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Abstract

Background: The use of next-generation sequencing approaches in clinical diagnostics has led to a tremendous
increase in data and a vast number of variants of uncertain significance that require interpretation. Therefore,
prediction of the effects of missense mutations using in silico tools has become a frequently used approach. Aim of
this study was to assess the reliability of in silico prediction as a basis for clinical decision making in the context of
hereditary breast and/or ovarian cancer.

Methods: We tested the performance of four prediction tools (Align-GVGD, SIFT, PolyPhen-2, MutationTaster2) using
a set of 236 BRCA1/2missense variants that had previously been classified by expert committees. However, a major
pitfall in the creation of a reliable evaluation set for our purpose is the generally accepted classification of BRCA1/2
missense variants using the multifactorial likelihood model, which is partially based on Align-GVGD results. To
overcome this drawback we identified 161 variants whose classification is independent of any previous in silico
prediction. In addition to the performance as stand-alone tools we examined the sensitivity, specificity, accuracy and
Matthews correlation coefficient (MCC) of combined approaches.

Results: PolyPhen-2 achieved the lowest sensitivity (0.67), specificity (0.67), accuracy (0.67) and MCC (0.39). Align-
GVGD achieved the highest values of specificity (0.92), accuracy (0.92) andMCC (0.73), but was outperformed regarding
its sensitivity (0.90) by SIFT (1.00) and MutationTaster2 (1.00). All tools suffered from poor specificities, resulting in an
unacceptable proportion of false positive results in a clinical setting. This shortcoming could not be bypassed by
combination of these tools. In the best case scenario, 138 families would be affected by the misclassification of neutral
variants within the cohort of patients of the German Consortium for Hereditary Breast and Ovarian Cancer.

Conclusion: We show that due to low specificities state-of-the-art in silico prediction tools are not suitable to predict
pathogenicity of variants of uncertain significance in BRCA1/2. Thus, clinical consequences should never be based
solely on in silico forecasts. However, our data suggests that SIFT and MutationTaster2 could be suitable to predict
benignity, as both tools did not result in false negative predictions in our analysis.
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Background
The classification of variants of uncertain significance
(VUS) is a major challenge for centers performing genetic
testing, e.g., in families at risk for breast or ovarian can-
cer. The German Consortium for Hereditary Breast and
Ovarian Cancer (GC-HBOC) is a multicenter consor-
tium of interdisciplinary university centers specialized in
providing counseling, genetic testing and healthcare for
familial breast and ovarian cancer. To establish and con-
solidate patient-centered care and research for HBOC in
Germany, the consortium runs a central patient registry
and is involved in defining guidelines for genetic test-
ing, treatment and variant classification. VUS are often
extremely rare variants, for instance, analysis of more than
29,316 families within the framework of GC-HBOC (as of
September 2016) revealed that 64.4% of the missense VUS
identified in the BRCA1/2 genes are private. Nevertheless,
classification of genetic aberrations is highly relevant for
clinical decision making. For individuals at risk for breast
and/or ovarian cancer, the option to undergo prophylac-
tic surgery is limited to carriers of pathogenic mutations
in relevant risk genes. In addition, for patients affected
by breast and/or ovarian cancer, knowledge about their
BRCA1/2 mutation status is important because it deter-
mines the therapeutic response [1] and choice of medica-
tion (e.g., PARP inhibitors [2]). To circumvent the problem
of missing information on rare genetic variants and the
requirement for their interpretation, the automatized pre-
diction of effects of missense mutations has become a
frequently used approach in clinical diagnostics.
Existing in silico approaches for the classification of

missense mutations mainly rely on the assumption that
disease-associated missense mutations are (1) character-
ized by a large difference between the biochemical prop-
erties of substituted amino acids (AAs) and (2) located at
highly conserved genomic regions across species. Based
on these criteria, the available tools can be roughly divided
into the following subcategories: sequence-based, if the
method solely relies on assumption (1); structure-based, if
the method solely relies on assumption (2); and sequence
and structure-based in cases where both criteria are
considered.
In the present study, we focused on the four predic-

tion tools embedded in the commercial Alamut™Visual
software v2.8 (Interactive Biosoftware, Rouen, France),
which is widely used in medical genetics [3–5], namely,
Align-GVGD [6, 7], SIFT [8], MutationTaster2 [9] and
PolyPhen-2 [10].
Align-GVGD takes multiple sequence alignments

(MSAs) as input and computes a biochemical distance
score (extension of the pairwise Grantham difference,
GD) as well as a conservation score (Grantham variation,
GV) on each alignment column comprising a substitution.
Based on the observed values of GD and GV substitutions

are classified in seven classes C ∈ {0, 15, 25, 35, 45, 55, 65}
from least likely to interfere with function to most likely
to interfere with function.
As a purely sequence-based prediction tool, SIFT clas-

sifies non-synonymous single nucleotide polymorphisms
(nsSNPs) on the basis of the evolutionary conservation of
amino acids within protein families. At each position of
an input MSA, a scaled probability for each AA substitu-
tion to occur (SIFT score) is computed. Amissense variant
is predicted to have a damaging effect on protein func-
tion, when the SIFT score of the substituted AA is below
a threshold of 0.05.
MutationTaster2 uses regulatory features, degree of

evolutionary conservation and splice site predictions
as the input for a naïve Bayes classifier, which cat-
egorizes variants into either disease causing or
polymorphism. Additionally, mutations that are found
to be homozygous more than four times in the
1000 Genomes Project or the HapMap databases are auto-
matically classified as a polymorphism, whereas vari-
ants marked as pathogenic in ClinVar are classified as
disease causing by default.
PolyPhen-2 (Polymorphism Phenotyping v2) uses eight

sequence-based and three structural features as the input
for a naïve Bayes classifier, the latter being considered
only in cases where a 3D structure is known for the pro-
tein of interest. The classifier can be chosen to be trained
on one of two training data sets, namely HumDiv and
HumVar [10].
For the user’s convenience, Alamut™Visual calls Align-

GVGD, SIFT and MutationTaster2 directly with pre-
defined parameters and provides a pre-filled web interface
for PolyPhen-2.
In recent years, several studies have been published

on the performance and reliability of existing approaches
for in silico prediction of the functional impact of non-
synonymous variants [4, 5, 11–16]. In summary, these
studies revealed a diverse picture of the performance
of these applications. The study by Luxembourg et al.
[13] reported an increased number of misclassifications
in cases where mutations were localized in the α-helix
of a corresponding protein. Rodrigues et al. [15] found
that genomic regions of strong conservation as well as
hypervariability may negatively affect prediction results.
Grimm et al. [11] noted that the evaluation of several
tools suffered from overfitting, as variants used to train
the methods also appeared in the evaluation set. A recent
review by Tang and Thomas [16] on existing predic-
tion approaches underscores the general lack of accurate
benchmark data sets for the reliable evaluation of state-
of-the-art approaches. Due to the specific weaknesses of
each prediction tool, a common strategy is to combine
the results of various approaches, i.e., assuming a disease-
causing mutation when at least half of several approaches



Ernst et al. BMCMedical Genomics  (2018) 11:35 Page 3 of 10

classify a variant as damaging. However, Leong et al. [13]
found that such a strategy might even decrease reliability,
as they demonstrated for a set of 113 nsSNPs in the human
SCN5A gene. Hence, the present work aimed to investi-
gate the requirements for a performance increase by the
combination of several prediction tools using a data set
of well characterized BRCA1/2 variants. In particular, we
studied how such combinations influence the sensitivity,
specificity, accuracy and Matthews correlation coefficient
(MCC) compared to stand-alone tools.

Methods
Curation of missense variant data sets
Different guidelines for the classification of sequence
variants exist [17–19]. For the classification of missense
variants in BRCA1/2 the multifactorial probability model
[20, 21] is widely accepted; classification of variants
according to the 5-tier system suggested by Plon et al.
[22] is the standard in most diagnostics labs worldwide.
This model also serves as the basis for the BRCA1/2 Gene
Variant Classification Criteria proposed by the Evidence-
based Network for the Interpretation of Germline Mutant
Alleles (ENIGMA) [23, 24]. In a nutshell, BRCA1/2 vari-
ants are assigned to either class 1 (neutral), 2 (likely neu-
tral), 3 (uncertain), 4 (likely pathogenic), or 5 (pathogenic)
based on a posterior probability of pathogenicity (Poste-
rior P). Posterior P is calculated from the prior probability
(Prior P) and a product of likelihood ratios (Product of
LRs) derived from the multifactorial (combined) likeli-
hoodmodel initially suggested by Goldgar and co-workers
[20]. Likelihood ratios are determined on the basis of seg-
regation analysis, co-occurences with known deleterious
variants, family histories and pathology profiles in a cor-
responding cohort, hence, these ratios are independent of
any missense prediction. In contrast, Prior P values arise
from in silico splice site predictions and missense analy-
sis whose results are directly assigned to corresponding
probability values. Align-GVGD is the commonly used
missense prediction tool for the purpose of BRCA1/2 vari-
ant classification [21, 25]. Consequently, to evaluate the
performance of Align-GVGD and the other tools under
consideration, we identified variants (1) that were defi-
nitely classified as (likely) benign, i.e., assigned to classes
1 or 2, or (likely) pathogenic, i.e., assigned to classes 4 or
5, due to comprehensible criteria and (2) whose classifica-
tions were independent of Prior P values. In doing so, an
initial set of 236 nsSNPs was selected from the GC-HBOC
database, the BRCA gene Ex-UV database (http://hci-
exlovd.hci.utah.edu) and the literature [21, 26–28].
Variants were chosen because of their classification
into classes 1, 2, 4, or 5. In concordance with the
ENIGMA BRCA1/2 Gene Variant Classification Crite-
ria [24], selected nsSNPs had to have an allele frequency
(AF) < 0.01, as variants with an AF ≥ 0.01 belong to class

1 (benign) by default. In addition, we excluded known
spliceogenic variants. Allele frequencies were extracted
separately for the cohorts of African, East Asian, South
Asian, European (Finnish), European (non-Finnish) and
Latino ancestry from the ExAC (Exome Aggregation Con-
sortium) Browser [29], excluding TCGA (The Cancer
Genome Atlas) data. For variants not listed in ExAC, the
AF was set to zero. We termed the initial set of 236 nsS-
NPs the Classified Variant Set. Assigned variants are listed
in Additional file 1: Table S1.
The dependence of Prior P and the Product of LRs on

Posterior P is given by the following equations:

Posterior Odds = Product of LRs
Prior P

1 − Prior P

Posterior P = Posterior Odds
Posterior Odds + 1

Consequently, given Prior P, the Product of LRs required
to achieve a certain Posterior P can be determined by the
numerical solution of

Posterior P = Product of LRs Prior P
1−Prior P

Product of LRs Prior P
1−Prior P + 1

(1)

Figure 1 shows the thresholds of the Product of LRs for
the classification into one of the five pathogenicity classes
in dependence to Prior P. Lindor et al. [21] proposed the
assignment of a Prior P of 0.81 for Align-GVGD class 65
and 0.03 for Align-GVGD class 0. By setting Prior P in
Eq. (1) to these values, we determined the ranges of val-
ues of the Product of LRs allowing for the classification
into a pathogenicity class �=3 and irrespective of Align-
GVGD results. Please refer to Fig. 1 for a visualization
of our approach. The Posterior P thresholds proposed
by Plon et al. [22] were used, which result in a Prod-
uct of LRs < 0.01 for classification as (likely) neutral and
a Product of LRs > 614.33 for classification as (likely)
pathogenic. We identified a total of 151 variants from our
Classified Variant Set for which the Products of LRs were
below or above these thresholds. Together with 10 vari-
ants that were classified by the GC-HBOC expert panel
on the basis of functional analysis or additional published
evidence, these variants represent our Evaluation Variant
Set. The Evaluation Variant Set consists of 161 variants,
namely, 89 BRCA1 variants (16 pathogenic, 73 neutral)
and 72 BRCA2 variants (5 pathogenic, 67 neutral). In addi-
tion to the Classified and the Evaluation Variant Set, we
prepared a set of 670 variants of uncertain significance
(VUS) from the central registry of GC-HBOC. At the time
point of data collection (September 2016), 29,316 families
were enrolled in the database. Overall, 899 missense vari-
ants were listed, of which 229 were classified as (likely)
pathogenic or (likely) benign. Pathogenic missense vari-
ants were found in a total of 809 breast cancer and breast
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Fig. 1Multifactorial probability model and determination of Product of LRs thresholds for classification irrespective of Align-GVGD. Visualization of
the multifactorial probability model for classification of VUS in BRCA1/2 based on the Posterior P thresholds proposed by Plon et al. [22]. Variants
with Products of LRs below or above the corresponding thresholds (indicated with filled circles) were classified independent of the prior probabilities
Prior P (based on Align-GVGD predictions) and included in the Evaluation Variant Set and the Classified Variant Set. Variants depicted by unfilled
circles were included in the Classified Variant Set exclusively. Classification of these variants was not independent of prior probabilities

and/or ovarian cancer families, 368 of which carried the
European founder mutation C61G in BRCA1 [30].

Parameter setting
We ran Align-GVD, SIFT, MutationTaster2 and
PolyPhen-2 on our data sets with default parameters
automatically provided by the Alamut™Visual software.
Alamut™provides pre-computed multiple protein align-
ments serving as the input for Align-GVGD and the
SIFT Aligned Sequences tool. We used these ortholo-
gous, manually curated alignments as updated on March
17, 2016 (Transcripts: BRCA1, NM_007294.3; BRCA2,
NM_000059.3).
MutationTaster2 was run under specification of

Ensembl Transcript IDs as available in Alamut™Visual,
i.e., ENST00000357654 (BRCA1) and ENST00000380152
(BRCA2), and the specification of single base exchanges
by position. PolyPhen-2 was called via Batch query using
the HumVar-trained model as recommended for the
analysis of Mendelian diseases [10]. All analyses were
performed on November 27, 2016.
SIFT and MutationTaster2 provide a binary clas-

sification into pathogenic and benign variants, i.e.,
AFFECT PROTEIN FUNCTION or TOLERATED (SIFT)
and disease causing or polymorphism (Muta-
tionTaster2). In concordance with Moghadasi et al. [4], we
defined variants to be classified as pathogenic by Align-
GVGD if C ≥ 35. In concordance with Leong et al. [13],
we defined variants classified as possibly damaging

or probably damaging as those found to be deleteri-
ous by PolyPhen-2.

Evaluation strategy
In concordance with Leong et al., Rodrigues et al., and
Mueller et al. [13, 15, 31], we evaluated performance
on our variant sets based on the following four cri-
teria: (1) sensitivity SENS = TP

TP+FN , (2) specificity
SPEC = TN

FP+TN , (3) accuracy ACC = TP+TN
TP+FP+TN+FN

and (4) Matthews correlation coefficient MCC =
TP TN−FP FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
, where TP (respectively

TN) is the number of true positive (respectively negative)
results and FP (respectively FN) is the number of false
positive (respectively negative) results.
The MCC is particularly suitable for the evaluation

of predictions on imbalanced data [32, 33]. As variant
sets for the purpose of evaluation of in silico prediction
approaches typically show a strong bias towards neu-
tral variants (pathogenic variants are expected to seldom
occur), theMCC has been used as a performance measure
in a variety of studies on in silico prediction approaches
[13, 15, 31, 34]. MCC values are defined in a range from -1
(always falsely predicted) to 1 (perfectly predicted) with
a value of 0 corresponding to a completely random
prediction.
To investigate the performance of combinations of pre-

diction tools, we used the following measures. We defined
SENSm,n and SPECm,n, with m, n ∈ N, n2 ≤ m ≤ n, as the
sensitivity and the specificity, respectively, of a combined
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approach involving n prediction tools and classified a vari-
ant pathogenic if at least m approaches categorized it as
pathogenic. We considered all combinations of tools for
whichm ≥ n

2 holds, except the case ofm = 2 ∩ n = 2.
In addition to the evaluation of combined methods on

our Evaluation Variant Set we derived a model of the
expected performance of combined approaches assum-
ing that the predictions made by individual tools would
be absolutely independent. Our theoretical framework is
explained in detail in Additional file 2. We are aware
that the assumption of independence obviously does not
hold true, as all prediction approaches mainly rely on
AA conservation in MSAs. However, the assumption of
independence between several in silico predictions might
be a typical misinterpretation by many users, although it
represents an unattainable best-case scenario.

Results
Performance as stand-alone tools
Comparing the sensitivity, specificity, accuracy and MCC
from our Evaluation Variant Set revealed significant dif-
ferences in the performance of the prediction tools as

stand-alone approaches (Figs. 2 and 3). The sensitiv-
ity ranged from 0.67 (PolyPhen-2) to 1.00 (SIFT, Muta-
tionTaster2). PolyPhen-2 achieved the lowest sensitivity
(0.67), specificity (0.67), accuracy (0.67) and MCC (0.39).
A total of 53 variants (32.9%, 7 pathogenic, 46 neutral)
from our Evaluation Variant Set were wrongly classified by
PolyPhen-2. Furthermore, PolyPhen-2 was unable to cor-
rectly predict the effect of the most common pathogenic
missense mutation in Germany, C61G in BRCA1.
Align-GVGD achieved the highest values of specificity

(0.92), accuracy (0.92) and MCC (0.73), but was outper-
formed regarding its sensitivity (0.90) by SIFT (1.00) and
MutationTaster2 (1.00).
By comparing the predictionsmade by stand-alone tools

in our Evaluation Variant Set, we identified 38 out of 140
definitely neutral variants (27.1%) that were wrongly clas-
sified by at least two of the four prediction programs
under investigation. A total of 10 of these 38 variants (7.1%
of neutral variants) were misclassified by all four tools. In
contrast, we found only one pathogenic missense variant
that was wrongly categorized as benign by at least two
tools.

Fig. 2 Performance of in silico prediction tools as stand-alone methods or in combination. Sensitivity (SENS), specificity (SPEC), accuracy (ACC) and
Matthews correlation coefficient (MCC) of stand-alone tools and combinations of prediction tools Align-GVGD, SIFT, MutationTaster2 (MT) and
PolyPhen-2 (PPhen-2 ) as observed and estimated from the sensitivities and specificities of stand-alone methods on the Evaluation Variant Set of 166
missense variants on BRCA1 and BRCA2. Align-GVGD, SIFT and MutationTaster2 reached values for sensitivity >0.92 as stand-alone tools as well as in
combination. The comparatively low sensitivity of PolyPhen-2 as a stand-alone approach is also reflected in the decreased sensitivities of combined
approaches involving PolyPhen-2. The specificities of stand-alone tools varied between 0.67 (PolyPhen-2) and 0.92 (Align-GVGD), and the
specificities of combined approaches increased with increasingm. False negatives (false positives, respectively) denote the number of index
patients tested in GC-HBOC as of September 2016 that would receive an erroneous negative (respectively positive) result if the diagnosis were
based solely on the corresponding in silico approach
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Fig. 3 Sensitivities and specificities of the stand-alone prediction tools Align-GVGD, SIFT, MutationTaster2 (MT) and PolyPhen-2 (PPhen-2). The
sensitivities and specificities varied between the tools and with values of ≥ 0.90, Align GVGD performed best for the Evaluation Data Set.
Performance for BRCA1 and BRCA2 variants was comparable for all tools, except for PolyPhen-2 which showed a lower sensitivity of only 0.56 on
BRCA1 variants compared with 1.0 on BRCA2 variants and a specificity of 0.67 on BRCA1 compared with 0.72 on BRCA2 variants. Comparison between
the Classified Variant Set and Evaluation Variant Set revealed only minor differences in sensitivity and specificity for the four tools examined here

Performance of combined approaches
To investigate the performance of combined approaches
in comparison to stand-alone approaches we evaluated
the sensitivity, specificity, accuracy andMCC for the Eval-
uation Data Set. The values observed in our analysis as
well as under assumption of the independence of pre-
dictions of individual stand-alone tools are visualized in
Fig. 2.
Concerning sensitivities, Align-GVGD, SIFT andMuta-

tionTaster2 reached values ≥ 0.90 as stand-alone tools as
well as in combination. However, the comparatively low
sensitivity of PolyPhen-2 as stand-alone approach led to
decreased sensitivities of combined approaches involv-
ing PolyPhen-2. This result holds true especially in case
m = n (i.e., SENS2,2, SENS3,3, and SENS4,4), as 6 out of
21 pathogenic variants (28.6%) from the Evaluation Vari-
ant Set were wrongly classified by PolyPhen-2 while being
correctly predicted by Align-GVGD, SIFT and Mutation-
Taster2.
Generally, sensitivities decreased with increasing m,

namely, SENS2,3 > SENS3,3 and SENS2,4 > SENS3,4 >

SENS4,4. The observed values for the sensitivities of com-
bined approaches were in good agreement with the com-
puted values assuming independence of the predictions of
individual approaches.
In contrast to the sensitivities, the specificities of

combined approaches increased with increasing m, i.e.,
SPEC2,3 < SPEC3,3 and SPEC2,4 < SPEC3,4 < SPEC4,4.
The contrary effects of the choice of m on sensitivity and

specificity are quite obvious, as FP can only shrink with
increasingm, whereas FN may become greater.
Comparing the observed specificities of combined

approaches with the corresponding expected values under
the assumption of independence of individual predic-
tions, we found a noticeable distinction. Specifically, the
expected specificities were consistently greater than the
observed ones. This result also held true for the compari-
son of computed and observed accuracies and MCCs.

In silico identification of benign variants
While the sensitivities achieved by SIFT and Muta-
tionTaster2 were 1.00, we observed that the accuracies
achieved by all in silico approaches under investigation
suffer from poor specificities. Due to the relative abun-
dance of benign missense variants these approaches led
to a high number of false positive results. Therefore,
we examined if in silico prediction might be an appro-
priate approach for the exclusion of pathogenicity, at
least.We investigated the suitability of Align-GVGD, SIFT
and MutationTaster for determination of benign mis-
sense variants as stand-alone tools and in combination.
We excluded PolyPhen-2 due to the poor sensitivities
we observed. As stand-alone approach, Align-GVGD cat-
egorized 131 variants from the Evaluation Variant Set
(180 variants from the Classified Variant Set, respec-
tively) as belonging into classes 0, 15 or 25, of which 2
(4) were (likely) pathogenic variants. SIFT classified 101
variants from the Evaluation Variant Set, respectively 141
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variants from the Classified Variant Set, as TOLERATED,
and MutationTaster2 classified 110 variants from the
Evaluation Variant Set, respectively 142 variants from
the Classified Variant Set, as polymorphism. All
nsSNPs classified as TOLERATED by SIFT or clas-
sified as polymorphism by MutationTaster2 were
benign variants.

Possible implications in a diagnostic setting
Examination of the sensitivity, specificity, accuracy and
MCC for a set of BRCA1 and BRCA2 mutations alone
sheds little light on the amounts of patients that would
be affected by misleading findings in a clinical setting,
e.g., genetic testing in families at risk for breast and ovar-
ian cancer. Because pathogenic as well as benign nsSNPs
occur in varying quantities, misleading findings on a
single variant may affect different numbers of patients.
Hence, we examined how the usage of in silico prediction
tools would affect the number of false predictions in our
cohort of patients fulfilling the inclusion criteria of GC-
HBOC for genetic testing. The numbers of patients who
would receive a misleading test result with respect to the
in silico approaches under consideration are reported in
Fig. 2.
We furthermore ran in silico prediction on a set of 670

VUS from the GC-HBOC database as of September 2016.
354 variants were consistently classified as benign by all
four methods, while 57 variants were consistently clas-
sified as pathogenic. However, 259 variants were incon-
sistently classified by the four tools under investigation
(see Fig. 4). If benignity would be assumed for all variants
that were consistently classified as benign by SIFT and
MutationTaster2, 422 VUS from the GC-HBOC database
(62.99%) could be re-classified.

Discussion
We evaluated the performance of four in silico prediction
tools for the pathogenicity of missense variants on 161
nsSNPs (Evaluation Variant Set), an enhanced set of 236
nsSNPs (Classified Variant Set), and a set of 670 VUS in
BRCA1 and BRCA2. In our study, we focused on a sce-
nario that may typically occur in clinical practice, namely,
we used a parameter setting as provided automatically by
the Alamut™Visual software. Our findings are in line with
a variety of results from similar studies, each uncover-
ing the insufficiency of state-of-the-art prediction tools
for medical diagnostics to differing extents. We refer to
Additional file 3: Table S2 for a summarizing review. The
poor results of PolyPhen-2 when compared with Align-
GVGD, SIFT and MutationTaster2 in our study are in
agreement with a previous study from Rodrigues et al.
[15], as well as with the specificities obtained by Hicks
et al., Kerr et al., and Miosge et al. [12, 34, 35]. However,
we were not able to confirm the results of Kerr et al. [34]
that indicated a poor performance of SIFT on BRCA1/2
missense variants, especially concerning its specificity.
Obviously, a limitation of our study is the small pro-

portion of pathogenic mutations in our evaluation set,
namely, 25 variants (15.1%). However, our approach is jus-
tified for the following reasons. First, small numbers of
truly pathogenic nsSNPs among the majority of tested
missense variants reflect the reality in clinical diagnostics.
For example, in the GC-HBOC database as of September
2016, 27.5% of all 229 classified BRCA1/2 missense vari-
ants are ranked as deleterious. Second, evaluation on the
Classified Variant Set containing an increased amount
of pathogenic nsSNPs (21.1%) revealed results compa-
rable to the evaluation on the original set (see Fig. 3).
Third, we refer to the study by Leong et al. [13] which

a b

Fig. 4 Venn diagrams summarizing the in silico prediction on 670 VUS from the GC-HBOC database. Variants classified as pathogenic by at least one
program out of Align-GVGD, SIFT, MutationTaster2 and PolyPhen-2 are depicted in a), and variants classified as benign are shown in b). A total of
354 VUS were consistently classified as benign by all four tools under consideration, and 57 variants were consistently classified as pathogenic. In
contrast, 57 variants were classified as benign exclusively by Align-GVGD, whereas 68 (30) were classified as pathogenic exclusively by PolyPhen-2
(SIFT). These inconsistent predictions point toward a noticeable amount of misclassifications by the corresponding tool
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utilized evaluation data with comparatively high amounts
of truly pathogenic variants, namely, 92.7% (KNCQ1),
91.1% (KCNH2), and 87.6% (SCN5A). In concordance
with our results, Leong and co-workers found sensitivi-
ties exceeding the corresponding specificities, with a few
exceptions (2 out of 30 experiments with stand-alone tools
PolyPhen-2, SNPs&GO, SIFT, PROVEAN and SNAP, data
not shown).
For our patients even using the combination of predic-

tion tools resulting in the smallest sum of affected individ-
uals (four tools with m = 3) would lead to false negative
results for 8 patients with pathogenic missense mutations,
while false positive results would affect 146 tested individ-
uals with benign results. Our findings are consistent with
a publication by Moghadasi and co-workers [4] showing
that in silico analysis alone is not sufficient to classify 60
VUS in human BRCA1 and BRCA2. In addition, Miosge
and co-workers [35] noted that there is a general dis-
cordance between affected protein structures and their
clinical relevance, as decreased protein functions might
be negligible, or compensated for, or require cofactors to
result in pathogenicity.
In summary, our findings contribute to the recognition

that current state-of-the-art in silico prediction tools are
inapplicable to determine pathogenicity, especially in a
clinical setting. Indeed, the authors of SIFT and PolyPhen-
2 explicitly warn against using their tools for this pur-
pose [8, 36]. Combination of several in silico approaches
did not overcome this drawback. Therefore, determina-
tion of pathogenicity should always include additional
information like segregation analysis, co-occurrence and
functional analyses. However, we addressed for the first
time whether in silico prediction might be suitable to
predict the benignity of missense variants in BRCA1/2
without the need for further analysis. Our results give
reason to assume that in silico prediction with SIFT and
MutationTaster2 might be an appropriate approach for
exclusion of pathogenicity of variants located in highly
variable regions, at least. This means, that nsSNPs clas-
sified as benign by SIFT or MutationTaster2 are actual
benign variants in the overwhelmingmajority of cases, i.e.,
false negative predictions are rare. In agreement with our
findings, Kerr et al. [34] observed no false negative calls
of SIFT in a set of 69 pathogenic BRCA1/2 nsSNPs. How-
ever, confirmation of our hypothesis and its application in
clinical diagnostics requires further investigation on larger
data sets.

Conclusions
We conclude that in a routine diagnostic setting the deter-
mination of pathogenicity should not be based solely on
in silico prediction tools as this might result in a large pro-
portion of false positive results and may lead to wrong
clinical decisions.
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