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Abstract

Background: Sessile serrated adenomas/polyps are distinguished from hyperplastic colonic polyps subjectively by
their endoscopic appearance and histological morphology. However, hyperplastic and sessile serrated polyps can
have overlapping morphological features resulting in sessile serrated polyps diagnosed as hyperplastic. While sessile
serrated polyps can progress into colon cancer, hyperplastic polyps have virtually no risk for colon cancer. Objective
measures, differentiating these types of polyps would improve cancer prevention and treatment outcome.

Methods: RNA-seq training data set and Affimetrix, lllumina testing data sets were obtained from Gene Expression
Omnibus (GEO). RNA-seq single-end reads were filtered with FastX toolkit. Read mapping to the human genome,
gene abundance estimation, and differential expression analysis were performed with Tophat-Cufflinks pipeline.
Background correction, normalization, and probe summarization steps for Affimetrix arrays were performed using
the robust multi-array method (RMA). For lllumina arrays, log,-scale expression data was obtained from GEO.
Pathway analysis was implemented using Bioconductor package GSAR. To build a platform-independent molecular
classifier that accurately differentiates sessile serrated and hyperplastic polyps we developed a new feature selection
step. We also developed a simple procedure to classify new samples as either sessile serrated or hyperplastic with a
class probability assigned to the decision, estimated using Cantelli's inequality.

Results: The classifier trained on RNA-seq data and tested on two independent microarray data sets resulted in
zero and three errors. The classifier was further tested using quantitative real-time PCR expression levels of 45
blinded independent formalin-fixed paraffin-embedded specimens and was highly accurate. Pathway analyses have
shown that sessile serrated polyps are distinguished from hyperplastic polyps and normal controls by: up-regulation
of pathways implicated in proliferation, inflammation, cell-cell adhesion and down-regulation of serine threonine
kinase signaling pathway; differential co-expression of pathways regulating cell division, protein trafficking and
kinase activities.

Conclusions: Most of the differentially expressed pathways are known as hallmarks of cancer and likely to explain

why sessile serrated polyps are more prone to neoplastic transformation than hyperplastic. The new molecular
classifier includes 13 genes and may facilitate objective differentiation between two polyps.
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Background

Screening programs for colorectal cancer (CRC) have re-
sulted in a significant reduction of related deaths [1-4].
Screening programs include the appropriate use of col-
onoscopy and removal of premalignant polyps. However,
colonic polyps differ in their risk for progression to cancer
and recommendations for removal and follow-up vary de-
pending on their type [5]. The most common types in-
clude the conventional adenomas and serrated polyps,
and until approximately 1996 hyperplastic polyps were
considered the primary type of serrated polyp [5, 6]. The
term sessile serrated polyp was introduced to define
serrated lesions prone to progression to cancer, without
cytological dysplasia and have been reported in 5-8% of
average-risk patients undergoing screening colonoscopy
[6-11]. Serrated polyps are divided into three main cat-
egories: typical hyperplastic polyps (HPs), SSA/Ps and
traditional serrated adenomas (relatively rare) [5]. How-
ever, SSA/Ps and HPs share histological similarities.
Both types of polyps have the principal feature of a ser-
rated crypt architecture, but SSA/Ps have a histological
morphology characterized by dilated, horizontal, and
boot-shaped crypts. In general, SSA/Ps are more com-
monly located in the right colon and are generally larger,
flat and hypermucinous [12-15]. However, given the
histologic overlap between the two polyp types, biopsy
specimens are frequently equivocal in cases lacking the
diagnostic hallmarks of SSA/Ps. In addition, several stud-
ies have pointed out significant observer-to-observer vari-
ability [16, 17]. Because SSA/Ps have the potential to
progress into colon cancer [5, 14], reliable biomarkers that
aid their diagnosis are needed. It is estimated that SSA/Ps
account for 15-30% of colon cancers by progression
through the serrated neoplasia pathway [11, 15, 18]. How-
ever, this pathway remains relatively uncharacterized as
compared to the adenoma to carcinoma pathway. Genetic
and epigenetic mechanisms operating in the serrated
pathway can include BRAF mutations, KRAS mutations,
CpG island methylator high (CIMP-H) and microsatellite
instability high (MSI-H) phenotypes which often predict a
poor clinical outcome [11, 18, 19]. However, the serrated
neoplasia pathway remains to be defined by a characteris-
tic set of genetic and epigenetic lesions.

Since the advent of high-throughput gene expression
technologies (microarrays, RNA sequencing) molecular
signatures that accurately diagnose or predict disease
outcome based on expression of sets of genes have been
developed [20, 21]. In many cases gene expression signa-
tures can be associated with biological mechanisms, sub-
types of cancer that look histologically similar, tumor
stages, as well as the ability to metastasize, relapse or re-
spond to specific therapies [22-27]. Expression-based
classifiers were also developed to identify patients with a
poor prognosis for stage II colon cancers [28-30].
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Recently, a subgroup of colon cancers with a poor
prognosis was identified and this subgroup has several
up-regulated pathways in common with SSA/Ps [19].
However, there is no molecular classifier differentiating
SSA/Ps and HPs.

Several recent studies used transcriptome analyses to
gain insights into the biology of SSA/Ps. For example, in
a gene array study SSA/Ps were compared to tubular
adenomas (TAs) and control samples [31]. Among 67
differentially expressed (DE) genes the two most up-
regulated genes (cathepsin E and trefoil factor 1) were
verified by quantitative real time reverse transcription
PCR (qRT-PCR) and immunohistochemistry analyses
showing that these genes were overexpressed in SSA/Ps
[31]. In another gene array study 162 DE genes were
identified in SSA/Ps as compared to HPs [32]. Validation by
qRT-PCR and immunohistochemistry identified annexin
A10 as a potential diagnostic marker of SSA/Ps. Another
study used RNA sequencing (RNA-seq) to analyze the
SSA/P transcriptomes and identified 1294 genes that were
differentially expressed in SSA/Ps as compared to HPs. This
analysis provided evidence that molecular pathways in-
volved in colonic mucosal integrity and cell adhesion
were overrepresented in SSA/Ps [33].

The goals of our study were two-fold. We aimed to gain
insight into the biological differences between SSA/Ps and
HPs and develop a gene expression-based classifier that
reliably differentiated HPs and SSA/Ps. We analyzed
data from HPs and SSA/Ps, with unequivocal diagnoses,
matched with control samples. Notably, the right and
left colon have different embryological origins and more
than 1000 genes are differentially expressed between the
adult right and left colon [34]. SSA/Ps occur predomin-
antly in the right colon and HPs occur predominantly in
the left colon. Consequently, some genes that are DE be-
tween SSA/Ps and HPs are likely to be due to their fre-
quently different anatomical location (SSA/Ps right and
HPs left). To find genes and pathways that are DE specif-
ically between SSA/Ps and HPs, we hypothesized that it
was first necessary to exclude genes that are DE between
the right and left colon. In addition to SSA/P and HP
specimens, control samples obtained from the right colon
(CR) and left colon (CL) were also included in the study.
The analysis of differentially expressed genes and path-
ways revealed several differentially expressed and differ-
entially co-expressed pathways between SSA/Ps and HPs,
CR specimens. The pathways found here are generally
considered hallmarks of cancer: they were associated with
the ability to escape apoptotic signals, the inflammatory
state of premalignant lesions and uncontrolled prolifer-
ation [35].

Our second aim was to develop a gene expression-based
classifier that reliably differentiates HPs and SSA/Ps
and is platform-independent (works for RNA-seq as
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well as microarrays). Independent microarray data sets
were collected: an Illumina gene array data set [32] (six
HPs and six SSA/Ps) and subsets of samples from two
Affymetrix data sets (eleven HPs from GSE10714 [36]
and six SSA/Ps from GSE45270 [19]). Typically, the most
ambiguous step in classifier development is the step of
feature selection because of the ‘large p small #" problem
of omics data [37]. Omics data have at most only hun-
dreds of samples (1) and thousands of features (p), and
using all features will lead to model over-fitting and poor
generalizability. Feature selection techniques differ in the
way they combine feature selection with the construction
of the classification model and usually are classified into
three categories: filter, wrapper, and embedded algorithms
[37]. Filter algorithms preselect features before using
classifier based, for example, on the results of significance
testing. Wrapper algorithms combine the search of op-
timal features with the model selection and evaluate
features by training and testing classification model. For
example, the Shrunken Centroid Classifier (SCC) first
finds a centroid for each class and selects features to
shrink the gene centroid toward the overall class centroid
[38]. Here we presented a new way to combine filter and
wrapper algorithms that fitted best to our goal of building
a platform independent classifier. First, we reduced the
feature space by selecting only those features (genes) that
were concordantly expressed over all three platforms. Sec-
ond, we applied SCC (using all genes left after filtering) on
RNA-seq data for further reducing the feature space and
selecting features with optimal classification performance.
The classifier, developed based on RNA-seq data identified
SSA/P and HP subtypes in independent microarray data
sets with low classification errors. The molecular signature
that correctly classifies SSA/Ps and HPs consists of thir-
teen genes and is a first platform-independent signature
that could be applied as a diagnostic tool for distinguish-
ing SSA/Ps from HPs. The molecular signature achieved
an impressive correct classification rate (90%) when ex-
pression levels obtained by qRT-PCR from 45 independ-
ent formalin-fixed paraffin-embedded (FFPE) SSA/P and
HP specimens were used for validation. These results
demonstrate the clinical value of the molecular signature.

Methods

RNA-seq training data set

The RNA-seq data set used in this study consists of a
subset of the NCBI gene expression omnibus (GEO)
series with the accession number GSE76987 [39]. We in-
cluded 10 control left colon (CL), 10 control right colon
(CR), 10 microvesicular hyperplastic polyps (MVHPs), and
21 sessile serrated adenoma/polyps (SSA/Ps) specimens
with unequivocal diagnoses based on expert gastrointes-
tinal pathology reviews. Raw single-end (SE) RNA-seq
reads of 50 base pairs were provided in FASTQ file format
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from the Illumina HiSeq 2000 platform. To insure high
quality reads the fastX-toolkit (version 0.0.13) was
employed to discard any read with median Phred score
< 30. The surviving sequence reads were aligned to the
UCSC hgl9 human reference genome using Tophat
[40] (version 2.0.12). Tophat aligns RNA-seq reads to
mammalian-sized genomes using the high-throughput
short read aligner Bowtie [41] (version 2.2.1) and then
analyzes the mapping results to identify splice junctions
between exons. Cufflinks [40] was used to quantify the
abundances of genes, taking into account biases in library
preparation protocols. Cufflinks implements a linear stat-
istical model to estimate the assigned abundance to each
transcript that explains the observed reads (especially
reads originating from a common exon in several isoforms
of the same gene) with maximum likelihood. The nor-
malized gene expression values are provided in fragments
per kilobase per millions (FPKM) of mapped reads. The
log,(1 + FPKM) transformation was applied to FPKM
values in all analyses.

lllumina microarrayy testing data set

This data set consists of six normal colon samples, six
microvesicular hyperplastic polyps (MVHPs) and six ses-
sile serrated adenomas/polyps (SSA/Ps) [32]. The total
RNA was converted to cDNA and modified using the
Mlumina DASL-HT assay and hybridized to the Illumina
HumanHT-12 WG-DASL V4.0 R2 expression beadchip.
The biopsies were classified by seven gastrointestinal
pathologists who reviewed 109 serrated polyps and
identified 60 polyps with consensus. The log,-scale of
the expression measurements provided under the gene
expression omnibus (GEO) accession number GSE43841
was used. Only MVHP and SSA/P samples were con-
sidered for the analyses. Illumina probe identifiers were
mapped to gene symbol identifiers using the Bioconductor
annotation package illuminaHuman WGDASLv4.db. When-
ever multiple probes were mapped to the same gene, the
probe with the largest ¢-statistic between MVHP and
SSA/P was selected.

Affymetrix testing data set

We considered subsets of samples from two GEO data
sets, GSE10714 and GSE45270. The total RNA was ex-
tracted from 11 patients with hyperplastic polyps (HPs)
[36] from GSE10714 and from 6 patients with sessile
serrated adenoma/polyps (SSPs) [19] from GSE45270.
Genome-wide gene expression profile was evaluated by
the HGU133plus2 microarrays from Affymetrix. The back-
ground correction, normalization, and probe summarization
steps were implemented using the robust multi-array
(RMA) method [42] for the combined samples. Probe
identifiers were mapped to gene symbol identifiers using
the Bioconductor annotation package hgul33plus2.db.
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When multiple probes were mapped to the same gene,
the probe with the largest ¢-statistic between the 11 HP
samples and the 6 SSA/P samples was selected.

Biospecimens for independent validation studies
Formalin-fixed paraffin embedded (FFPE) specimens of
SSA/Ps (n =21, size range 0.3-3 cm) and HPs (n =24,
size range 0.3-0.5 cm) with an unequivocal diagnosis
based on the review of at least two independent expert
GI pathologists were analyzed. The specimens came from
University of Arkansas for Medical Sciences, Little Rock
AR Central Arkansas Veterans Healthcare System, Little
Rock AR and Cleveland Clinic, Cleveland OH. SSA/Ps
were from the right colon (hepatic flexure to cecum) and
HPs were from both the left and transverse colon. All
samples represented unused de-identified pathologic
specimens that were obtained under IRB approval.
Total RNA was extracted from six to seven 10 pm
slices of FFPE tissues using a RNeasy FFPE kit (Qiagen,
Germany) according to the manufacturer’s instructions.
The concentration of extracted RNA was determined by
Qubit RNA HS assays. Reverse transcription reactions
were performed utilizing high capacity RNA-to-cDNA
kit (Applied Biosystems, Carlsbad, CA) in 20 pL reactions
containing 1 pg of RNA, in compliance with the manufac-
turer’s protocol.

qPCR was performed with an ABI 7900HT Fast Real-
Time PCR System (Applied Biosystems, Carlsbad, CA).
With the exception of gene SBSPON, primers for twelve
genes were selected from the PrimerBank database [43],
and specific primers for SBSPON were purchased from
OriGene Technologies (Rockville, MD) (Additional file 1:
Table S1). As a control we utilized human 18S ribosomal
RNA (Qiagen, Germany). 15 pL reaction mixtures con-
tained 7.5 uL of PowerUp SYBR green 2X master mix
(Applied Biosystems, Carlsbad, CA), 0.75 pL of each
primer pair (10 uM), and 20 ng of cDNA. The reaction
involved initial denaturing for 2 min at 95 °C, followed
by 40 cycles of 95 °C for 15 s and 60 °C for 60 s. All
analyses were carried out in triplicates.

Differential expression analysis

Differentially expressed (DE) genes were detected using
the returned values from the Cuffdiff2 algorithm [40].
Expressed genes with adjusted p-values P,q; < 0.05 and ab-
solute log, fold change >0.5 were considered DE. P-values
were controlled for multiple testing using the Benjamini-
Hochberg false discovery rate (FDR) method.

Feature selection step (concordant genes)
We developed the following algorithm for selecting genes,
concordant between platforms:
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1. Let matrices X = [X}, ..., X, ] and Y=[Y1, ..., V},.]
represent n(m) p-dimensional measurements of
gene expression from two platforms. Let n = n; + ny,
m = my + my where X(Y) has n;(m;) samples that
belong to phenotype 1 and n,(m,) samples that
belong to phenotype 2.

2. Sample without replacement from each platform
selecting min(ny, m;) random samples that belong to
phenotype 1 and min(n,, m,) random samples that
belong to phenotype 2. Find the Pearson correlation
coefficient between the two platforms for each of
the p genes. These correlations are calculated with
actual phenotype labels (psue)-

3. Sample without replacement from each platform
selecting min(ny, m;) and min(n,, m,) random
samples that belong to any phenotype. Find the
Pearson correlation coefficient between the two
platforms for each of the p genes. These correlations
are calculated when samples from both phenotypes
are randomly sampled (0,4,00m)-

4. Repeat steps 2 and 3 for a large number of times (we
use 10* times) and record the p (number of genes)
correlation values in each step to estimate the
distribution of p.. and p,u40m (see Additional file 2:
Figure S1). Calculate pooled standard deviation for
each gene from the two estimated distributions of
Perue A0 Prandorm and use the maximum value
max(SD(Ptre Y Prandom)) for step 5.

5. Use the non-parametric Wilcoxon’s test of means to
test the one-sided hypothesis Ho: p,,,e <P undom + 4%
(SD(P1yue VP random) ) 2gaiNSst the alternative Hi:
> Dyandom + 1% (SD (P11, 9Prandioms ) ) - This test rejects
the null hypothesis for genes that are consistently
over-expressed in one phenotype under both platforms,
especially when the within-phenotype variability is
negligible compared to the fold change (see Fig. 1).
The term max(SD(Prue Y Pranaom)) can optionally
be multiplied by a constant to increase or decrease
the number of genes that rejects the null hypothesis.

Building the classifier

The shrunken centroid classifier (SCC) works as follows.
First, it shrinks each phenotype gene centroids towards
the overall centroids and standardizes by the within-
phenotype standard deviation of each gene, giving higher
weights to genes with stable within-phenotype expres-
sion [38]. The centroids of each phenotype deviate from
the overall centroids and the deviation is quantified by
the absolute standardized deviation. The absolute stan-
dardized deviation is compared to a shrinkage thresh-
old and any value smaller than the threshold leads to
discarding the corresponding gene from the classifica-
tion process.
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Fig. 1 Examples illustrating the new feature selection step. a The
fold change in both platforms was larger than the within-phenotype
variability and the correlation coefficient between platforms (o;.,e) was
high; b when phenotypic labels in part A were randomly resampled,
the fold change in both platforms became negligible as compared
to the within-phenotype variability and the correlation coefficient
between platforms (0,4nd0m) Decame low. ¢ The fold change in both
platforms was smaller than the within-phenotype variability and the
correlation coefficient between platforms (0;.,e) was low; d when
phenotypic labels in part C were randomly resampled, the correlation
coefficient (0random) Was low

To select the threshold for the centroid shrinkage, a
3-fold cross-validation over a range of 30 threshold
values for 100 iterations was performed (R package pamr
version 1.55). The threshold returning the minimum
mean error with the least number of genes was selected.
Within every iteration, genes’ ability to separate between
HP and SSA/P samples was assessed by calculating the
area under the ROC curve (R package ROCR version
1.0-7) and only genes with AUC > 0.8 were left in the
signature. The signature was employed with the SCC to
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classify independent validation samples as either HPs
or SSA/Ps. For a p-dimensional validation sample X,
the classifier calculates a discriminant score &(X') for
class k and assigns the class with min(8u(X)) as the
classification decision [38]. Discriminant scores are used
to estimate class probabilities (posterior probabilities) as a
measure of the certainty of classification decision

. e_lak(X*>
X)) = S

Zm:l e?

where M is the number of classes [38].

Classification of independent FFPE samples

Expression levels of 13 genes were estimated relative to a
reference level of 18S ribosomal RNA gene, such that
larger values represent lower expression levels and
smaller values represent higher expression levels (see
Additional file 2: Figure S2). Some samples were posi-
tively or negatively biased relative to each other (see
Additional file 2: Figure S3A). Therefore, raw expres-
sion levels were normalized using two steps. First, raw
expressions were shifted by their respective sample
means or medians to remove any possible positive or
negative biases between samples and center expression
levels around zero. This step is crucial to reduce tech-
nical variation between samples [44]. We tried three
options that keep gene ranks in each sample unchanged
(arithmetic mean, geometric mean, and median) and
noticed no significant difference in the classification re-
sults (see Additional file 1: Table S2). We also found
that the quantile normalization yielded lower perform-
ance (data not shown). Although subtracting the arith-
metic or geometric mean showed minor improvement
in Additional file 1: Table S2, subtracting the median is
recommended when outliers are present in some sam-
ples. Expression levels are then multiplied by -1 to let
higher expression levels be represented by larger values.
Second, the gene-wise MAD normalization was applied
such that genes with large fold changes between HPs
and SSA/Ps are likely to have positive values under one
phenotype and negative values under the other. The
normalized expression levels are shown in Additional file 2:
Figure S3B. The summary metric (SM) is used to score
each sample and each sample is then labeled as HP if
SM <0 and as SSA/P if SM > 0.

Additional file 2: Figures S4 and S5 have shown that the
distribution of the MAD-normalized expression and the
distribution of SM in one RNA-seq and two microarray
data sets were comparable hence the shrunken centroid
classifier trained with RNA-seq data can be applied
successfully to classify microarray samples. Accurate
estimates of the summary metric distribution for each
platform allowed proper standardization of the summary
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metric and hence proper phenotype assignment prob-
ability using CLB. While this approach works for high
throughput platforms that profile thousands of genes, it
is not applicable under typical clinical settings when qRT-
PCR is used to profile only a few genes because the dis-
tribution of SM is unknown. This is why phenotype as-
signment probabilities are not available when platforms
that profile a few genes (such as small-scale qRT-PCR)
are used.

To classify new qRT-PCR samples using our simple
approach, the two normalization steps above must be
applied. R code implementing the two normalization steps
and classifying samples using the summary metric of 13
genes is provided in Additional file 3: Text S1. To apply
MAD normalization to real-time qRT-PCR expression
levels, multiple samples are necessary to estimate the me-
dian expression level for each gene accurately. Therefore
we provided the raw qRT-PCR expression levels for the
FFPE data set (24 HPs and 21 SSA/Ps) in Additional file 1:
Table S3 to allow the normalization of any new qRT-PCR
samples. The first normalization step resolve any potential
shift biases between the new samples and the samples in
Additional file 1: Table S3.

Results

Expression analysis

Filtering steps

Genes were called DE if two conditions were met:
[logo,FC| > 0.5 and adjusted p-values P,qj<0.05 (see
Methods for more detail). The intersections of the three
comparisons: (1) Control Right (CR) versus Control
Left (CL) samples (CR_CL), (2) HP versus SSA/P sam-
ples (HP_SSA/P) and (3) CR versus SSA/P samples
(CR_SSA/P) are shown in Fig. 2. There were 1049 genes
DE between CR and CL samples, and among these
genes 157 were also DE between HPs and SSA/Ps and
276 were DE between CR and SSA/P samples. There were
121 genes in the intersection of all three comparisons.
With the aim of identifying only genes that reliably dif-
ferentiate between HPs and SSA/Ps as well as between
SSA/Ps and CR samples, we excluded the three afore-
mentioned groups from the further study. The follow-
ing groups were considered for further analysis: (1) 139
genes that were DE between SSA/Ps and both HP and
CR samples (Additional file 1: Table S4), (2) 134 genes,
exclusively DE between HPs and SSA/Ps (Additional file 1:
Table S5) and (3) 1058 genes, exclusively DE between
CR and SSA/P samples (Additional file 1: Table S6).
The 121 genes in the intersection of all three compari-
sons (Additional file 1: Table S7) were excluded for the
sake of rigor, i.e. for considering only genes that were
DE between different polyp types, without referring to
the anatomical location. Although these 121 genes were
excluded here, further investigation is needed to assess

Page 6 of 18

HP_SSA/P

CR_CL

Fig. 2 Venn diagram summarizing the DE genes in three comparisons

their importance in differentiating between HPs and
SSA/Ps.

A Principal Component Analysis (PCA) plot illustrat-
ing the difficulties in differentiating between SSA/P and
HP samples even at the molecular level is presented in
Fig. 3. The two groups are clearly intermingled when all
expressed genes are included (Fig. 3a) and the separation
is much better when genes, DE between HPs and SSA/Ps
as well as between SSA/Ps and CR samples are included
with the exclusion of genes DE between CR and CL
samples (Fig. 3c). Thus, the filtering step allows a more
detailed characterization of the differences between
HPs and SSA/Ps and improved separation of the two

types of polyps.

Characteristic differences between SSA/Ps and other samples

To understand more clearly the biological differences
between SSA/Ps and other samples we first considered
only genes expressed at the same level in HP and CR
samples and significantly up- or down-regulated in SSA/
Ps. At this step we considered only genes satisfying the
following conditions: (1) gene expression level (e) satisfied
an equation: e = |(CR - HP)|/(CR + HP + 0.01) < 0.1 and (2)
gene was significantly DE in CR_SSA/P and HP_SSA/P
comparisons.

There were only five genes, down-regulated in SSA/Ps
and expressed at the same level in HPs and CRs (Fig. 4).
Two of them regulate cell differentiation and proliferation:
NEURODI1 (neuronal differentiation 1) is involved in
enteroendocrine cell differentiation [45] and CHFR
(checkpoint with forkhead associated and RING Finger)
is an early mitotic checkpoint regulator that delays
transition to metaphase in response to mitotic stress.
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Fig. 3 Principle component analysis (PCA) scatter plots. a SSA/P and HP samples are not well-separated when all the expressed genes are considered;
b control right (CR) and control left (CL) samples are well-separated when all the expressed genes are considered; ¢ SSA/P and HP samples are
well-separated when only the genes differentially expressed between SSA/Ps and both HPs and CRs with the exclusion of genes DE between
CR and CL are considered (139 genes); d CR and CL samples are well-separated when only the 139 genes in (c) are considered

CHER has been found to be frequently inactivated in
many malignancies by promoter methylation [46, 47],
in particular, in microsatellite stable and BRAF wild-type
CRCs stage II [48]. NEU4, another down-regulated gene,
maintains normal mucosa and its down-regulation was
suggested to contribute to invasive properties of colon
cancers [49]. Other down-regulated genes are RASL11A
(regulates translation and transcription) and WSCD1
(WSC domain containing 1, poorly characterized).
Twenty out of thirty genes, up-regulated in SSA/Ps
and expressed at the same level in CR and HP samples,
were found to be interferon-regulated (IR) [50]. In addition
to modulating innate immune response, interferons
regulate a large variety of cellular functions, such as cell
proliferation, differentiation, as well as play important
roles in inflammatory diseases [51] and anti-tumor re-
sponse [52]. These twenty genes were represented by
(1) genes, involved in the epithelial-mesenchymal tran-
sition (EMT): PIK3R3 [53], RAB27B [54] and MSX2
[55]; (2) classical IR genes: GBP2, CFB, TRIB2, TBX3,
OAS2, IFIT3, XAF1, MX1, IDO1, CXCL9,CXCL10,
GBP1, CCL22, CCL2; (3) genes, not conventionally
considered IR: RAMP1, PARP14 and TPD52L1.

Among these twenty genes there were three, especially
interesting in the context of risk of SSA/Ps progressing
to cancer. Indoleamine 2,3-dioxygenase 1 (IDO1) has
attracted considerable attention recently because of its
immune-modulatory role besides the degradation of
tryptophan. IDO regulates T cell activity by reducing the
local concentration of tryptophan and increasing the
production of its metabolites that suppress T lymphocytes
proliferation and induce apoptosis [56—58]. Because most
human tumors constitutively express IDO [58], the idea
that IDO inhibitors may reverse immune suppression, as-
sociated with tumor growth, is very attractive for im-
munotherapy and a competitive inhibitor for IDO (I-MT)
is currently in clinical trials [59]. IDO1 was 2.7 times up-
regulated in SSA/Ps as compared to HP, CR samples.
PIK3R3, an isoform of class IA phosphoinositide 3-kinase
(PI3K), that specifically interacts with cell proliferation
regulators and promotes metastasis and EMT in colorec-
tal cancer [53], was also up-regulated in SSA/Ps. PARP14
promotes aerobic glycolysis or the Warburg effect, used
by the majority of tumor cells, by inhibiting pro-apoptotic
kinase JNK1 [60]. Immunosuppressive state, the shift to-
ward aerobic glycolysis and the EMT, are all considered
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left side of gene names

Fig. 4 Heatmap of RNA-seq expression data. Hierarchical clustering of CR (green), HP (yellow) and SSA/Ps (blue) biopsies (columns) and differentially
expressed genes (rows). Only genes that were expressed at the same level in HP and CR samples but significantly up- or down-regulated in SSA/Ps are
shown. Down-regulated and up-regulated genes in SSA/Ps are indicated in blue and orange colors, respectively. The 10g,(SSA/P / HP) is shown on the
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the major hallmarks of cancer [35]. While these three
genes are only infinitesimal parts of the invasive cascades,
their up-regulation points toward how SSA/Ps may pro-
gress to cancer.

Several interferon regulated (IR) genes reported here
have been also found to be up-regulated in a number of
malignancies (including CRCs). For example, RAB27B
was expressed at a high level and is a special member of
the small GTPase Rab family regulating exocytosis which
has been associated with a poor prognosis in patients
with CRC [61]. Increased expression of RAB27B has
been shown to predict a poor outcome in patients with
breast cancer [62]. The suggested mechanism by which
Rab27b stimulates invasive tumor growth includes regu-
lation of the heat shock HSP90a protein and the indirect
induction of MMP-2, a protease that requires an associ-
ation with extracellular HSP90a for its activity to accel-
erate the degradation of extracellular matrix [62]. The
transcription factor TBX3 (T-box 3), which plays an im-
portant role in embryonic development, was also up-
regulated in SSA/Ps. Previously it was suggested that
TBX3 promotes an invasive cancer phenotype [63] and
more recently it was also shown that increased expres-
sion of TBX3 was associated with a poor prognosis in
CRC patients [64]. The transcriptional co-regulator
LIM-only protein 4 (LMO4) has been associated with
poor prognosis and is overexpressed in about 60% of all

human breast tumors and has been shown to increase
cell proliferation and migration [65]. LMO4 was up-
regulated in SSA/Ps. Tumor protein D52-like proteins
(TPD52) are small proteins that were first identified in
breast cancer, are overexpressed in many other cancers,
but remain poorly characterized [66]. TPD52L1, member
of the family, was upregulated in SSA/Ps.

Besides the twenty IR genes, there were other interest-
ing genes up-regulated in SSA/Ps and expressed at the
same level in CR and HP samples. MUC6 (mucin 6) was
the most highly up-regulated gene and has been previ-
ously suggested as a candidate biomarker for SSA/Ps
[67, 68] but later was found to be not specific enough to
reliably differentiate SSA/Ps from HPs [69]. KIZ (kizuna
centrosomal protein) is a gene that is critical for the es-
tablishment of robust mitotic centrosome architecture
and proper chromosome segregation at mitosis [70].
While depletion of KIZ results in multipolar spindles,
how up-regulation of KIZ affects mitosis is unknown.
SPIREL, an actin organizer, was recently found to con-
tribute to invadosome functions by speeding up extra-
cellular matrix lysis while overexpressed [71].

One of the limitations of studying differentially
expressed genes one gene at a time is that it does not
allow a systems-level view of global changes in expression
and co-expression patterns between phenotypes. Thus, we
sought to identify all pathways that were significantly
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up- or down-regulated, as well as differentially co-
expressed between SSA/Ps and HP, CR samples. Path-
ways were presented by all gene ontology (GO) [72]
terms from C5 collection of gene sets in MSigDB [73].

Pathways, differentially expressed between SSA/Ps and HP,
CR samples

To find pathways, significantly up- or down-regulated
we applied ROAST, a parametric multivariate rotation
gene set test [74]. ROAST uses the framework of linear
models and tests whether for all genes in a pathway, a
particular contrast of the coefficients is non-zero [74]. It
can account for correlations between genes and has the
flexibility of using different alternative hypotheses, test-
ing whether the direction of changes for a gene in a
pathway is up, down or mixed (up or down) [74]. We
selected only pathways where genes were significantly
up- or down-regulated (FDR < 0.05). There were fifteen
pathways, significantly up-regulated in SSA/Ps as com-
pared to HP, CR samples (Table 1). In agreement with
the pattern found for individual genes, two out of the
fifteen pathways were ‘Inflammatory response’ and ‘Im-
munological synapse’ (Table 1). GO term ‘Extracellular
structure organization and biogenesis’ overlaps with
two KEGG pathways: ‘KEGG focal adhesion’ and ‘KEGG
ECM receptor interaction’. Overexpression of these
pathways as well as ‘Cell adhesion’ (two pathways) cat-
egory might indicate changes in cell motility and migra-
tion ability in SSA/Ps as compared to HP, CR samples.
Up-regulation of ‘Cell growth and death’ (two path-
ways) category suggests increased cellular proliferation
in SSA/Ps.

There was only one pathway down-regulated in SSA/
Ps as compared to HP, CR samples, namely ‘Trans-
membrane receptor protein serine threonine kinase
signaling pathways’ (FDR < 0.05). The pathway gener-
ates a series of molecular signals as a consequence of a
transmembrane receptor serine/threonine kinase bind-
ing to its ligand and regulates fundamental cell pro-
cesses such as proliferation, differentiation, death,
cytoskeletal organization, adhesion and migration [75].
For this pathway, one of the most significantly down-
regulated genes was HIPK2 (homeodomain interacting
protein kinase 2). HIPK2 interacts with many tran-
scription factors including p53 and is a tumor suppres-
sor that regulates cell-cycle checkpoint activation and
apoptosis. Therefore, its down-regulation may contrib-
ute to up-regulation of the ‘Positive regulation of cell
proliferation’ pathway. However, given that “Transmem-
brane receptor protein serine threonine kinase signaling
pathways’ regulates many fundamental cellular processes,
its main downstream targets in the case of SSA/Ps require
further study.
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Table 1 Up-regulated pathways (GO categories)

Category Pathway FDR?
Cell adhesion
CALCIUM INDEPENDENT 0.022
CELL CELL ADHESION
CELL SUBSTRATE ADHERENS 0.042
JUNCTION
Cell growth and death
CELL STRUCTURE DISASSEMBLY 0.033
DURING APOPTOSIS
POSITIVE REGULATION OF 0.033
CELL PROLIFERATION
Immune system
INFLAMMATORY RESPONSE 0.033
IMMUNOLOGICAL SYNAPSE 0.045
Signal transduction
POSITIVE REGULATION OF 0.045
SECRETION
G PROTEIN COUPLED RECEPTOR 0.042
PROTEIN SIGNALING
SECOND MESSENGER MEDIATED 0.045
SIGNALING
Metabolism
AROMATIC COMPOUND 0.022
METABOLIC PROCESS
HETEROCYCLE METABOLIC 0.022
PROCESS
Differentiation
CELLULAR MORPHOGENESIS 0.045
DURING DIFFERENTIATION
Cellular component
organization
EXTRACELLULAR STRUCTURE 0.042
ORGANIZATION AND
BIOGENESIS
Neuron development
AXONOGENESIS 0.042
NEURITE DEVELOPMENT 0.045

°FDR: False Discovery Rate

Pathways, differentially co-expressed between SSA/Ps and
HP, CR samples

To find pathways that were differentially co-expressed
we applied an approach that assesses multivariate
changes in the gene co-expression network between two
conditions, the Gene Sets Net Correlations Analysis
(GSNCA) [76], as implemented in the Bioconductor
package GSAR [77]. GSNCA tests the hypothesis that
the co-expression network of a pathway did not change
between two conditions. In addition, for each condition
it builds a core of co-expression network, using the most
highly correlated genes, and finds a ‘hub’ gene, defined
as the one, with the highest correlations with the other
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genes in a pathway (see [76] for more detail). In other
words, hub genes are the most ‘influential’ genes in a
pathway. When hub genes in a pathway are different be-
tween phenotypes, it points toward regulatory changes
in a pathway dynamic.

There were seven pathways significantly differentially
co-expressed between SSA/Ps and CR, HP samples
(P < 0.05). Five out of seven were pathways regulating
homologous and non-homologous recombination, DNA
replication, GTPase activities and proteins targeting to-
wards a membrane using signals contained within the
protein (Additional file 2: Figures S6-S10). For all five
pathways, hub genes were different between HPs and
SSA/Ps, with a shift in SSA/Ps toward hub genes re-
lated to genomic instability. For example, for ‘Meiosis I’
and ‘Meiotic recombination’ pathways, hub genes were
RADS51 and MRE11A in HPs and SSA/Ps, respectively.
Both proteins are involved in the homologous recombin-
ation and repair of DNA double strand breaks. MRE11A
also participates in alternative end-joining (A-EJ), an
important pathways in the formation of chromosomal
translocations [78]. The shift from RAD51 to MRE11A
in SSA/Ps might indicate an increased genomic in-
stability, the key change in all cancer cells [35].

For ‘Golgi stack’ pathway, the shift of hub genes was
associated with the well-known phenotypic difference
between HPs and SSA/Ps (Fig. 5). The hub gene in HP
was RAB14, low molecular mass GTPase that is involved
in intracellular membrane trafficking and cell-cell adhe-
sion. The hub gene in SSA/Ps was B3GALT6, a beta-
1,3-galactosyltransferase, required for glycosaminogly-
can (mucopolysaccharides) synthesis, including mucin.
The presence of abundant surface mucin is the conven-
tional colonoscopic characteristic of SSA/Ps [79]. For
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‘Hormone activity’ in HP the hub gene was IGF1, the
insulin-like growth factor that promotes cell prolifera-
tion and inhibits apoptosis, stimulates glucose transport
in cells and enhances glucose uptake (Additional file 2:
Figure S11). In SSA/P, the hub gene was PYY, encoding
a member of the neuropeptide Y (NPY) family of pep-
tides. This gut peptide plays important roles in energy
and glucose homeostasis [80], in regulating gastrointes-
tinal motility and absorption of water and electrolytes
and has been associated with several gastrointestinal
diseases [81]. Its role in SSA/Ps, if any, remains to be
defined.

Based on the analysis of individual genes and differen-
tially expressed and co-expressed pathways SSA/Ps dif-
ference from HP, CR samples involves: (1) up-regulation
of IR genes, EMT genes and genes previously associated
with the invasive cancer phenotype; (2) up-regulation of
pathways, implicated in proliferation, inflammation, cell-
cell adhesion and down-regulation of serine threonine
kinase signaling pathway; (3) de-regulation of a set of
pathways regulating cell division, protein trafficking and
kinase activities.

Given the complexity of the molecular processes
underlying SSA/Ps, involving hundreds of differentially
expressed genes and many pathways, for the practical
purpose of readily distinguishing SSA/Ps from HPs we
developed a platform-independent molecular classifier
with low classification error rate (see below).

Molecular classifiers

Typically, the development of molecular classifiers con-
sists of the following steps: feature selection, model selec-
tion, training, estimation of the classification error rate
[25], with every step potentially leading to an inflated

~N

HP SSA/P
Hub Gene (HP): RAB14 Hub Gene (SSA/P): B3GALT6
Weight Factor: 1.323 Weight Factor: 1.157
| w>15 B 125<w<1.5 O 1<w<1.25 0O 0.75<w<1 0O 0.5<w<0.75 O w<0.5
NBCABJ 58M51
GOLGAS B4GALT1
o O
! g SGMS1
8A3 8 TRAPPC4 NECAB3
181330 O e}
ZEYVEL it ZFYVE1
G8LGBI ofR RAB14 8 O
B.gALTG ‘¥314 B3GALT6 8‘N3 gRL
TRAPPC4
O
G8LGB1
BAtc():ALTl G(O)LGAS ]8330
Fig. 5 MST2 of the ‘Golgi stack’ gene set from the C5 collection of MSigDB. This gene set was detected by GSNCA (P < 0.05) in both comparisons:
HPs versus SSA/Ps and CRs versus SSA/Ps
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performance estimate [20]. The systematic errors in classi-
fier development, such as inappropriate applications of
cross-validation for classifiers’ training and testing, are
usually the first to blame for poor generalizability (high
error rate on independent data sets) [20, 82, 83]. Poor
generalizability is further emphasized when the training
and independent test data are obtained using different
platforms, e.g. different microarray platforms, or microar-
rays and RNA-seq. To avoid such errors we developed a
new feature selection step identifying the genes, most con-
cordant between different platforms. After the new feature
selection step was implemented, we trained a classifier on
RNA-seq data and further tested it on two independent
microarray data sets (testing sets, see Methods for more
details). Identifiers from different platforms were mapped
to gene symbols and only genes that were expressed in
RNA-seq data and present on both microarray platforms
were considered (Additional file 1: Table S8).

Feature normalization

For classifier development 139 genes, DE between SSA/
Ps and HP, CR samples (Additional file 1: Table S4) were
considered. Gene expressions for both RNA-seq and
microarray platforms were normalized to a common
range by subtracting the median absolute deviation
(MAD) [19] from each gene’s expression. Hence, gene
expressions were centered around zero and genes with
large fold changes between two phenotypes had positive
expressions under one phenotype and negative expres-
sions under the other. Genes with the small variability
were filtered out (MAD <0.1). Finally, only the genes
expressed in all three platforms (117 genes) were consid-
ered for further classifier design steps.

Feature selection step

Selecting only genes (features) with high concordance
between platforms is crucial to design a platform-
independent classifier. Platform-independent classifier,
trained using one platform, should have low classifica-
tion error rate while being tested using other platform.
Here, to assess genes concordance between platforms,
we developed a new non-parametric test (see Methods
for details). The test identified genes, robustly differenti-
ating two phenotypes under different platforms, the best
candidates for an inter-platform signature. Previously,
the concordance between platforms has been measured
by the correlation between mean expressions or fold
changes [84, 85] or by intersection between lists of DE
genes [86, 87].

Consider two distributions: (1) correlation coefficients
for all genes between two platforms, preserving pheno-
typic labels (p,..) and (2) correlation coefficients for all
genes between two platforms, randomly resampling
phenotypic labels (p,4140m). Additional file 2: Figure S1
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presents the distributions of pj,. and p,,u40m When the
HP and SSA/P samples from the RNA-seq training data
were compared with the Illumina and Affymetrix data
sets. Some genes had higher correlations when pheno-
typic labels were preserved, compared to when they were
randomly resampled, introducing negative skewness to
the distribution of p;,. (see Additional file 2: Figure S1).
These genes showed higher correlation between plat-
forms than by chance, illustrated by the case when
phenotypic labels were randomly resampled. These
genes were our candidate concordant genes. More for-
mally, to identify concordant genes we tested the null
hypothesis Hy: :Etrue S:Emndom + max (SD (ptrueupmndom>)'

Figure 1 illustrates how the test works using two ex-
amples of typical MAD-normalized gene expressions in
two platforms. In one example, forty observations were
sampled from two normal distributions N(0.5, 0.25) and
N(-0.5, 0.25), representing different phenotypes. In this
example, the fold change in both platforms was larger
than the within-phenotype variability (Fig. la) and the
correlation coefficient between platforms (p;..) was
high. When phenotypic labels were randomly resampled,
the fold change in both platforms became negligible as
compared to the within-phenotype variability (Fig. 1b) and
the correlation coefficient between platforms (p,,,,40,) be-
came low. In another example, forty observations were
sampled from two normal distributions N(0.5, 1) and
N(-0.5, 1), again representing different phenotypes. How-
ever, in this example, the fold change in both platforms
was smaller than the within-phenotype variability
(Fig. 1c, d) and the correlation coefficient between plat-
forms was low when phenotypic labels were either pre-
served or randomly resampled. Although the fold change
between phenotypes was the same in both examples
(logoFC =1), Pearson correlation coefficient between ex-
pressions in two platforms preserving phenotypic labels
(Prrue) Was higher in case A compared to case C because
of the lower within-phenotype variability. Randomly re-
sampling phenotypic labels led, expectedly, to much lower
correlations between two platforms (0,440, (Fig. 1b, d).
Accordingly, prue > Prandom in the first example (Fig. 1a, b)
but not in the second (Fig. 1c, d). Taking average correl-
ation between platforms, for a large number of iterations,
H, will be rejected for the first example (Fig. 1a, b) but
not for the second (Fig. 1c, d). The material and methods
section summarizes the steps of the proposed test.

The test was used to find genes with high concordance
between RNA-seq and Illumina platforms (23 genes de-
tected), RNA-seq and Affymetrix platforms (20 genes
detected), and between RNA-seq and both Illumina and
Affymetrix platforms (16 genes detected). Only genes,
detected by the Wilcoxon’s test at P < 0.05 were consid-
ered. The values of the term max(SD(psrueY Prandom)
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were 0.41 and 0.39 when RNA-seq data was compared
with Illumina and Affymetrix data sets, respectively.

Classifier design and gene signatures
The model selection step provides a great flexibility be-
cause there are many machine learning algorithms
available for classification purposes. We selected the
nearest shrunken centroid classifier (SCC) [38], because
it was successfully used before for developing many
microarray-based classifiers, in particular a prognostic
classifier in CRCs [19]. To select the threshold value
that returns the minimum mean error with the least
number of genes, we performed a 3-fold cross-validation
over a range of threshold values for 100 iterations.
Training the classifier using the RNA-seq data set and
considering only the genes with high concordance with
the Illumina, Affymetrix, and both platforms yielded
three signatures of 18, 16, and 13 genes (see Table 2).
The 18 and 16 gene signatures resulted in zero (out of
12 Mlumina samples) and three (out of 17 Affymetrix
samples) errors. Classification errors did not change
when the 13 gene signature was used instead. Hence we
considered these 13 genes as the smallest successful sig-
nature for both Illumina and Affymetrix platforms. The
samples in the Illumina data set were identified as be-
longing to SSA/Ps or HPs by gastrointestinal patholo-
gists based on a higher stringency criterion [32] than
what has been done for the samples in the Affymetrix
data set. It is therefore no surprise that there was less
ambiguity in classifying the Illumina samples. Although
the Illumina samples were acquired by a different plat-
form compared to the training RNA-seq data set, they
were classified without errors. Aside from the stringent
criterion in assigning phenotype labels for Illumina
samples, this result could be due to the higher reso-
lution in quantifying gene expression by the RNA-seq
platform.

Page 12 of 18

Smallest successful signature

The genes, included in the smallest signature (13 genes)
were on the average approximately four folds up-
(down-) regulated between SSA/Ps and HPs (Table 3).
The average absolute fold change considering all the
14,006 expressed genes in the RNA-seq training data set
was 1.27. There were three down- and ten up-regulated
genes in SSA/Ps, involved in several molecular processes
that we have discussed earlier. Down-regulated genes in-
cluded NTRK2 (neurotrophic tyrosine kinase receptor,
type 2), CHFR (negative regulator of cell cycle check-
point) and CHGA (chromogranin A, endocrine marker).
NTRK2 controls the signaling cascade that mainly regu-
lates cells growth and survival.

Up-regulated genes included several genes (SLC7A9,
SEMG1, SBSPON and MEGF6) that were not well func-
tionally characterized (except SLC7A9, a marker for cys-
tinuria) and are not discussed here. Two genes (KIZ and
SPIRE1) were among the genes up-regulated in SSA/Ps
and equally down-regulated in HP, CR samples (Fig. 4).
TROP-2 (TACSTD2, tumor-associated calcium signal
transducer 2) is a cell-surface transmembrane glycopro-
tein overexpressed in many epithelial tumors. TROP-2
was suggested as a biomarker to determine the clinical
prognosis and as a potential therapeutic target in colon
cancer [88, 89] and an antibody-drug conjugate targeting
TROP-2 is currently in phase II clinical trials [90].
Claudin-1 (CLDNI1, tight junction protein) was also up-
regulated. Specifically, Claudin-1 has been suggested to
be involved in the regulation of colorectal cancer pro-
gression by up-regulating Notch- and Wnt-signaling and
mucosal inflammation [91]. In addition, CLDN1 was also
associated with liver metastasis of CRC [92]. PLA2G16
phospholipase was also up-regulated and its up-regulation
may be a signal of gain-of-function activities of mutant
p53 that is required for metastasis [93]. Finally, PTAFR,
platelet activating factor receptor, was found to stimulate
EMT by activating STAT3 cascade [94].

Table 2 Performance of the nearest SCC classifying independent SSA/P and HP microarray samples using three signatures

Platforms Concordant genes Signature size  Signature lum?  Affy.°
errors  errors
Training: RNA-seq  C4BPA,CEMIP,CHGA,CLDN1,CPEDPP10, 18 C4BPA,CHGA,CLDNT1,CPE,DPP10,GRAMD1B,GRIN2DKIZ, 0 -
Testing: lllumina FSIP2,GRAMD1B,GRIN2D,IL2RGKIZKLK?, KLK7 MEGF6,MYCN,NTRK2,PLA2G16,SBSPON,SEMGT,
MEGF6,MYCN,NTRK2,PLA2G16,RAMPT, SLC7A9,SPIRET, TM4SF4
SBSPON,SEMG1,SLC7A9,SPIRET, TM4SF4
Training: RNA-seq  CLDN1,FOXD1,IDO1,IL2RGKIZLMO4, 16 CLDNT1,FOXD1,KIZMEGF6,NTRK2, PIK3R3,PLA2G16, - 3
Testing: Affymetrix ~ MEGF6,NTRK2,PIK3R3,PLA2G16,PRUNE?2, PRUNE2,PTAFR,SBSPON,SEMG1,SLC7A9,SPIRET,
PTAFR,SBSPON,SEMGT1,SLC7A9,SPIRET, TACSTD2,TPD52L1,TRIB2
TACSTD2,TPD52L1,TRIB2,ZIC2
Training: RNA-seq  CHFR,CHGA,CLDNT1,IL2RGKIZ MEGF6, 13 CHFR,CHGA,CLDN1 KIZ MEGF6,NTRK2,PLA2G16,PTAFR, 0 3

Testing: lllumina
and Affymetrix

NTRK2,PLA2G16,PTAFR,SBSPON,SEMGT,
SLC7A9,SPIRET,TACSTD2,VSIG1,ZIC2

SBSPON,SEMGT1,SLC7A9,SPIRET, TACSTD2

“lllumina microarrays
PAffymetrix HGU133plus2 microarrays
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Table 3 Genes, included in the smallest 13 gene expression
signature of SSA/Ps

log,FC FC

SLC7A9 322 9.34
SEMGT 2.95 7.72
MEGF6  2.66 6.34

Gene Description

Solute carrier family 7 member 9
Semenogelin |

Multiple EGF like domains 6

TACSTD2 1.93 3.82 Tumor-associated calcium signal transducer 2
CLDN1 1.85 359 Claudin 1

SBSPON  1.23 2.35 Somatomedin B and thrombospondin type 1

domain containing
PLA2G16 1.18 227
PTAFR 108 211

Phospholipase A2 group XVI

Platelet activating factor receptor

KiZ 0.98 1.98 Kizuna centrosomal protein

SPIRE1 0.82 1.76 Spire type actin nucleation factor 1

CHFR —062 065 Checkpoint with forkhead and ring finger
domains, E3 ubiquitin protein ligase

CHGA -163 032 Chromogranin A

NTRK2 —232 020 Neurotrophic tyrosine kinase, receptor, type 2

In sum, the up-regulated signature genes included
those previously associated with invasive cell activities
(CLDN1, PLA2G16, PTAFR, SPIRE1), spindle formation
(KIZ) while down-regulated genes included checkpoints
controlling cell growth (CHFR, NTRK2).

Summary metric with class probability
The ultimate goal of building a classifier and finding
genes signature is to use the signature in clinical practice
for diagnostic and prognostic purposes. Here, we devel-
oped a simple procedure that uses the signatures in
Table 2 to classify new samples as either HP or SSA/P
and provides a class probability for the decision. The
mean of the MAD-normalized expression of the genes
in the signature was used as a summary metric (SM).
Since most of the genes in the signatures in Table 2 were
over-expressed in SSA/Ps, SM >0 for SSA/P samples
and SM < 0 for HP samples. Before calculating the mean
expression, the signs of the expressions of the few genes
that were over-expressed in HP were inverted. This step
increased the magnitude of the mean regardless of its
sign. There were only three genes over-expressed in HP
in the 13-gene signature (CHFR, CHGA and NTRK2),
one in the 16-gene Affymetrix signature (NTRK2), and
four in the 18-gene Illumina signature (CHGA, CPE,
DPP10, and NTRK2). The class assignment (HP or
SSA/P) depends simply on the sign of the mean expression.
MAD-normalized gene expressions had approximately
a Laplace-like distribution (Additional file 2: Figure S4)
and the SM distribution was approximately normal
(Additional file 2: Figure S5). According to the central-
limit theorem, the SM distribution should be normal,
especially for signatures with a large number of genes
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p 230 (Additional file 2: Figure S5). The normal ap-
proximation is still valid when the signature size p <30
if the population is not too different from a normal dis-
tribution [95]. There are several ways of assigning a
class probability to a new sample using training RNA-
seq data set as a reference. The distribution of SM can
be estimated by calculating SMs for many random sig-
natures of the same size as the signature in use. The
probability of an assigned SSA/P (or HP) class is the
cumulative distribution function CDF(SM) (1-CDF(SM))
of the empirical distribution of SM after standardization
(Fig. 6). Another possibility is to use the normal ap-
proximation of SM (Fig. 6). The first approach is im-
paired by the possible differences in the distribution of
SM between different platforms. For example, applying
MAD normalization to the log,-scale FPKM RNA-seq
data yielded SM with negative tail that extended beyond
the corresponding tail in microarray data (Additional file 2:
Figure S5). The second approach is impaired by deviation
from normality especially for very small signatures. Gener-
ally, the distribution of SM was normal-like with higher
kurtosis for small signatures. While the distribution of SM
had kurtosis ~8 and 4 for RNA-seq and microarray data,
respectively (using 15 genes in a signature), the kurtosis of
a standard normal distribution is 3.

Due to the potential difficulties in fitting an exact dis-
tribution to SM another solution was found. A lower
bound for P(X = SM) as the probability for an assigned
SSA/P class and P(X <-SM) as the probability for an
assigned HP can be estimated using Cantelli’s inequality
(also known as one-sided Tchebycheff’s inequality) [96].
Cantelli’s inequality estimates an upper bound for the

1.0

0.8
1

2 9
Z o
3
I SO SO, SR A
a
- /.
S ] Yy ' N
. B === Empirical CDF (SSA/P)
Y B = Normal CDF (SSA/P)
: . = CLB (SSA/P)

4 H = = Empirical CDF (HP)
: /“: = = Normal CDF (HP)
: 8y | == CLB(HP)

XN
: NS
L i ¢ e W m e e

0.2

T T t t T T T
-4 2 El 0 1 2 4
Standardized Summary Metric

Fig. 6 The probability of an assigned SSA/P (HP) class is the cumulative
distribution function CDF(SM) (1-CDF(SM)) of the empirical distribution of
SM after standardization. The empirical approach can also be substituted
by the normal approximation of SM. Since both approaches have
limitations, the Cantelli lower bound (CLB) is used as a conservative
probability assignment for the SM score




Rahmatallah et al. BMC Medical Genomics (2017) 10:81

probability that observations from some distribution are
bigger than or smaller than their average:

2

g
P(X—Mgﬂ) = CDF(#-’-&Z)ZI—m,ﬂZO

2

P(X-p<a) = CDF(u+a)< a<0

0% +a?’

We either choose a=SM and o=0.14 (which hap-
pened to be a standard deviation of SM in all three
platforms when the number of genes is 15), or choose
a = standardized SM and o=1. Figure 6 presents the
Cantelli lower bound (CLB) for SSA/P and HP prob-
abilities. When SM € [-0, 0] (or SMgunaardizea € [-1, 1])
the probability of class assignment is zero for one class
and <50% for the other, therefore no probability was
assigned (Uncertain zone, Fig. 6). To avoid false posi-
tive the probability was assigned if and only if Cantelli
lower bound of SM was >0.5. The results of classifying
samples in the Illumina and Affymetrix data sets using
the summary metric and the class probability assigned
to each decision are presented in Additional file 1:
Tables S9, S10 and S11. For comparison, the class prob-
abilities obtained using the empirical approach, normal
approximation, and the SCC (independent of SM) are
also shown. Standardized SM and o=1 were used.
When the Affymetrix samples were classified using the
16-gene signature, 2 of the 3 misclassified HP samples
by SCC were deemed uncertain by CLB while assigned
P(SSA/P) of 75% and 94% by SCC (Additional file 1:
Table S10).

Independent validation and clinical diagnostic tool

To further validate the accuracy of the 13 gene molecu-
lar signature and demonstrate its diagnostic value in
clinically relevant settings, we obtained expression levels
from 45 (24 HPs and 21 SSA/Ps) independent FFPE
SSA/P and HP samples with qRT-PCR (see Methods).
By simply applying proper normalization and summariz-
ing expression levels using the summary metric (see
Methods) the 13 gene molecular signature correctly clas-
sified 90% of the independent FFPE samples (Additional file 1:
Table S2). Additional file 2: Figure S12 shows the scatter plot
of the first and second principle components of normalized
expression levels. The 13 gene molecular signature indeed
placed HP and SSA/P independent FFPE samples in two
well-separated clusters. This approach is simple and relies
on the ability of the combined 13 genes to accurately distin-
guish between HP and SSA/D, rather than relying on a com-
plex classifier. The steps required to apply this simple
approach as a clinical diagnostic tool to new FFPE speci-
mens are summarized in the Methods. Notably, the gene
signature for SSA/Ps found using RNA-seq data from fresh
specimens achieved a remarkably correct classification rate
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despite issues with RNA degradation in archived FFPE
samples.

Discussion

Conventionally, SSA/Ps are distinguished from HPs pri-
marily based on histopathological morphology [97]. Be-
cause HPs can have similar morphological features a
significant error rate of classifying SSA/Ps as HPs can
occur, especially if expert gastrointestinal pathologists
are not available. This clinical challenge was the driver
of this study, which aimed to better differentiate SSA/Ps
from HPs and develop a platform independent molecu-
lar classifier for SSA/Ps. Previously, the differences be-
tween SSA/Ps and HPs were considered mostly at the
level of individual genes. The genes DE between SSA/Ps
and CR (or HP) samples (MUC17 [33], TFF1 and CTSE
[31], SLIT2 [98]) were also found in the present analysis.
However, we found that these genes were also DE be-
tween CR and CL samples, so their association with
SSA/Ps is uncertain. Among other potential biomarkers
for SSA/Ps (ANXA10, FABP6 and TTF2) ANXA10 was
found to be significantly DE between HPs and SSA/Ps
and TFF2 was found to be significantly DE between
SSA/Ps, HPs, and CR specimens (Additional file 1:
Table S5 and Additional file 3: Text S1) [32]. However,
FABP6 was not significantly DE between SSA/Ps, HPs,
and CR specimens.

A systems-level view of the differences between HPs
and SSA/Ps obtained by analyzing different functional
units (genes and pathways) and different regulatory rela-
tionships (differential expression and co-expression) in
the data set provided new insights into the biology of
SSA/Ps. When we considered only genes significantly
up- or down-regulated in SSA/Ps and expressed at the
same level in HPs and CR specimens two thirds of the
up-regulated genes were interferon-regulated genes, in-
cluding indoleamine 2,3-dioxygenase 1 (IDO1). In the
mouse model of DSS induced colitis, IDO1 increased
levels of pro-inflammatory chemokines and cytokines
[99]. We found that the same pathway was up-regulated
in SSA/Ps. However, generally IDO is considered as im-
munosuppressive and has been linked with impaired
immune clearance of tumor cells: its activity promotes
apoptosis of T-cells, NK cells and induces the differen-
tiation of T regulatory cells (T,eg) [100, 101]. We
hypothesize that IDO1 may play a role in the progres-
sion of SSA/Ps to dysplasia and invasive cancer by in-
creasing inflammation and facilitating immune escape.
At the pathway level, ‘Inflammatory response’ and ‘Im-
munological synapse’ were also up-regulated in SSA/Ps
as compared to HPs and CR specimens. Other import-
ant up-regulated genes and pathways differentiating
SSA/Ps from HPs involve cell motility, migration abil-
ity, EMT and ECM interaction (Fig. 4, Table 1) that
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impact cell invasive and metastatic behavior, another
hallmark of cancer. Considering pathways differentially
co-expressed between SSA/Ps and HPs we found that
hub genes were always different between two types of
polyps (Additional file 2: Figures S6-S11). For two dif-
ferentially co-expressed meiosis-related pathways, ‘Mei-
osis I' and ‘Meiotic recombination, the shift in hub
genes was from RAD51 (HPs) to MRE11A (SSA/Ps),
notably involved in non-homologous recombination
and the mismatch repair pathway. The involvement of
deficient mismatch repair (IMMR) pathway (that in-
cludes MRE11) in CRC is well-documented [102]. Re-
cently, the truncated MRE11 polypeptide was found to
be a significant prognostic marker for long-term sur-
vival and response to treatment of patients with CRC
stage III [103]. Whether SSA/Ps indeed result in the
dMMR colon cancer subtype remains to be proven. For
‘Golgi stack’ pathway, the shift from RAB14 toward
B3GALTS6, essential for the mucopolysaccharides syn-
thesis corresponded to known phenotypic differences
between HPs and SSA/Ps. These cases illustrate the
ability of our GSNCA tool to confirm existing know-
ledge, generate new testable hypotheses and raise inter-
esting questions. Based on the up-regulation of the
pathways and genes described, we hypothesize that
SSA/Ps are prone to neoplastic progression because of
an inflammatory and immune escape state, as well as
increased cell motility and migration activities.

Using RNA-seq data sets and the new feature selection
strategy in combination with popular shrunken centroid
classifier (SCC) [38], we developed a gene expression
molecular classifier for SSA/Ps that is applicable to
microarray data, RNA-seq or qRT-PCR analysis of speci-
mens. The smallest successful signature for all platforms
(13 genes) included up-regulated genes previously asso-
ciated with invasive cell activities (CLDN1, PLA2G16,
PTAFR, SPIRE1) and down-regulated checkpoints control-
ling cell growth (CHFR, NTRK2). In addition, we devel-
oped a simple procedure that uses the MAD-normalized
signatures to classify new samples as either HP or SSA/P
and provides a class probability for the decision, estimated
using Cantelli’s inequality. For high throughput platforms
where thousands of genes are profiled, it is possible to
calculate the Cantelli lower bound for SSA/P and HP
probabilities. For other clinical settings that profile a
few genes (such as qRT-PCR), accurate classification is
also possible but without class assignment probabilities.
The proposed molecular classifier for SSA/Ps demon-
strated diagnostic value in an independent verification
set of specimens and will be further tested to classify spec-
imens profiled with microarray, RNA-seq, or qRT-PCR
platforms. The more accurate diagnosis of patients with
SSA/Ps will enable future studies that better defines the
risk of colon cancer in these patients, determines if
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subsets of patients have stratified risks for colon cancer
and refines the recommendations for follow up care of
patients with SSA/Ps [15].

Conclusions

HPs and SSA/Ps have overlapping histopathological fea-
tures, yet only SSA/Ps have malignant potential. Our
analysis identified that many genes and pathways, up-
regulated in SSA/Ps as compared to HPs, CR specimens
were involved in inflammatory processes and immune
response, suggesting that at the molecular level the pres-
ence of inflammation and immunosuppression may con-
stitute the key difference between the two types of
polyps. Other genes and pathways, up-regulated in SSA/
Ps as compared to HPs, CR specimens included those,
related to EMT and ECM interaction, cell motility and
migration. Interestingly genes and pathways, differentially
expressed and co-expressed between SSA/Ps and HPs, CR
specimens constitute known hallmarks of cancer, thus
explaining why despite similar histopathological features
SSA/Ps have malignant potential.

To objectively differentiate SSA/Ps form HPs we devel-
oped a molecular classifier that is platform independent
and has low classification error rate for high-throughput
data (microarrays, RNA-seq) as well as in small settings
(qRT-PCR). We believe our classifier will facilitate further
progress with SSA/Ps correct clinical diagnosis.

Additional files

Additional file 1: Table S1. The list of gRT-PCR primers for signature
genes. Table S2. Normalized expression levels (median and MAD) ob-
tained by gRT-PCR from 45 independent FFPE samples and the classifica-
tion result obtained using the 13 genes molecular signature with
different sample normalizations. Table S3. Raw expression levels of 13
genes in the molecular signature obtained by gqRT-PCR from 45 inde-
pendent FFPE samples. Table S4. The list of 139 genes that were DE be-
tween SSA/Ps and both HP and CR samples. Table S5. The list of 172
genes, exclusively DE between SSA/P and HP samples. Table S6. The list
of 1014 genes, exclusively DE between SSA/P and CR samples. Table S7.
The list of 105 genes, DE in three comparisons. Table S8. Number of
common genes between three different platforms. Table S9. Class prob-
abilities assigned using empirical approach, normal approximation,
shrunken centroid classifier (independent of the summary metric), and
the Cantelli's inequality lower bound when the 18-gene signature from
Table 2 is used. Table $10. Class probabilities assigned using empirical
approach, normal approximation, shrunken centroid classifier (independ-
ent of the summary metric), and the Cantelli's inequality lower bound
when the 16-gene signature from Table 2 is used. Table S11. Class prob-
abilities assigned using empirical approach, normal approximation,
shrunken centroid classifier (independent of the summary metric), and
the Cantelli's inequality lower bound when the 13-gene signature from
Table 2 is used. (XLSX 275 kb)

Additional file 2: Figure S1. Histograms of the Pearson correlation
coefficients between different platforms. Figure S2. Barplot of the
average raw expression levels of 13 genes obtained by gRT-PCR from 45
FFPE tissue samples. Figure S3. Boxplots for the expression levels of 13
genes obtained by qRT-PCR from 45 FFPE tissue samples. Figure S4. His-
tograms of the MAD-normalized log-scale gene expression data in all
three platforms. Figure S5. Histograms of the summary metric of random
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‘Meiosis’ gene set of the C5 collection obtained from MSigDB. Figure S7.
MST2 of the ‘Regulation of DNA replication’ gene set of the C5 collection
obtained from MSigDB. Figure S8. MST2 of the ‘Protein targeting to
membrane’ gene set of the C5 collection obtained from MSigDB. Figure
S9. MST2 of the ‘Meiotic recombination’ gene set of the C5 collection ob-
tained from MSigDB. Figure S10. MST2 of the ‘Kinase activator activity’
gene set of the C5 collection obtained from MSigDB. Figure S11. MST2
of the "Hormone activity’ gene set of the C5 collection obtained from
MSigDB. Figure S12. Scatter plot of the first and second principal com-
ponents for normalized expression levels. (PDF 151 kb)

Additional file 3: Text S1. R code with instructions on how to classify

new gRT-PCR samples as HP or SSA/P. (R 1 kb)

Abbreviations

AUC: Area under ROC curve; CIMP: CpG island methylator phenotype;

CL: Control left; CLB: Cantelli lower bound; CR: Control right; CRC: Colorectal
cancer; DE: Differentially expressed; ECM: Extracellular matrix; EMT: Epithelial-
mesenchymal transition; FC: Fold change; FFPE: Formalin-fixed paraffin-
embedded; FPKM: Fragments per kilobase per millions; GEO: Gene expression
omnibus; GO: Gene ontology; GSNCA: Gene sets net correlations analysis;

HP: Hyperplastic polyps; MSI: Microsatellite instability; MSigDB: Molecular signature
database; MVHP: Microvesicular hyperplastic polyps; qRT-PCR: quantitative real-
time polymerase chain reaction; SCC: Shrunken centroid classifier; SM: Summary
metric; SSA: Sessile serrated adenoma; SSA/Ps: Sessile serrated adenoma/polyps

Acknowledgments
Not applicable.

Funding

Support has been provided in part by the Arkansas Biosciences Institute
under grant ULTTR0O00039, NIH CA148068, NIH CA176130, the NIH IDeA
Networks of Biomedical Research Excellence (INBRE) grant P20GM103429,
and by Center for Translational Pediatric Research (CTPR) NIH Center of
Biomedical Research Excellence award P20GM121293. This work employed
the High Performance Computing (HPC) resources at the UALR Computational
Research Center that is supported by the following grants: National Science
Foundation grants CRI CNS-0855248, EPS-0701890, MRI CNS-0619069, and
OISE-0729792. None of the funding bodies had a role in the design of the
study and collection, analysis, and interpretation of data and in writing the
manuscript.

Availability of data and materials

The RNA-seq data set used in this study consists of a subset of the NCBI gene
expression omnibus (GEO) series with the accession number GSE76987.
The Illumina microarray data set used in this study is available in GEO
under the accession number GSE43841. The HP and SSA/P samples of the
Affymetrix microarray data set used in this study are available in GEO under
accession numbers GSE10714 and GSE45270, respectively. The nearest
shrunken centroid classifier implementation in R is available in the CRAN
package pamr (https://cran.r-project.org/web/packages/pamr/index.html).
Additional file 3: Text S1 provides R code and instructions on how to apply
the simple 13 gene signature to classify new gRT-PCR samples into either
HP or SSA/P. Additional file 1: Tables S2 and S3 provide normalized and
raw expression levels obtained by gRT-PCR from 45 independent FFPE sam-
ples and the classification result obtained using the 13 genes molecular
signature with different sample normalizations.

Authors’ contributions

YR processed raw data sets, performed the analyses, classifier design, feature
selection and wrote parts of the manuscript. MK and KL processed the FFPE
samples, obtained gene primers, performed gRT-PCR and obtained expression
levels for the thirteen genes in the molecular signature. HG, KL and LL searched
for and acquired the FFPE samples to validate the molecular signature. CH
headed the study, provided the RNA-seq data, contributed in writing the
manuscript and provided biological insights. GG performed the analyses,
classifier design, feature selection, characterized the differences between
HPs and SSA/Ps based on the analyses of DE genes and pathways and
wrote the manuscript. All authors read, revised, and approved the final
manuscript.

Page 16 of 18

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Department of Biomedical Informatics, University of Arkansas for Medical
Sciences, Little Rock, AR 72205, USA. “The Central Arkansas Veterans
Healthcare System, Little Rock, AR 72205, USA. *Department of Medicine,
Division of Gastroenterology and Hepatology, University of Arkansas for
Medical Sciences, Little Rock, AR 72205, USA. “Department of Pathology,
University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
°Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44195,
USA.

Received: 24 February 2017 Accepted: 14 December 2017
Published online: 28 December 2017

References

1. Zauber AG, Winawer SJ, O'Brien MJ, Lansdorp-Vogelaar |, van Ballegooijen
M, Hankey BF, Shi W, Bond JH, Schapiro M, Panish JF, et al. Colonoscopic
polypectomy and long-term prevention of colorectal-cancer deaths. N Engl
J Med. 2012;366:687-96.

2. Lieberman DA, Weiss DG, Bond JH, Ahnen DJ, Garewal H, Chejfec G. Use of
colonoscopy to screen asymptomatic adults for colorectal cancer. Veterans
affairs cooperative study group 380. N Engl J Med. 2000;343:162-8.

3. Levin B, Lieberman DA, McFarland B, Smith RA, Brooks D, Andrews KS, Dash
C, Giardiello FM, Glick S, Levin TR, et al. Screening and surveillance for the
early detection of colorectal cancer and adenomatous polyps, 2008: a joint
guideline from the American Cancer Society, the US multi-society task force
on colorectal cancer, and the American College of Radiology. CA Cancer J
Clin. 2008;58:130-60.

4. Quintero E, Castells A, Bujanda L, Cubiella J, Salas D, Lanas A, Andreu M,
Carballo F, Morillas JD, Hernandez C, et al. Colonoscopy versus fecal
immunochemical testing in colorectal-cancer screening. N Engl J Med.
2012;366:697-706.

5. Limketkai BN, Lam-Himlin D, Arnold MA, Arnold CA. The cutting edge of
serrated polyps: a practical guide to approaching and managing serrated
colon polyps. Gastrointest Endosc. 2013;77:360-75.

6. Kahi CJ, Hewett DG, Norton DL, Eckert GJ, Rex DK. Prevalence and variable
detection of proximal colon serrated polyps during screening colonoscopy.
Clin Gastroenterol Hepatol. 2011;9:42-6.

7. Torlakovic E, Snover DC. Serrated adenomatous polyposis in humans.
Gastroenterology. 1996;110:748-55.

8. Kahi CJ, Li X, Eckert GJ, Rex DK. High colonoscopic prevalence of proximal
colon serrated polyps in average-risk men and women. Gastrointest Endosc.
2012,75:515-20.

9. Abdeljawad K, Vemulapalli KC, Kahi CJ, Cummings OW, Snover DC, Rex DK.
Sessile serrated polyp prevalence determined by a colonoscopist with a
high lesion detection rate and an experienced pathologist. Gastrointest
Endosc. 2015,81:517-24.

10.  Erichsen R, Baron JA, Hamilton-Dutoit SJ, Snover DC, Torlakovic EE, Pedersen L,
Froslev T, Vyberg M, Hamilton SR, Sorensen HT. Increased risk of colorectal
cancer development among patients with serrated polyps. Gastroenterology.
2016;150:895-902. €895

11. 1) JE, Medema JP, Dekker E. Colorectal neoplasia pathways: state of the art.
Gastrointest Endosc Clin N Am. 2015;25:169-82.

12. Torlakovic E, Skovlund E, Snover DC, Torlakovic G, Nesland JM. Morphologic
reappraisal of serrated colorectal polyps. Am J Surg Pathol. 2003;27:65-81.

13.  Torlakovic EE, Gomez JD, Driman DK, Parfitt JR, Wang C, Benerjee T, Snover
DC. Sessile serrated adenoma (SSA) vs. traditional serrated adenoma (TSA).
Am J Surg Pathol. 2008;32:21-9.


dx.doi.org/10.1186/s12920-017-0317-7
https://cran.r-project.org/web/packages/pamr/index.html

Rahmatallah et al. BMC Medical Genomics (2017) 10:81

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

Lash RH, Genta RM, Schuler CM. Sessile serrated adenomas: prevalence of
dysplasia and carcinoma in 2139 patients. J Clin Pathol. 2010,63:681-6.
Rex DK, Ahnen DJ, Baron JA, Batts KP, Burke CA, Burt RW, Goldblum JR,
Guillem JG, Kahi CJ, Kalady MF, et al. Serrated lesions of the colorectum:
review and recommendations from an expert panel. Am J Gastroenterol.
2012;,107:1315-29. quiz 1314, 1330

Payne SR, Church TR, Wandell M, Rosch T, Osborn N, Snover D, Day RW,
Ransohoff DF, Rex DK. Endoscopic detection of proximal serrated lesions
and pathologic identification of sessile serrated adenomas/polyps vary on
the basis of center. Clin Gastroenterol Hepatol. 2014;12:1119-26.
Tinmouth J, Henry P, Hsieh E, Baxter NN, Hilsden RJ, Elizabeth McGregor S,
Paszat LF, Ruco A, Saskin R, Schell AJ, et al. Sessile serrated polyps at

screening colonoscopy: have they been under diagnosed? Am J Gastroenterol.

2014;109:1698-704.

Bettington M, Walker N, Clouston A, Brown |, Leggett B, Whitehall V. The
serrated pathway to colorectal carcinoma: current concepts and challenges.
Histopathology. 2013,;62:367-86.

De Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, de Jong
JH, de Boer OJ, van Leersum R, Bijlsma MF, et al. Poor-prognosis colon
cancer is defined by a molecularly distinct subtype and develops from
serrated precursor lesions. Nat Med. 2013;19:614-8.

Castaldi PJ, Dahabreh 1J, loannidis JP. An empirical assessment of validation
practices for molecular classifiers. Brief Bioinform. 2011;12:189-202.

Chang CQ, Tingle SR, Filipski KK, Khoury MJ, Lam TK, Schully SD, loannidis
JP. An overview of recommendations and translational milestones for
genomic tests in cancer. Genet Med. 2014;17:431-40.

Chibon F. Cancer gene expression signatures - the rise and fall? Eur J Cancer.
2013:49:2000-9.

Shi W, Bessarabova M, Dosymbekov D, Dezso Z, Nikolskaya T, Dudoladova M,
Serebryiskaya T, Bugrim A, Guryanov A, Brennan RJ, et al. Functional analysis of
multiple genomic signatures demonstrates that classification algorithms
choose phenotype-related genes. Pharmacogenomics J. 2010;10:310-23.

Su Z, Fang H, Hong H, Shi L, Zhang W, Zhang W, Zhang Y, Dong Z,
Lancashire LJ, Bessarabova M, et al. An investigation of biomarkers derived
from legacy microarray data for their utility in the RNA-seq era. Genome Biol.
2014;15:523.

Tarca AL, Lauria M, Unger M, Bilal E, Boue S, Kumar Dey K, Hoeng J, Koeppl H,
Martin F, Meyer P, et al. Strengths and limitations of microarray-based
phenotype prediction: lessons learned from the IMPROVER diagnostic
signature challenge. Bioinformatics. 2013;29:2892-9.

Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC,
Sabet H, Tran T, Yu X, et al. Distinct types of diffuse large B-cell lymphoma
identified by gene expression profiling. Nature. 2000;403:503-11.

Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, Fisher Rl,
Braziel RM, Rimsza LM, Grogan TM, et al. Prediction of survival in follicular
lymphoma based on molecular features of tumor-infiltrating immune cells.
N Engl J Med. 2004;351:2159-69.

Lascorz J, Chen B, Hemminki K, Forsti A. Consensus pathways implicated in
prognosis of colorectal cancer identified through systematic enrichment
analysis of gene expression profiling studies. PLoS One. 2011;6:218867.
Salazar R, Roepman P, Capella G, Moreno V, Simon |, Dreezen C, Lopez-Doriga A,
Santos C, Marijnen C, Westerga J, et al. Gene expression signature to
improve prognosis prediction of stage Il and Ill colorectal cancer. J Clin
Oncol. 2011;29:17-24.

Gray RG, Quirke P, Handley K, Lopatin M, Magill L, Baehner FL, Beaumont C,
Clark-Langone KM, Yoshizawa CN, Lee M, et al. Validation study of a
quantitative multigene reverse transcriptase-polymerase chain reaction
assay for assessment of recurrence risk in patients with stage Il colon
cancer. J Clin Oncol. 2011,29:4611-9.

Caruso M, Moore J, Goodall GJ, Thomas M, Phillis S, Tyskin A, Cheetham G,
Lerda N, Takahashi H, Ruszkiewicz A. Over-expression of cathepsin E and
trefoil factor 1 in sessile serrated adenomas of the colorectum identified by
gene expression analysis. Virchows Arch. 2009;454:291-302.

Gonzalo DH, Lai KK, Shadrach B, Goldblum JR, Bennett AE, Downs-Kelly E,
Liu X, Henricks W, Patil DT, Carver P, et al. Gene expression profiling of
serrated polyps identifies annexin A10 as a marker of a sessile serrated
adenoma/polyp. J Pathol. 2013,;230:420-9.

Delker DA, McGettigan BM, Kanth P, Pop S, Neklason DW, Bronner MP, Burt
RW, Hagedorn CH. RNA sequencing of sessile serrated colon polyps identifies
differentially expressed genes and immunohistochemical markers. PLoS One.
2014,9:e88367.

34,

35.

36.

37.

38.

39.

40.

42.

43.

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

Page 17 of 18

Glebov OK, Rodriguez LM, Nakahara K, Jenkins J, Cliatt J, Humbyrd CJ,
DeNobile J, Soballe P, Simon R, Wright G, et al. Distinguishing right from left
colon by the pattern of gene expression. Cancer Epidemiol Biomark Prev.
2003;12:755-62.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell.
2011;144:646-74.

Galamb O, Sipos F, Solymosi N, Spisak S, Krenacs T, Toth K, Tulassay Z,
Molnar B. Diagnostic mRNA expression patterns of inflamed, benign, and
malignant colorectal biopsy specimen and their correlation with peripheral
blood results. Cancer Epidemiol Biomark Prev. 2008;17:2835-45.

Saeys Y, Inza |, Larranaga P. A review of feature selection techniques in
bioinformatics. Bioinformatics. 2007:23:2507-17.

Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer
types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A.
2002,99:6567-72.

Kanth P, Bronner MP, Boucher KM, Burt RW, Neklason DW, Hagedorn CH,
Delker DA. Gene signature in sessile serrated polyps identifies colon cancer
subtype. Cancer Prev Res (Phila). 2016,9:456-65.

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H,
Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression
analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc.
2012,7:562-78.

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol.
2009;10:R25.

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U,
Speed TP. Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 2003;4:249-64.

Wang X, Spandidos A, Wang H, Seed B. PrimerBank: a PCR primer database
for quantitative gene expression analysis, 2012 update. Nucleic Acids Res.
2012;40:D1144-9.

Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F,
Speleman F, Vandesompele J. A novel and universal method for microRNA
RT-gPCR data normalization. Genome Biol. 2009;10:R64.

Li HJ, Ray SK, Singh NK;, Johnston B, Leiter AB. Basic helix-loop-helix
transcription factors and enteroendocrine cell differentiation. Diabetes Obes
Metab. 2011;13(Suppl 1):5-12.

Scolnick DM, Halazonetis TD. Chfr defines a mitotic stress checkpoint that
delays entry into metaphase. Nature. 2000,406:430-5.

Yu X, Minter-Dykhouse K, Malureanu L, Zhao WM, Zhang D, Merkle CJ, Ward
IM, Saya H, Fang G, van Deursen J, Chen J. Chfr is required for tumor
suppression and aurora a regulation. Nat Genet. 2005;37:401-6.

Cleven AH, Derks S, Draht MX, Smits KM, Melotte V, Van Neste L, Tournier B,
Jooste V, Chapusot C, Weijenberg MP, et al. CHFR promoter methylation
indicates poor prognosis in stage Il microsatellite stable colorectal cancer.
Clin Cancer Res. 2014;,20:3261-71.

Yamanami H, Shiozaki K, Wada T, Yamaguchi K, Uemura T, Kakugawa VY,
Hujiya T, Miyagi T. Down-regulation of sialidase NEU4 may contribute to
invasive properties of human colon cancers. Cancer Sci. 2007;98:299-307.
Samarajiwa SA, Forster S, Auchettl K, Hertzog PJ. INTERFEROME: the
database of interferon regulated genes. Nucleic Acids Res. 2009,37:D852-7.
de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH,
Williams BR. Functional classification of interferon-stimulated genes
identified using microarrays. J Leukoc Biol. 2001,69:912-20.

Carrega P, Campana S, Bonaccorsi |, Ferlazzo G. The Yin and Yang of innate
lymphoid cells in cancer. Immunol Lett. 2016;179:29-35.

Wang G, Yang X, Li C, Cao X, Luo X, Hu J. PIK3R3 induces epithelial-to-
mesenchymal transition and promotes metastasis in colorectal cancer. Mol
Cancer Ther. 2014;13:1837-47.

Zhang JX, Huang XX, Cai MB, Tong ZT, Chen JW, Qian D, Liao YJ, Deng HX,
Liao DZ, Huang MY, et al. Overexpression of the secretory small GTPase
Rab27B in human breast cancer correlates closely with lymph node
metastasis and predicts poor prognosis. J Transl Med. 2012;10:242.

Hamada S, Satoh K, Masamune A, Shimosegawa T. Regulators of epithelial
mesenchymal transition in pancreatic cancer. Front Physiol. 2012;3:254.

Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH. Indoleamine 2,3-dioxygenase-2; a
new enzyme in the kynurenine pathway. Int J Biochem Cell Biol. 200941:467-71.
Fallarino F, Grohmann U, Vacca C, Orabona C, Spreca A, Fioretti MC, Puccetti P.
T cell apoptosis by kynurenines. Adv Exp Med Biol. 2003;527:183-90.
Uyttenhove C, Pilotte L, Theate |, Stroobant V, Colau D, Parmentier N, Boon T,
Van den Eynde BJ. Evidence for a tumoral immune resistance mechanism



Rahmatallah et al. BMC Medical Genomics (2017) 10:81

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med.
2003,9:1269-74.

Opitz CA, Litzenburger UM, Opitz U, Sahm F, Ochs K, Lutz C, Wick W, Platten M.

The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan
upregulates IDO1 in human cancer cells. PLoS One. 2011;6:219823.

lansante V, Choy PM, Fung SW, Liu Y, Chai JG, Dyson J, Del Rio A, D'Santos C,
Williams R, Chokshi S, et al. PARP14 promotes the Warburg effect in
hepatocellular carcinoma by inhibiting JNK1-dependent PKM2
phosphorylation and activation. Nat Commun. 2015,6:7882.

Bao J, Ni'Y, Qin H, Xu L, Ge Z, Zhan F, Zhu H, Zhao J, Zhou X, Tang X, Tang L.
Rab27b is a potential predictor for metastasis and prognosis in colorectal
cancer. Gastroenterol Res Pract. 2014;2014:913106.

Hendrix A, Maynard D, Pauwels P, Braems G, Denys H, Van den Broecke R,
Lambert J, Van Belle S, Cocquyt V, Gespach C, et al. Effect of the secretory
small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J
Natl Cancer Inst. 2010;102:866-80.

Li J, Weinberg MS, Zerbini L, Prince S. The oncogenic TBX3 is a downstream
target and mediator of the TGF-betal signaling pathway. Mol Biol Cell.
2013;24:3569-76.

Shan ZZ, Yan XB, Yan LL, Tian Y, Meng QC, Qiu WW, Zhang Z, Jin ZM.
Overexpression of Thx3 is correlated with epithelial-Mesenchymal transition
phenotype and predicts poor prognosis of colorectal cancer. Am J Cancer
Res. 2015;5:344-53.

Baron KD, Al-Zahrani K, Conway J, Labreche C, Storbeck CJ, Visvader JE,
Sabourin LA. Recruitment and activation of SLK at the leading edge of
migrating cells requires Src family kinase activity and the LIM-only protein 4.
Biochim Biophys Acta. 1853,2015:1683-92.

Byrne JA, Frost S, Chen Y, Bright RK. Tumor protein D52 (TPD52) and
cancer-oncogene understudy or understudied oncogene? Tumour Biol.
2014;35:7369-82.

Owens SR, Chiosea SI, Kuan SF. Selective expression of gastric mucin
MUCE6 in colonic sessile serrated adenoma but not in hyperplastic
polyp aids in morphological diagnosis of serrated polyps. Mod Pathol.
2008;21:660-9.

Bartley AN, Thompson PA, Buckmeier JA, Kepler CY, Hsu CH, Snyder MS,
Lance P, Bhattacharyya A, Hamilton SR. Expression of gastric pyloric mucin,
MUCS, in colorectal serrated polyps. Mod Pathol. 2010;23:169-76.

Gibson JA, Hahn HP, Shahsafaei A, Odze RD. MUC expression in hyperplastic
and serrated colonic polyps: lack of specificity of MUC6. Am J Surg Pathol.
2011;35:742-9.

Oshimori N, Ohsugi M, Yamamoto T. The PIk1 target Kizuna stabilizes mitotic
centrosomes to ensure spindle bipolarity. Nat Cell Biol. 2006;8:1095-101.

Lagal V, Abrivard M, Gonzalez V, Perazzi A, Popli S, Verzeroli E, Tardieux I.
Spire-1 contributes to the invadosome and its associated invasive properties. J
Cell Sci. 2014;127:328-40.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification
of biology. The gene ontology consortium. Nat Genet. 2000,25:25-9.
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P,
Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics.
2011;27:1739-40.

Wu D, Lim E, Vaillant F, Asselin-Labat ML, Visvader JE, Smyth GK. ROAST:
rotation gene set tests for complex microarray experiments. Bioinformatics.
2010;26:2176-82.

Weiss A, Attisano L. The TGFbeta superfamily signaling pathway. Wiley
Interdiscip Rev Dev Biol. 2013;2:47-63.

Rahmatallah Y, Emmert-Streib F, Glazko G. Gene sets net correlations
analysis (GSNCA): a multivariate differential coexpression test for gene sets.
Bioinformatics. 2014;30:360-8.

Rahmatallah Y, Zybailov B, Emmert-Streib F, Glazko G. GSAR: bioconductor
package for gene set analysis in R. BMC Bioinf. 2017;18:61.

McVey M, Lee SE. MMEJ repair of double-strand breaks (director's cut):
deleted sequences and alternative endings. Trends Genet. 2008,24:529-38.
Ishigooka S, Nomoto M, Obinata N, Oishi Y, Sato Y, Nakatsu S, Suzuki M,
lkeda Y, Maehata T, Kimura T, et al. Evaluation of magnifying colonoscopy in
the diagnosis of serrated polyps. World J Gastroenterol. 2012;18:4308-16.
Manning S, Batterham RL. The role of gut hormone peptide YY in energy and
glucose homeostasis: twelve years on. Annu Rev Physiol. 2014;76:585-608.
El-Salhy M, Mazzawi T, Gundersen D, Hatlebakk JG, Hausken T. The role of
peptide YY in gastrointestinal diseases and disorders (review). Int J Mol
Med. 2013;31:275-82.

82.

83.

84.

85.

86.

87.

88.

89.

90.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Page 18 of 18

Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of
microarray gene-expression data. Proc Natl Acad Sci U S A. 2002;,99:6562-6.
Simon R. Roadmap for developing and validating therapeutically relevant
genomic classifiers. J Clin Oncol. 2005;23:7332-41.

Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L.
Differential analysis of gene regulation at transcript resolution with RNA-seq.
Nat Biotechnol. 2013;31:46-53.

Fumagalli D, Blanchet-Cohen A, Brown D, Desmedt C, Gacquer D, Michiels S,
Rothe F, Majjaj S, Salgado R, Larsimont D, et al. Transfer of clinically relevant
gene expression signatures in breast cancer: from Affymetrix microarray to
lllumina RNA-sequencing technology. BMC Genomics. 2014;15:1008.

Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an
assessment of technical reproducibility and comparison with gene
expression arrays. Genome Res. 2008;18:1509-17.

Wang C, Gong B, Bushel PR, Thierry-Mieg J, Thierry-Mieg D, Xu J, Fang H,
Hong H, Shen J, Su Z, et al. The concordance between RNA-seq and
microarray data depends on chemical treatment and transcript abundance.
Nat Biotechnol. 2014;32:926-32.

Zhao P, HZ Y, Cai JH. Clinical investigation of TROP-2 as an independent
biomarker and potential therapeutic target in colon cancer. Mol Med Rep.
2015;12:4364-9.

Fang YJ, ZH L, Wang GQ, Pan ZZ, Zhou ZW, Yun JP, Zhang MF, Wan DS.
Elevated expressions of MMP7, TROP2, and survivin are associated with
survival, disease recurrence, and liver metastasis of colon cancer. Int J Color
Dis. 2009;24:875-84.

Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ Jr, Vahdat LT, Thomas
SS, Govindan SV, Maliakal PP, Wegener WA, et al. First-in-human trial of a novel
anti-Trop-2 antibody-SN-38 conjugate, Sacituzumab Govitecan, for the
treatment of diverse metastatic solid tumors. Clin Cancer Res. 2015;21:3870-8.
Pope JL, Ahmad R, Bhat AA, Washington MK, Singh AB, Dhawan P. Claudin-1
overexpression in intestinal epithelial cells enhances susceptibility to
adenamatous polyposis coli-mediated colon tumorigenesis. Mol Cancer.
2014,13:167.

Kim JC, Ha YJ, Tak KH, Roh SA, Kim CW, Kim TW, Kim SK, Kim SY, Cho DH,
Kim YS. Complex behavior of ALDHTAT and IGFBP1 in liver metastasis from
a colorectal cancer. PLoS One. 2016;11:¢0155160.

Xiong S, Tu H, Kollareddy M, Pant V, Li Q, Zhang VY, Jackson JG, Suh YA,
Elizondo-Fraire AC, Yang P, et al. Pla2g16 phospholipase mediates gain-of-
function activities of mutant p53. Proc Natl Acad Sci U S A. 2014;111:11145-50.
Chen J, Lan T, Zhang W, Dong L, Kang N, Zhang S, Fu M, Liu B, Liu K, Zhan
Q. Feed-forward reciprocal activation of PAFR and STAT3 regulates
epithelial-Mesenchymal transition in non-small cell lung cancer. Cancer Res.
2015;75:4198-210.

Walpole R, Myers R, Myers S. Probability and statistics for engineers and
scientists. Upper Saddle River: Prentice Hall; 1998.

Savage R. Probability inequalities of the Tchebycheff type. J Res Nat Bur
Stds. 1961,65B:211-26.

Higuchi T, Jass JR. My approach to serrated polyps of the colorectum. J Clin
Pathol. 2004,57:682-6.

Beggs AD, Jones A, Shepherd N, Arnaout A, Finlayson C, Abulafi AM,
Morton DG, Matthews GM, Hodgson SV, Tomlinson IP. Loss of expression
and promoter methylation of SLIT2 are associated with sessile serrated
adenoma formation. PLoS Genet. 2013,9:¢1003488.

Shon WJ, Lee YK, Shin JH, Choi EY, Shin DM. Severity of DSS-induced colitis
is reduced in Ido1-deficient mice with down-regulation of TLR-MyD88-NF-kB
transcriptional networks. Sci Rep. 2015;5:17305.

Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L,
Metz R, Muller AJ. Indoleamine 2,3-dioxygenase pathways of pathogenic
inflammation and immune escape in cancer. Cancer Immunol Immunother.
2014,63:721-35.

Prendergast GC, Metz R, Muller AJ. Towards a genetic definition of cancer-
associated inflammation: role of the IDO pathway. Am J Pathol. 2010;176:2082-7.
Hewish M, Lord CJ, Martin SA, Cunningham D, Ashworth A. Mismatch repair
deficient colorectal cancer in the era of personalized treatment. Nat Rev
Clin Oncol. 2010;7:197-208.

. Pavelitz T, Renfro L, Foster NR, Caracol A, Welsch P, Lao W, Grady W8,

Niedzwiecki D, Saltz LB, Bertagnolli MM, et al. MRE11-deficiency associated
with improved long-term disease free survival and overall survival in a
subset of stage Ill colon cancer patients in randomized CALGB 89803 trial.
PLoS One. 2014;9:2108483.



	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	RNA-seq training data set
	Illumina microarrayy testing data set
	Affymetrix testing data set
	Biospecimens for independent validation studies
	Differential expression analysis
	Feature selection step (concordant genes)
	Building the classifier
	Classification of independent FFPE samples

	Results
	Expression analysis
	Filtering steps
	Characteristic differences between SSA/Ps and other samples
	Pathways, differentially expressed between SSA/Ps and HP, CR samples
	Pathways, differentially co-expressed between SSA/Ps and HP, CR samples

	Molecular classifiers
	Feature normalization
	Feature selection step
	Classifier design and gene signatures
	Smallest successful signature
	Summary metric with class probability

	Independent validation and clinical diagnostic tool

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

