methods are
listed in Table 4.

The Information Gain algorithm was used in order to
filter irrelevant and noisy genes and reduce the compu-
tational load for the gene selection and classification
methods.

The support vector machine (SVM) with a linear kernel
served as a classifier of these gene selection methods. In
order to avoid selection bias, the LOOCV was used. Weka
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Table 4 Parameter setting of the competitors

GA GEP PSO

Parameters Values Parameters Values Parameters  Values
#chromosomes 200 #chromosomes 200 # particles 200

# generations 2000  # generations 2000  # iterations 2000

Crossover rate 0.8 Crossover rate 0.8 Weight (w) 08

Accelerations 2
cland c2

mutation rate 0.1 mutation rate 0.1

software was used to implement the PSO and GA models
with default settings, while the GEP model was imple-
mented by using java package GEP4]J [50]. Table 5 shows
the comparison results of GSP with three gene selection
algorithms across ten selected datasets.

The experimental results showed that the GSP algo-
rithm achieved the highest average accuracy result
(99.92%) across the ten experimental datasets, while the
average accuracies of other models were 97.643%, 97.886%
and 94.904% for GEP, PSO and GA respectively.

The standard deviation results showed that GSP had
the smallest value (0.342671), while the average standard
deviations were3.425399, 3.3534102 and 5.24038421 for
GEP, PSO and GA respectively. This means the GSP
algorithm made the classification performance more
accurate and stable.

The GSP algorithm achieved the smallest number of
predictive/relevant genes (8.16), while the average num-
ber of predictive genes was 13.8, 16.14 and 473.5 for
GEP, PSO and GA respectively.

These evaluation results show that GSP is a promising
approach for solving gene selection and cancer classifica-
tion problems.

Table 5 Comparison of GSP with three gene selection algorithms
on ten selected datasets. Bold font indicates the best results

Statistics PSO GA GEP GSP
AC wvg. 96.84 93.14 96.63 99.92
AC o 374 478 342 0.06
SNayg, 9649 92.28 96.74 99.93
SNagg, 405 69 365 0.08
S 9598 93 9523 99.93
S 531 603 571 0.09
AUC,q 096 09 096 1
AUC. 005 008 005 0

T g 121 119 235 126
T aq 30 27 28 38
[N 187 5499 157 7.55
N i 143 4626 15 6.1

N g 16.14 4735 138 8.16
N g 1032 61944 516 4.86
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CPU Time results showed that GSP took almost half
of the time that GEP needed to achieve the best solu-
tion. However, the time is still long compared with the
PSO and GA methods.

Ev.3: Comparison of GSP with up-to-date classification
models

For more evaluations, we compared our GSP model with
up-to-date classification models IBPSO, SVM [14],
IG-GA [35], IG-ISSO [15], EPSO [21] and mABC [22].
This comparison was based on the classification result
and the number of genes regardless of the methods of
data processing and classification. The comparison re-
sults on ten datasets are presented in Table 6.

It can be seen from Table 6 that GSP performed better
than its competitors on seven datasets (11_Tumors,
9_Tumors, Lung_ Cancer, Leukemial, Leukemia2,
SRBCT, and DLBCL), while mABC had better results on
three data sets (Brain_Tumorl, Brain_Tumor2, and
Prostate).

Interestingly, all runs of GSP achieved 100%
LOOCYV accuracy with less than 5 selected genes
on the Lung_Cancer, Leukemial, Leukemia2, SRBCT, and
DLBCL datasets. Moreover, over 98% classification
accuracies were obtained on other datasets. These
results indicate that GSP has a high potential to
achieve the ideal solution with less number of
genes, and the selected genes are the most rele-
vant ones.

Regarding the standard deviations in Table 6, re-
sults that produced by GSP were almost consistent
on all datasets. The differences of the accuracy re-
sults and the number of genes in each run were very
small. For GSP, the highest ACyq was 0.52 while the
highest Ngq was 1.5. This means that GSP has a
stable process to select and produce a near-optimal
gene subset from a high dimensional dataset (gene
expression data).

Discussion

We applied GSP method on ten microarray datasets.
The results of GSP performance evaluations show that
GSP can generate a subset of genes with a very small
number of related genes for cancer classification on each
dataset. Across the ten experimental datasets, the max-
imum number of selected genes is 17 with the accuracy
not less than 98.88%.

The performance results of GSP and other compara-
tive models (see Table 6) on Prostate and Brain tumor
datasets were not as good as the results on other data-
sets. This is probably due to the fact that these models
concentrated on reducing the number of irrelevant
genes, but ignored other issues such as the missing
values and redundancy. More effort needs to be made
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Table 6 Comparison of the gene selection algorithms on ten selected datasets. Bold font indicates the best results

IBPSO IG-GA 1G-S50 EPSO mMABC SYM GSP
11_Tumors AC g, 95.06 9253 9592 954 995 89.08 99.88
AC g 03 . 131 061 0 e 0.01
N avg 2409 479 198 2377 4727 12533 17.9
N . 955 . 257 266 7274 — 1.2
9_Tumors AC avg. 755 85 9167 75 9865 53.33 98.88
AC g, 158 _ 248 111 001 0.02
N avg 240 52 15.7 2471 3473 5726 13.8
N g, 7.95 . 22136 965 554 e 1.02
Brain_Tumor1 AC avg. 9256 9333 93 92.11 100 0 998
AC gq 054 . 0.8 082 o 031
N g, 112 244 10.1 75 16.87 5920 92
N qq. 7.15 o 173 251 285 0 15
Brain_Tumor2 AC g, 91 88 99.8 924 100 80 999
AC o, 0.05 . 063 127 o 0.1
N avg 64 489 104 6 10.52 10367 98
N . 19 . 108 183 172 04
Lung_ Cancer AC g, 95.86 9557 9941 9567 100 95.07 100
AC g, 053 . 045 83 o 0
N avg, 149 2101 104 85 2331 12600 8.3
N . 1057 - 1.08 211 514 0.82
Leukemia1 AC avg. 100 100 100 100 100 100 100
AC gq 0 . 0 0 ¢ —— 0
N g, 35 82 46 32 567 7129 29
N g, 071 _ 052 063 073 0.73
Leukemia2 AC avg. 100 9861 100 100 100 97.22 100
AC g, 0 . 0 0 0o 0
N avg 6.7 782 42 6.8 6.29 11225 4.1
N g, 15 . 042 22 098 0.73
SRBCT AC s, 100 100 100 99,64 100 9841 100
AC g, 0 o 0 0.58 [+ — 0
N avg, 175 56 43 149 5.59 2308 4
N . 832 . 048 13.03 051 067
Prostate AC avg. 97.94 % 98.82 97 100 934 99.87
AC g, 031 . 041 062 1 052
N avg. 136 343 84 66 10.73 10509 82
N g, 768 _ 178 217 315 079
DLBCL AC e, 100 100 100 100 100 97.42 100
AC g 0 - 0 0 0o 0
N avg 6 107 39 47 405 5469 35
N . 125 . 032 082 078 0 Ftable 0.5

on microarray data processing before applying the GSP  and 98.88% respectively) compared with the accuracy re-
model to achieve better results. sults on other datasets. The reason was due to the high

The GSP method on datasets 11_Tumors and 9_Tu- number of classes (11 and 9 respectively) which could
mors achieved relatively lower accuracy results (99.88%  be a problem to any classification models.
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We noticed from GSP performance that when the ac-
curacy increased the number of selected genes and the
processing time decreased (negative relationship). This
proves that GSP is effective and efficient for gene selec-
tion method.

Conclusions

In this study, we have proposed an innovative gene se-
lection algorithm (GSP). This algorithm can not only
provide a smaller subset of relevant genes for cancer
classification but also achieve higher classification
accuracies in most cases with shorter processing time
compared with GEP. The comparisons with the repre-
sentative state-of-art models on ten microarray datasets
show the outperformance of GSP in terms of classifica-
tion accuracy and the number of selected genes. How-
ever, the processing time of GSP is still longer than that
of PSO and GA models. Our future research direction is
to reduce the processing time of GSP while still keeping
the effectiveness of the method.
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