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Abstract

Background: Controlling complex molecular regulatory networks is getting a growing attention as it can
provide a systematic way of driving any cellular state to a desired cell phenotypic state. A number of recent
studies suggested various control methods, but there is still deficiency in finding out practically useful control
targets that ensure convergence of any initial network state to one of attractor states corresponding to a
desired cell phenotype.

Results: To find out practically useful control targets, we introduce a new concept of phenotype control
kernel (PCK) for a Boolean network, defined as the collection of all minimal sets of control nodes having their
fixed state values that can generate all possible control sets which eventually drive any initial state to one of
attractor states corresponding to a particular cell phenotype of interest. We also present a detailed method
with which we can identify PCK in a systematic way based on the layered network and converging tree of a
given network. We identify all candidates for control nodes from the layered network and then hierarchically
search for all possible minimal sets by using the converging tree. We show the usefulness of PCK by applying
it to cell proliferation and apoptosis signaling networks and comparing the results with other control methods. PCK is
the unique control method for Boolean network models that can be used to identify all possible minimal sets of control
nodes. Interestingly, many of the minimal sets have only one or two control nodes.

Conclusions: Based on the new concept of PCK, we can identify all possible minimal sets of control nodes that can
drive any molecular network state to one of multiple attractor states representing a same desired cell phenotype.

Keywords: Biological network, Boolean network model, Attractor, Basin, Target control, Network control, Phenotype
control kernel, Layered network, Converging tree

Background
The ultimate goal of systems biology is to control a cellular
state which is determined by the dynamics of the underlying
molecular regulatory network. Here, the cellular state transi-
tion dynamics is governed by both topology (structural
information on interaction between molecules) and regula-
tory functions (operations of the types of interactions).
There have been attempts (presented by various ‘con-

trol methods’) to find out ‘control nodes’ that can drive
the network state to a desired one by fixing the state
values of the control nodes or directly controlling the
control nodes with external signals. One attempt was to
find out a dominating set from the topology of

undirected networks [1–7], which is defined as a set of
central nodes that are connected to all the other nodes
in undirected networks. Another bunch of works sug-
gested driver nodes [8, 9], steering kernel [10] and feed-
back vertex sets [11, 12] based only on the topology of
directed networks. To drive any given initial state com-
posed of all the nodes in the network into any other final
state within a finite time (‘full control’), it is enough to
control driver nodes in [8] with external input signals
directly acting on the driver nodes, where the dynamics
of the network is modelled by a system of linear differ-
ential equations and the signals can be explicitly defined.
The control method in [9] was developed to find out
driver nodes to drive some nodes of interest instead of
all the nodes as in [8], which can be considered as a
generalization of [8] and is called ‘target control’ com-
pared to full control. For transition between two specific
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states of a network instead of any two states as in [8],
the structure-based method in [10] can be used where
the dynamics is also modelled by a system of linear dif-
ferential equations. It is possible that fewer nodes are
enough to control some networks by using the methods
in [9, 10] than in [8]. The strategy in [11, 12] is to make
a given network acyclic by removing its feedback loops,
where the removal is implemented by fixing state values
of some nodes in the loops. When applying the
structure-based method in [11, 12], the dynamics is
modelled by a system of first order differential equations
and the fixed values must be the values of the nodes in
the desired attractor, where the point attractor for the
differential equations is defined as a vector composed of
all the node values at which the first derivatives of the
nodes are zero. Despite the differential equations used in
[11, 12] must satisfy some properties, the equations can
be nonlinear.
Although the control methods based only on the top-

ology can provide control nodes for a large size of net-
works, topology itself is not enough to identify control
nodes that can ensure transition towards a desired
attractor, which was shown by using Boolean network
models [13]. Note that the Boolean attractor is defined
as a set of vectors of Boolean state values of all the
nodes that is closed with respect to transition (i.e., if a
state vector is in the set, then next state vector is also in-
cluded in the set). So, a number of other studies were
carried out to use regulatory functions of the network in
finding out control nodes. The control method in [14]
was developed for continuous models as in [8–12]
whose goal is to identify a sequence of perturbations to
the undesired state of the system that can drive it to the
attraction basin of the desired stable state, where the
basin is the set of states converging to the desired state.
However, there is no efficient algorithm of finding out
the exact basin. Among various types of regulatory func-
tions, the Boolean function is particularly useful for
modeling large-scale regulatory networks as it is a
parameter-free logical function and thereby we can avoid
parameter estimation which is often a critical limitation
in mathematical modeling of such large-scale networks
[15–17], so many control methods for Boolean network
models were developed [18–25]. The basic idea in [18] is
to numerically find out a minimal control set by using a
genetic algorithm. The control method integrating the
structure of a given network and the Boolean regulatory
functions was developed in [19] by using both min-
imal strongly connected components and their fixed
points of the Boolean model. The approach in [19] is
based on the concept in [20]. The desired final state
used in the control methods in [18–20] must be a
Boolean attractor before applying the control
methods, but there is no such restriction on the

desired final state in [21–25] as in [8–10]. The state
values of control nodes found in [18–20] and [21–25]
are fixed and directly controlled with external Bool-
ean inputs as in [11, 12] and [8–10], respectively.
Given a set of external control nodes for a Boolean
network which has a tree structure, the polynomial
time algorithm in [21] and integer programming-
based approach in [22] were introduced to find out a
sequence of the state values of the external control
nodes to force an initial state to transit toward a de-
sired state within desired time steps. Necessary and
sufficient conditions for controllability and observabil-
ity of Boolean control networks are considered in
[23] based on semi-tensor product of matrices, which
is a new matrix product and requires high computa-
tional cost. The control method in [24] is based on
computational algebra, which forces the desired state
to become a fixed point attractor. This method is
only applicable to the case of controlling a desired
state to become a point attractor. To avoid undesir-
able state transitions, edge-deletion strategy can be
applied as in [25].
In most cases, there are multiple attractor states

corresponding to a particular cell phenotype of inter-
est, which is defined by the state values of some
nodes instead of all nodes. So, in case a control
method for Boolean models is to drive a given net-
work state to converge to any attractor corresponding
to the phenotype, the desired final state depends only
on the state values of the phenotype nodes instead of
all nodes, which is a type of target control as in [9]
for continuous models. However, there is no such tar-
get control method for Boolean network models as
far as we know. In addition, there can be multiple
control sets, which is the set of control nodes, for a
given network and so we need target control methods
whose goal is to find out all possible control sets, but
there is no such target control method yet. Therefore,
in this paper, we present a novel and practical target
control method for Boolean network models with
which we can identify all minimal control sets and
show its usefulness by applying it to biological net-
work examples.

Results
The layered network and converging tree of an example
network
To illustrate the main idea, let us consider a Boolean
network model of a small size with a unique phenotype
node P and update rules as shown in Fig. 1a where the
desired phenotype value is P = 0. The procedure of find-
ing minimal control sets for P = 0 is largely composed of
two parts: The first part is hierarchically constructing a
layered network (Fig. 1b) from the given network
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(Fig. 1a), where each layer consists of nodes of the
given network. The second part is hierarchically find-
ing out minimal control sets (Fig. 2a-d) and con-
structing the converging tree (Fig. 2e) which consists
of the minimal control sets.
The layered network can be constructed as follows.

The 0th layer of the layered network (Fig. 1b) is com-
posed of the phenotype node P. The input nodes to P
are C and E, which comprise the 1st layer. Likewise,
among the nodes of A, B, D and F which are not used in

the 0th nor 1st layer, the input nodes to C or E are B, D
and F, which comprise the 2nd layer. Finally, the
remaining node A is an input node to D, so the 3rd layer
is composed only of A. Since there is no remaining input
node to a node in the 3rd layer, the 4th layer does not
exist and therefore the 3rd layer becomes the last layer
in the layered network. The step-by-step procedure for
construction of the layered network implies the unique-
ness of the layered network. Using the layered network,
we can separate the nodes in a given network into two

Fig. 1 An example network and its layered network. a An example network with its update rules, where the symbols ‘&, |, !’ are used instead of
the Boolean operators ‘AND, OR, NOT’, respectively. We use the symbol ‘*’ to denote the state value of a node at time t + 1. For example, the
update rule A* = F denotes A(t + 1) = F(t). b We arrange nodes in the example network to locate the phenotype node P at the bottom, the 0th
layer. The input nodes C and E to the node P are located just above P, which comprise the 1st layer. The input nodes B, D and F to either C or E
are located just above C and E, which comprise the 2nd layer. The input node A to D is located just above D, which comprises the 3rd layer.
Black arrows have directions toward the rooted node. A black arrow denotes a link pointing from a node in the (i + 1)th layer to a node in the ith

layer. The other links are denoted by red dotted arrows

Fig. 2 Converging tree of the example network. a The desired phenotype value P = 0 in the 0th level. b The signals for {P = 0} in the 0th level are
{C = 0} and {E = 0}. The left box denotes the two solutions {C = 0} and {E = 0} of the eq. 0 = C&E coming from the update rule P* = C&E for P. The
two solutions are the children sets of the 0th-level parent set {P = 0} in the right tree. c The signals for {C = 0} and signals for {E = 0} in the 1st
level. The signals for {C = 0} are obtained from the update rule C* = (!B)&D&E and they are {B = 1}, {D= 0} and {E = 0}, solutions of the eq. 0 = (!B)&D&E. Similarly
the signal for {E = 0} is the unique solution {(D, F) = (0,0)} of the eq. 0 =D|F obtained from the update rule E* =D|F. The four solutions are children sets in the
2nd level. Each control set with a dotted circle denotes a removed control set that is found by using the two removal rules. The term ‘leaf {E = 0}’means that
{E = 0} is a leaf set. The meanings of terms and symbols in (d) are the same as those in (c). e The final converging tree with six control sets up to the last level
(see Additional file 1 for details)
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groups: One is the set of nodes which have an influence
on the phenotype nodes and the other is the set of nodes
which have no influence. The two groups are presented
for a simplified mitogen-activated protein kinase net-
work. In addition, to find out a minimal control set con-
taining a control node ϒ of interest, we can use the
information of the location of the node ϒ in the layered
network, which is shown for a simplified cancer cell sig-
naling network. In particular, information on the influ-
ential nodes obtained from the layered network is used
to implement the algorithm for construction of the con-
verging tree. We can then find out minimal control sets
in the converging tree by hierarchically applying neces-
sary and sufficient conditions for the phenotype node to
have the desired value as follows:
Step 0. Determine the desired value of the phenotype

node. The 0th level of the converging tree (Fig. 2e) is the
singleton set {P = 0} of the desired steady state value of
the phenotype node P (Fig. 2a). For simplicity, we use
the notation {P = 0} instead of the set {P|P = 0}.
Step 1. Find children sets in the 1st level of the

converging tree that directly generate the parent set
{P = 0} in the 0th level. To define the concepts of
child and parent sets, let us consider that a minimal
control set S1 is located in the ith level. If inserting S1
into the update rules results in a minimal control set
S2 in the (i − 1)th level, then the minimal control set
S1 is called the child set of the parent set S2. The
parent set of S2 is also called the ancestor set of S1.
We often omit the term ‘minimal’ in ‘minimal control
sets’ if there is no confusion. The candidate nodes of
the children sets of {P = 0} are P, C and E because of
P* = C&E. Then the steady state value P = 0 is directly
generated by substituting one of the three
perturbations {P = 0}, {C = 0} and {E = 0} to the update
rules (Fig. 1a) and, as a result, these three
perturbation targets constitute the control sets in the
1st level. For a new child set S, we apply the
following two rules of removing ‘included’ control
sets or ‘contradictory’ children sets to both S ∪ Sbefore

and Sancester, where Sbefore is the union of control sets
found in the previous process and Sancester the union
of the parent and ancestor sets of the child set S:

(1) The first rule is to remove ‘included’ control sets in
the set S∪ Sbefore (see the first removal rule in
Methods for details).

(2) The second rule is to remove S if the value of a
control node N in S is ‘contradictory’ to the value
of the control node N in Sancester(see the second
removal rule in Methods for details).

For the control set S={P = 0} in the 1st level, we apply
the removal rules to S ∪ Sbefore = {P = 0}∪{P = 0} = {P = 0}

and Sancester = {P = 0} and, as a result, {P = 0} in the 1st
level is included in {P = 0} in the 0th level. Therefore,
the control set {P = 0} in the 1st level is removed by the
first rule. For the control set S={C = 0} in the 1st level,
we apply the removal rules to S ∪ Sbefore={C = 0}∪{P = 0}
and Sancester={P = 0} and, as a result, we find that no
control set is removed until the 1st level except {P = 0}
in the 1st level. Similarly, in the case of S={E = 0} in the
1st level, we have S ∪ Sbefore={E = 0}∪{C = 0}∪{P = 0} and
Sancester={P = 0}, and therefore we find that no control
set is removed until the 1st level except {P = 0} in the 1st
level. As a result, the 1st level consists of two control
sets {C = 0} and {E = 0} which are referred to as signals
for the control set {P = 0} in the 0th level (Fig. 2b). In
the following, for a singleton and parent set {K = 0}, we
exclude such a node K from the candidate nodes of its
children sets. Since the level of the minimal control set
{C = 0} is the 1st level, {C = 0} can directly control the
phenotype value P = 0 in the 0th level.
Step 2. Find children sets that directly generate each

parent set in the 1st level. Since there exist two parent
sets {C = 0} and {E = 0} in the 1st level (Fig. 2b), the chil-
dren sets can be found for each parent set (Fig. 2c).
Step2–1. Parent set {C = 0} in the 1st level. The candi-

date nodes of the children sets are B, D and E because
of the update rule C* = (!B)&D&E for the node C. Then
the steady state value C = 0 is directly generated by sub-
stituting one of the three perturbations {B = 1}, {D = 0},
{E = 0} to the update rule. Applying the first removal
rule, we find that {E = 0} in the 2nd level is removed due
to {E = 0} in the 1st level and that the remaining control
sets in the 2nd level are {B = 1} and {D = 0}.
Step2–2. Parent set {E = 0} in the 1st level. The candi-

date nodes are D and F because of the update rule E* =
D|F. Then the steady state value E = 0 is directly generated
by substituting the perturbation {(D, F) = (0,0)} to the up-
date rule. Applying the first removal rule, we find that
{(D,F) = (0,0)} in the 2nd level is removed due to {D = 0} in
the 2nd level and that the parent set {E = 0} in the 1st level
does not have a child set, resulting in that {E = 0} becomes
a leaf set in the 1st level.
The control sets in the 2nd level are {B = 1} and {D= 0}

which are referred to as signals for the parent set {C= 0} in
the 1st level. Since the level of the minimal control set {B = 1}
is the 2nd level, {B = 1} can indirectly control the phenotype
value P= 0 in the 0th level via the parent set {C = 0} in the
1st level. Following the similar process, we can construct the
converging tree in Fig. 2e (see Additional file 1 for details). Fi-
nally, we find out six minimal control sets: {C = 0} and {E = 0}
in the 1st level, {B = 1} and {D= 0} in the 2nd level (children
sets of {C= 0}), {A = 0} in the 3rd level (child set of {D= 0}),
and {F = 0} in the last level (child set of {A = 0}).
Using the converging tree, we find out that the min-
imal control set {F = 0} generates the minimal control
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sets which are the parent or ancestor sets {A = 0}, {D = 0}
and {C = 0}. Since all possible sets of control targets must
contain at least one minimal control set (see the proof in
Additional file 1), we call the collection of such minimal
control sets ‘phenotype control kernel (PCK)’ for a given
Boolean network model. Therefore, PCK consists of six
minimal control sets in this case,

PCK ¼ C ¼ 0f g; E ¼ 0f g; B ¼ 1f g; D ¼ 0f g; A ¼ 0f g; F ¼ 0f g½ �:

Two biological network models
We apply our method to two biological network models.
The first one is the mitogen-activated protein kinase
(MAPK) model [26] with 53 nodes and 88 links, where
Boolean update rules are described with logic functions
(the first tab in Additional file 2). To show that our
method can also be applied to models with threshold
functions instead of logic functions, we employed an-
other cancer cell signaling network model [27] of 96
nodes and 265 links, where the Boolean update rules are
described with threshold functions (the first tab in
Additional file 3).

The simplified MAPK network and control strategy
The MAPK model has four stimuli (DNA_damage,
EGFR_stimulus, FGFR3_stimulus, TGFBR_stimulus) and
three phenotype nodes (Apoptosis, Growth_Arrest, Pro-
liferation) (Additional file 4: Figure S1).
We use the four input values (DNA_damage, EGFR_

Stimulus, FGFR3_Stimulus, TGFBR_Stimulus) = (0,1,1,0),
where the input values represent proliferative conditions.
The MAPK model with these input values has five
attractors for 1000 random initial states, where the value
of Proliferation in each attractor is not fixed as Prolifera-
tion = 1. So, to make a proper cancer state space in
which all attractors have Proliferation = 1, we consider
typical oncogenic mutations (p53, PI3K, RAS, CREB,
PPP2CA) = (0,1,1,1,0) as well as the input values. By ap-
plying these input values and mutations to the original
update rules, we find that all attractors have.

Apoptosis;Growth Arrest; Proliferationð Þ ¼ 0; 0; 1ð Þ;
which indicates that all attractors represent a prolifera-

tion phenotype. Hence, we find that any initial state of
the MAPK network will converge to a cancer state under
this condition (the last tab in Additional file 2).
To identify control targets under the aforementioned

condition, we first need to determine how to represent
the mutations in the MAPK network. For this purpose,
let us consider the cancer therapies targeting oncogene
addiction and synthetic lethality effects [28]: A cancer
therapy targeting the oncogene addiction identifies a
mutated gene and attempts to suppress oncogenic signal

from the mutated gene [29]. Similarly, to represent the
control situation in the MAPK network, we consider
two mutant PPP2CA and CREB as input nodes generat-
ing oncogenic signals. As a result, we consider MEK1_2,
ERK, p70, DUSP1, p38, MSK and MYC in the down-
stream of the two mutants as control targets that can
suppress the oncogenic signals from CREB and PPP2CA.
Recently, synthetic lethality is targeted as an alterna-

tive of anti-cancer therapy. This approach is not based
on perturbation of a single gene but simultaneous per-
turbation of more than one gene which causes death of
cancer cells [30, 31]. In our case, to find out such syn-
thetic lethal pair, we can first substitute state values of
the mutant p53, PI3K and RAS as well as the four input
values into the original update rules, which results in the
nonzero value of proliferation node. Then, the control
node identified by our method for the desired value Pro-
liferation = 0 can be a synthetic lethality partner for one
of p53, PI3K and RAS. After the aforementioned repre-
sentation of the five mutations in the MAPK network,
we find the fixed state values of 24 nodes and the
simplified update rules for 29 nodes (the fourth tab
in Additional file 2). We refer to the network
obtained from the simplified update rules as a simpli-
fied MAPK network which has only one phenotype
node Proliferation (the green node in Fig. 3) and two
input nodes (CREB, PPP2CA) marked with yellow
balls in Fig. 3. Since the mutations (CREB, PPP2CA)
= (1,0) drive the simplified MAPK network to have
(Apoptosis, Growth_Arrest, Proliferation) = (0,0,1), the
simplified MAPK network can be called a cancer cell
signaling network. Therefore, using the simplified net-
work, we can identify control targets including [1]
targets for suppressing oncogenic signal flow from
CREB and PPP2CA and [2] targets for inducing syn-
thetic lethality with p53, PI3K and RAS.
Let us consider a case that we can only control non-

phenotype nodes except CREB and PPP2CA in the simpli-
fied MAPK network and that we cannot change the deter-
mined phenotypic values (Apoptosis, Growth_Arrest)
= (0,0) whereas we can obtain Proliferation = 0 by control-
ling some of the 26 nodes. In this case, the goal of control
is to stop proliferation in the original network, indicating
that all attractors of the original network should have the
phenotypic values (Apoptosis, Growth_Arrest, Prolifera-
tion) = (0,0,0). To achieve this goal, we apply our method
to the simplified MAPK network model and, as a result,
we can find all control sets.

The layered network of the simplified MAPK network
The nodes of the simplified MAPK network can be fur-
ther partitioned according to where the nodes are
located in the layered network as shown in Fig. 3, where
14 red nodes are the candidates for control nodes for
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the desired value of the phenotype node Proliferation
(the green node in Fig. 3). On the other hand, any per-
turbation of the other 12 white nodes in Fig. 3 cannot
drive the network to have the desired value of
Proliferation.

The converging tree of the simplified MAPK network
In the following, we describe the construction procedure
of the converging tree step by step.
Step 0. Determine the desired value of the phenotype

node. Given the input values and mutations, any initial
state converges to a cancer state with (Apoptosis, Growth_
Arrest, Proliferation) = (0,0,1). Since we cannot change the
steady state values (Apoptosis, Growth_Arrest) = (0,0) but
can only change the Proliferation node by controlling the
simplified MAPK network, the desired steady state value of
Proliferation is Proliferation = 0, which is located in the 0th
level of the converging tree as shown in Fig. 4.
Step1. Find children sets that directly generate the

parent set {Proliferation = 0} in the 0th level. Since
the possible control nodes in the 1st level are input
nodes to Proliferation, we find that the candidates for
control nodes are p70 and MYC from Proliferation* =
p70&MYC. Then the steady state value Proliferation
= 0 is determined by one of the two perturbations
{p70 = 0} and {MYC = 0}. Applying the two removal
rules, we find that no control set is removed up to
the present level. Therefore the 1st level consists of
{p70 = 0} and {MYC = 0}.

Step2. Find children sets that directly generate each
parent set in the 1st level. Since the 1st level contains
two parent sets {p70 = 0} and {MYC = 0}, the children
sets can be found for each parent set.
Step2–1. Parent set {p70 = 0} in the 1st level. The pos-

sible control node is ERK because of p70* = ERK. Then
the steady state value p70 = 0 is determined by {ERK = 0}.
Applying the two removal rules, we find that no control
set is removed up to the present level.
Step2–2. Parent set {MYC = 0} in the 1st level. The

possible control node is MSK because of MYC* =MSK.
Then the steady state value MYC = 0 is determined by
the perturbation {MSK = 0}. Applying the two removal
rules, we find that no control set is removed up to the
present level.
It follows from Step2–1 and Step2–2 that the control

sets in the 2nd level are {ERK = 0} and {MSK = 0}.
Step3. Find children sets that directly generate each

parent set in the 2nd level. The 2nd level contains two
control sets {ERK = 0} and {MSK = 0}. We then follow
the two steps as in Step 2.
Step3–1. Parent set {ERK = 0} in the 2nd level. The

possible control node is MEK1_2 because of ERK* =
MEK1_2. Then the steady state value ERK = 0 is de-
termined by {MEK1_2 = 0}. Applying the two removal
rules, we find that no control set is removed up to
the present level.
Step3–2. Parent set {MSK = 0} in the 2nd level. The

candidates for control nodes are ERK and p38 because

Fig. 3 Layered network of the simplified MAPK network. The layered network defined in Methods consists of green, yellow and red nodes in all 6
layers, where the yellow nodes denote mutated CREB and PPP2CA and 14 red nodes can be candidates for control nodes for the desired value
of the phenotype node Proliferation. The other 12 white nodes denote those nodes that are not layered nodes
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of MSK* = ERK|p38. Then the steady state value MSK =
0 is determined by the perturbation {(ERK, p38) = (0,0)}.
Applying the first removal rule, we find that {(ERK, p38)
= (0,0)} is removed since the control set {ERK = 0} exists
in the 2nd level. Thus {MSK = 0} becomes a leaf set in
the 2nd level.
It follows from Step3–1 and Step3–2 that the control

set in the 3rd level is {MEK1_2 = 0}.
Step4. Find children sets that directly generate the par-

ent set {MEK1_2 = 0} in the 3rd level. The candidates for
control nodes are PPP2CA and AP1 because of MEK1_
2* =!(PPP2CA|AP1), which is simplified as MEK1_2*
=!AP1 from the mutation PPP2CA = 0. Then the steady
state value MEK1_2 = 0 is determined by {AP1 = 1}.
Applying the two removal rules, we find that no control
set is removed up to the present level. Therefore the 4th
level has only one control set {AP1 = 1}.
Following the similar procedure with the two removal

rules, we can obtain the converging tree in Fig. 4 (see Add-
itional file 5 for the other levels).

Comparison with other control methods
Our method can be considered as a target control
method for Boolean network models, which drives some
target nodes of interest to have desired values instead of
all nodes in the network. Hence, previous target control
methods for Boolean network models, if any, can be
compared with our method. However, there is no such a
target control method for Boolean network models, so
direct comparison is not possible at present.

Although the method introduced in [9] is a target con-
trol method which is not for Boolean network models,
we can still compare our method with it by using the
simplified MAPK network model where the target node
set consists of the Proliferation node (filled orange circle
in Fig. 4a). The method in [9] provides a set of driver
nodes that is enough to drive the Proliferation node to
have its desired state value by using the greedy algorithm
which constructs a series of bipartite graphs as shown in
Additional file 6. As a result, the PPP2CA node becomes
the unique driver node (filled red circle in Fig. 4a). For
convenience, the set of all driver nodes is also called a
control set from now on. Note that if a different max-
imum matching is chosen, a different control set {CREB}
can be obtained. Then the method in [9] needs to con-
trol one node (denoted by number 1 before the green
bar in Fig. 4a) and similarly our method needs only one
or two layered nodes in the layered network for the
phenotype control (denoted by numbers 1 and 2 before
the blue bars in Fig. 4a), where the layered nodes are
marked with purple circles in the bottom box in Fig. 4a.
As expected, fewer driver nodes are needed for target
control methods than the full control methods in [8]
and [11, 12] (see Additional file 7).
Applying the greedy algorithm and our method to

the simplified MAPK network model, we obtain one
and eleven control sets in Fig. 4b, respectively. If the
greedy algorithm is applied multiple times and differ-
ent maximum matchings are chosen at each time,
multiple control sets can be obtained. The difference

Fig. 4 Comparison of target control methods. a Here, the cancer cell signaling network denotes the simplified MAPK network. The desired phenotype
value is Proliferation = 0. We named the target control method for finding driver nodes as ‘Structural Controllability’ in [9] and the control method for
finding all minimal control sets as ‘Converging Tree’. In the top box, red and orange balls represent driver nodes and Proliferation nodes, respectively, where
the dotted red arrows denote links contained in the maximum matching. The number ‘1’ before the green bar denotes the number of driver nodes. In the
bottom box, purple circles, yellow and orange balls represent layered nodes, two input nodes and Proliferation nodes, respectively, where each dotted red
arrow from a layered node in the ith layer denotes a link directed to other layered node in the ith or a higher layer. The numbers ‘1’ and ‘2’ before the blue
bars denote the numbers of control nodes in a control set, which can be found from the converging tree. b The numbers ‘1’, ‘3 and 8’ next to the green
and blue bars denote the numbers of possible control sets obtained from the two target control methods, respectively. The converging tree consists of 11
control sets up to the last level, where each of 3 control sets {(JUN, FOS)= (1,1)}, {(JUN, ATF2)= (1,1)} and {(JUN, p38)= (1,1)} has two control nodes, and the
other 8 control sets are singleton sets
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of the number of control sets between the method in
[9] and our method originates from the fact that
driver nodes can be obtained only from the structure
of the network but our method depends on Boolean
update rules. Note that if a set Ψ of some nodes is
not a minimal control set and controlling the set Ψ
leads the simplified MAPK Boolean network to have
the desired value Proliferation = 0, then a subset of Ψ
is one of the 11 control sets in the converging tree
and thereby the set Ψ is unnecessary with respect to
perturbation.

The simplified cancer cell signaling network with
threshold update functions
The cancer cell signaling network has six inputs (Mutagen,
GFs, Nutrients, TNFa, Hypoxia, Gli) and four output nodes
(AcidLactic, Apoptosis, Glut_1 and DNARepair) as in
Additional file 8: Figure S2.
Hypoxia condition is a common condition of cancer

cells in vivo, so let us consider a simplified network
model under this condition and find out control targets
that can induce apoptosis [32]. Note that there are some
fixed values (PTEN, APC, Max, p14, FOXO, ROS)
= (1,1,1,0,1,0) in the original update rules. Substituting
these fixed values as well as input Hypoxia = 1 into the
original update rules, we finally have fixed values for 40
nodes and simplified update rules for the remaining 56
nodes including three output nodes Apoptosis, DNA_
Repair and Glut_1 (the second tab in Additional file 3).
Note that the attractors of the cancer cell signaling net-
work are preserved after the substitution [33]. We refer
to the cancer cell signaling network obtained from the
simplified update rules as a simplified cancer cell signal-
ing network.

Construction of the converging tree based on the layered
network of the simplified cancer cell signaling network
Since the cell death of a cancer cell is more preferable
than the cell cycle arrest, let us consider only the value
of the Apoptosis node for finding control targets without
considering that of DNA_Repair node or Glut_1 node.
The number of layered nodes in the layered network is
39 (marked with red balls in Fig. 5). The other 17 nodes
(marked with white balls in Fig. 5) have no influence on
the Apoptosis node.
In order to find out a control set that contains CHK1/

2 as a control node, we can use the layered network in
Fig. 5 in which CHK1/2 is located in the 4th layer. For
this purpose, we need to construct a converging tree up
to at least the 4th level, where we find a control set in
Additional file 9 which contain the control node CHK1/
2 as follows:

CHK1=2;BAX;NFkB;BclXLð Þ ¼ 1; 1; 0; 0ð Þ;

which is marked with red CHK1/2 in Fig. 6.

Discussion
Considering the numbers of initial states and desired final
states of a given network, we can classify control methods
into three groups by using the network and state represen-
tation in Fig. 7a-b. A first group of studies is to find out a
control set that can drive a given initial state to a desired
state within a finite time (denoted by ‘one-to-one control’
and illustrated in the top subfigures of Fig. 7c-e) as sug-
gested in [8–10]. The structure-based control method in
[8] guarantees that the target set {A, B, C, D, E, F, P} in
Fig. 1 is controllable given any initial and final states by
controlling only one node F as shown in Fig. 7e. In case
the desired target set consists of a part of all nodes, the
target control method in [9] can be applied. For instance,
if the target set is {A, B, F, P} instead of {A, B, C, D, E,
F, P}, then the node F is the driver node for the target
set {A, B, F, P} as shown in Fig 7e. A second group of
studies is to look for control targets that can drive any
initial state to one desired attractor (denoted by ‘any-
to-one control’ and illustrated in the middle subfigures
of Fig. 7c-e) as proposed in [11, 12], [18] and [19]. The
desired final state used in the second group must be
one of attractors which already exist in the state space
of the given network before applying a control method.
However, our method has no such restriction on the
desired final attractor, which means that there can be
an initial state whose trajectory after applying PCK con-
verges to an attractor which is not an attractor before
applying PCK as in Fig. 1, Fig. 3 and Additional file 2.
On the other hand, PCK belongs to a third group,
which ensures driving any initial state to one of (pos-
sibly) multiple attractors corresponding to a particular
phenotype of interest (denoted by ‘any-to-multiple con-
trol’ and illustrated in the bottom subfigures of Fig. 7c-
e) as explained in detail in the third and fourth tabs of
Additional file 3. In this case, any control set in PCK
can drive a given network state to one of attractors of
the same phenotype, where the convergence to a par-
ticular attractor depends on the initial state and control
set. Using our method, different initial states might
converge to a same attractor or a same initial state be-
fore and after applying PCK might be driven to differ-
ent attractors depending on the control set chosen
from PCK. Applying any control in PCK, all attractors
will have the desired phenotype value. We need to note
that PCK only ensures convergence to a same pheno-
type of interest and provides all possible minimal con-
trol sets for this purpose.
In case a desired phenotype is defined by the state

values of multiple nodes as in [34–36], our method can
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also be applied if the number of children sets does not
increase too much owing to the two removal rules, as
shown in Additional file 10. However, if the number of
children sets is enormously increased and the children
sets are not efficiently eliminated by the two removal
rules, then the complexity can become high. As a result,
if we cannot complete the construction of a converging
tree, we need to modify our algorithm such that the
number of children sets is restricted.
Even if the construction of a converging tree is incom-

plete, the converging tree provides us with useful infor-
mation since we can find control sets hierarchically from
the root set. Let us consider a case when we need to
know the level of a converging tree, in which there is a
control set containing a given control node N before we
construct the converging tree. If the node N is not a dir-
ect or indirect input node to the phenotype nodes of
interest, it is not possible to find such a control set and
therefore we cannot find such a level even after comple-
tion of the converging tree. Otherwise, we can use the

Fig. 6 Construction of the converging tree up to the level containing
the control node CHK1/2. The nodes Bcl2, Cytoc/APAF2, Caspase8 and
Caspase9 in the simplified cancer cell signaling network are renamed as
Bcl, CytocAPAF, Casp8 and Casp9 in the converging tree for simplicity.
The converging tree is constructed up to the 4th level to find out a
control node CHK1/2 (marked with a red ball). The number beside each
control node denotes the state value of the node

Fig. 5 Layered network of the simplified cancer cell signaling network. The layered network consists of green and red nodes in all 9 layers, where
Apoptosis is the unique phenotype node. The other white nodes denote those nodes not in the layered nodes

Choo et al. BMC Systems Biology  (2018) 12:49 Page 9 of 15



Fig. 7 (See legend on next page.)
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relationship between such a level and the shortest length
of paths from the given node N to the phenotype nodes.
To deal with both cases, we have introduced the layered
network which hierarchically consists of direct or indir-
ect input nodes to the phenotype nodes. We need to
note that the layered network can be constructed by
using only the topology of a given directed network and
it does not require the information about regulatory
functions. If the node N is not included in the layered
network, then there is no control set having the node N
as its control node. For instance, SOS, FRS2, SPRY, PKC,
FGFR3, GRB2, PLCG, EGFR, BCL2, MAX, p14 and
MDM2 in Fig. 3 are not included in the layered network.
Otherwise, we need to construct the converging tree
with multiple levels. For instance, if N is the node N =
CHK1/2 in Fig. 5, then the node Nis located in the 4th
layer of the layered network and therefore we need to
construct the converging tree with at least 4 levels as in
Fig. 6. In this respect, our method can be considered as
a hierarchical control strategy based on both topology
and regulatory functions of the network in finding out
control nodes.

Conclusions
There is a growing interest in controlling complex bio-
logical networks, but no practical method is available
that can be used to find out all possible combinations of
control targets ensuring convergence to a desired cell
phenotype. To resolve this problem, in this study, we in-
troduced the concept of PCK and presented a detailed
method of identifying PCK based on layered network
and converging tree. We showed that PCK can generate
all control sets. The converging tree can be useful for bi-
ologists or clinicians since it can be used to find out

drug targets or to realize precision medicine (or person-
alized medicine) by identifying control targets that are
interpreted or serve as drug targets. For instance, we can
construct a patient-specific cancer cell signaling network
model by reflecting the genomic variation of the tumor
sample and apply this method to identify the most ef-
fective drug targets in consideration of such genomic
variation effects in the network dynamics.
In this paper, we considered an intracellular regulatory

network model and developed one pair of the layered
network and converging tree of the single network
model. Considering the heterogeneous cell population of
cancer, we need to further expand the present approach
by considering multiple network models at the same
time. For instance, for two Boolean network models
representing two cancer cell types, we can construct two
pairs of the layered network and converging tree. In this
way, we might be able to find out a set of common con-
trol sets that can be applied to the two cancer networks
for the desired values of the phenotype nodes. Such a
control set can be found by combining the layered net-
work (topological property) and the converging tree (dy-
namical property). This remains as a future study.

Methods
Let P1, ⋯, Pℓ be some of the phenotype nodes of a given
Boolean network, which are used to define the desired
state values Pi = di (1 ≤ i ≤ ℓ) for a positive integer ℓ and
constants di ∈ {0, 1}. The term ‘minimal control set’ de-
notes a minimal set of nodes having their fixed state
values that can ensure convergence of the Boolean net-
work to the desired values Pi = di (1 ≤ i ≤ ℓ) by inserting
the fixed state values into the update rules of the Boolean
network, where the elements of the minimal control set

(See figure on previous page.)
Fig. 7 Illustration of comparing different control methods with an example network. a An example network model with a phenotype node P. b Red
(white) denotes the value of 1 (0) for each node. c Three categories of control methods where ‘one-to-one’ denotes one initial state to one final state,
‘any-to-one’ denotes any initial state to one desired attractor, and ‘any-to-multiple’ denotes any initial state to one of multiple attractors corresponding
to a particular phenotype of interest. d Illustration of the three categories of control methods upon their state spaces. We denote the original state
space and the controlled state space as ‘state space (before control)’ and ‘state space (after control)’, respectively. Here, the controlled state space
means the state space of the network to which a control set is applied. In the top state space, the original state space contains two states: the left one
is an initial state A1=(1, 0, 1, 0, 1, 0, 1) at time t = 0 and the right one is the desired final state B1=(0, 1, 0, 1, 0, 1, 1) at a given time t = T. In this case, the
final state B1 is not assumed to be an attractor. The initial state A1 is driven to the final state B1 at t = T in the controlled state space. In the middle
state space, the original state space contains two attractors: the left one is an undesired attractor (1, 0, 1, 1, 1, 1, 1) and the right one is the desired
attractor (0, 0, 0, 0, 0, 0, 0) whose basin is denoted by dark gray. Here, the basin means a set of states converging to the attractor state. In this case, any
initial state is driven to the desired attractor (1, 1, 1, 0, 0, 0, 1) in the controlled state space. In the bottom state space, the desired phenotype value is P
= 0. The original state space contains two attractors, (1, 0, 1, 1, 1, 1, 1) and (0, 0, 0, 0, 0, 0, 0), where the second one can be a desired attractor due to P = 0
and its basin is denoted by dark gray. The controlled state space obtained after applying the control set {C = 0} shows that any initial state can be
driven to the attractor (0, 0, 0, 0, 0, 0, 0) which has the desired phenotype value P = 0. On the other hand, using the control set {B = 1} instead of
{C = 0}, any initial state in the control state space converges to a different attractor (0, 1, 0, 0, 0, 0, 0) of the same desired phenotype value P = 0. e The
red dotted links in the top network denote elements of the maximum matching [8], where the node F marked with a red circle indicates a node that
is not an end node of any red dotted link and therefore is a unique driver node. In the middle network, the red dotted links denote input links to the
nodes C and D marked with red circles, which are elements of mFVS [11, 12]. The bottom network shows the converging tree composed of all control
sets that are found based on the Boolean update rules in Fig. 1, where PCK consists of 6 control sets. The process of finding out the control sets is
explained in the Result section
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are referred to as ‘control nodes’ and it is said that the
minimal control set generates (or determines) the desired
state values Pi = di (1 ≤ i ≤ ℓ). Any minimal control set can
be hierarchically found from a tree structure obtained by
solving a system of some Boolean equations constructed
from the update rules, so some terminologies are
employed here to indicate the location of minimal control
sets: root, child, parent, ancestor, descendant and leaf sets.
The root set is {(P1,⋯, Pℓ) = (d1,⋯, dℓ)}. If a minimal con-
trol set S1 directly generates the root set {(P1,⋯, Pℓ) = (d1,
⋯, dℓ)}, then the minimal control set S1 is called the child
set of the parent set {(P1,⋯, Pℓ) = (d1,⋯, dℓ)}. If S2 is a
child set of S1, then {(P1,⋯, Pℓ) = (d1,⋯, dℓ)} is called the
ancestor set of S2. In addition, S2 is called the descendant
set of {(P1,⋯, Pℓ) = (d1,⋯, dℓ)}. If S1 has no child set, then
S1 is called a leaf set.

Layered network
The layered network of a given network consists of
layers, where the 0th layer consists of the phenotype
nodes of interest. Let us denote the nodes located in the
kth layer for any k in {0,⋯, i} as Nk

1;⋯;Nk
γk

for some

nonnegative integers i and γk. Then the (i + 1)th layer
consists of the nodes which are inputs to at least one of
Ni

1;⋯;Ni
γ i

and not contained in ∪ik¼0fNk
1;⋯;Nk

γk
g .

Each node of the layered network is referred as a layered
node. Since the input nodes to each node in the network
are unique, the layered network is unique.

The first removal rule for included control sets

Let Ck ¼ fðNk
1;⋯;Nk

ξk
Þ ¼ ðnk1;⋯; nkξk Þg be a control set

in the kth level. If a control set Ci ¼ fðNi
1;⋯;Ni

ςÞ ¼ ðni1;
⋯; niςÞg in the ith level satisfies

ðNk
m; n

k
mÞ ¼ ðNi

gmki
; nigmki

Þ for some k, all 1 ≤m ≤ ξk, 1 ≤
gmki ≤ ς and ξk ≤ ς.
then Ci is removed. In this case, Ci is said to be

‘included’ in Ck from the point of view of perturbations.
For instance, we define that a control set {A = 0}
includes a control set {(A, B) = (0,1)} from the point of
view of perturbations and that the control set {(A, B)
= (0,1)} is said to be an included control set. Therefore,
the control set {(A, B) = (0,1)} can be removed. Such a
rule is referred to as the first removal rule for included
control sets.

The second removal rule for contradictory children sets
Let a candidate Ciþ1 ¼ fðNiþ1

1 ;⋯;Niþ1
ς Þ ¼ ðniþ1

1 ;⋯;

niþ1
ς Þgfor a minimal control set in the (i + 1)th level have

parent or ancestor sets Ck
1;⋯;Ck

γk
in the kth level for

0 ≤ k ≤ i and a positive integer γk, where Ck
j ¼ fðNk; j

1 ;⋯;

Nk; j
ξk; j

Þ ¼ ðnk; j1 ;⋯; nk; jξk; j
Þg for 1 ≤ j ≤ γk and nk; jℓ ∈f0; 1gð1≤ℓ

≤ξk; jÞ. If Ci + 1 satisfies

Niþ1
m ¼ Nk; j

gmikj
and niþ1

m ≠nk; jgmikj
for some m, k, j and gmikj,

then the candidate Ci + 1 is removed. In this case Ci + 1

in the (i + 1)th level is said to be a contradictory child
set. For example, as in Fig. 2d, the control set {(C,F)
= (1,0)} in the 3rd level has an ancestor set {C = 0} in the
1st level. Applying the child set {(C,F) = (1,0)} into the
given network, we can obtain the parent set {B = 1} but
cannot the ancestor set {C = 0}, so that we cannot obtain
the desired phenotype value. Therefore, we need to
remove the minimal control set {(C,F) = (1,0)} in the 3rd
level, where the removal is referred to as the second
removal rule for ‘contradictory’ children sets.

Algorithm for the converging tree
The converging tree of a given network can be hierarch-
ically constructed as follows.
Step 0. Determine the desired steady state values of

the phenotype nodes. Let P1, ⋯, Pℓ (1 ≤ ℓ) be some of
the phenotype nodes of a given Boolean network such
that the phenotype nodes have desired steady state
values (P1,⋯, Pℓ) = (d1,⋯, dℓ) for a positive integer ℓ
and constants dυ (1 ≤ υ ≤ ℓ) of values 0 or 1. Then the
0th level of the converging tree is the set {(P1,⋯, Pℓ)
= (d1,⋯, dℓ)}, which is called the root set of the conver-
ging tree.
Step 1. Let the control sets C1, ⋯, Ck be non-leaf sets

of the ith level of the converging tree for a nonnegative

integer i and a positive integer k, where C j ¼ fðN j
1;⋯;

N j
γ j
Þ ¼ ðnj

1;⋯; nj
γ j
Þg for 1 ≤ j ≤ k, a positive integer γj

and nj
m∈f0; 1gð1≤m≤γ jÞ. Here N j

m is a control node of

the control set Cj with the fixed state value N j
m ¼ nj

m.

Step 1–1. Find children sets Cchild
j of each parent set

Cj in the ith level.
Each one of Cchild

j is a solution of the system of the

Boolean equations

nj
1 ¼ f N j

1
x j
1;1;⋯; x j

1;α1j

� �
⋮

nj
γ j
¼ f N j

γ j
x j
γ j;1

;⋯; x j

γ j;α
γ j
j

� �
;

8>>>><
>>>>:

where αmj is a positive integer and f N j
m

is the update
function for N j

m.
Before applying our algorithm, we can prepare the collec-

tion of solutions of each Boolean equation ni ¼ f iðxi1;⋯;

xiαiÞ, ni ∈ {0, 1}, where xi ¼ f iðxi1;⋯; xiαiÞ is the update rule
for xi. Then the solutions of the system can be obtained by
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the Cartesian product of sets of solutions of each Boolean
equation.
Step 1–1-1. Find included sets among Cchild

j by apply-

ing the first removal rule.

Case 1-1. All Cchild
j are included.

If j < k, replace j with j + 1 and go to Step 1–1.
Otherwise, go to Step2.
Case 1-2. Some of Cchild

j are not included.

Denote by Cchild
j;I the children sets that are not included

and go to Step 1–1-2.
Step 1–1-2. Find contradictory children sets among

Cchild
j;I by applying the second removal rule.

Case 2-1. All Cchild
j;I are contradictory.

If j < k, replace j with j + 1 and go to Step 1–1.
Otherwise, go to Step2.
Case 2-2. Some of Cchild

j;I are not contradictory.

Denote by Cchild
j;I;II the children sets that are not contra-

dictory and go to Step 1–1-3.

Step 1–1-3. Find control sets in the τth level (1 ≤ τ ≤ i
+ 1) which are included in one of Cchild

j;I;II . If there exists

an included control set, go to Case 3. Otherwise, replace
j with j + 1 and go to Step 1–1 when j < k, and go to
Step2 when j = k.
Case 3-1. The included control sets in the τth level are

not parent or ancestors of any one of Cchild
j;I;II .

Remove the included control sets and their descendant
sets. If there exists a next parent Cυ(j + 1 ≤ υ ≤ k), repeat
Step 1–1 with Cυ instead of Cj. Otherwise, go to Step 2 .
Case 3-2. Other case.
Let the Lth level (0 ≤ L ≤ i) be the lowest level among

the levels in which there exists a parent or ancestor set
included in one of Cchild

j;I;II . Denote the included control

sets in the Lth level by CL. Replace CL with the children
sets of Cchild

j;I;II which include CL and remove the ξth levels

(L < ξ) as well as included control sets in the Lth level.
Repeat Step 1–1 from the Lth level instead of the
ith level.
Step 2. Let the control sets D1, ⋯, Dθ consist of the (i

+ 1)thlevel of the converging tree for a positive integer θ.
If all D1, ⋯, Dθ are leaf sets, then construction of the
converging tree is completed and PCK is the collection
of all minimal control sets in the converging tree.
Otherwise, repeat Step 1 for non-leaf sets in the (i + 1)th

level instead of C1, ⋯, Ck.

Remark. The algorithm for the converging tree can be
summarized as two parts: The first part is to find out
the layered nodes that have influence on the desired
phenotype values. The second part is to apply the two
removal rules to eliminate ‘included’ or ‘contradictory’
control sets. As a result, we can obtain the minimal

control sets in each level of the converging tree. Before
applying our algorithm, we can prepare the collection of
solutions of each Boolean equation ni ¼ f iðxi1;⋯; xiαiÞ
,ni ∈ {0, 1}, where xi ¼ f iðxi1;⋯; xiαiÞ is the update rule
for xi. Then the solutions of system of Boolean
equations can be obtained by the Cartesian product of
sets of solutions of each Boolean equation. So, the
computational complexity is as follows.
Let pi (1 ≤ i ≤ ηpi) be a parent set at the ith level, where

the nodes of the set pi are denoted by (pn)i, j (1 ≤
j ≤ ηpni). Since we can find out children nodes (cn)i, j,

k (1 ≤ k ≤ ηcnij) of the parent node (pn)i, j without solving
Boolean equations by using the collection prepared a
priori, the number of children sets of the parent set pi isQηpni

j¼1ηcnij and the number of children sets of all the

parent sets in the ith level is ηpi �
Qηpni

j¼1ηcnij . Hence, the

computational complexity for finding out children sets
of all the parent sets in the ith level is

O ηpi �
Yηpni

j¼1
ηcnij

� �
:

The computational complexity of applying the first re-
moval rule is

O ηpi �
Yηpni

j¼1
ηcnij �

Xi
ℓ¼1

ηpℓ

 !
þ
Xi−1
s¼1

ηcnsj

( ) !
:

In case there is no removed child set, the computa-
tional complexity of applying the second removal rule is

O ηpi �
Yηpni

j¼1
ηcnij �

Xi
ℓ¼1

ηpℓ

 !
þ
Xi−1
s¼1

ηcnsj

( )
� i

 !
:

If the number of children sets is not increased owing
to the two removal rules, the computational complexity
would be not too high, as shown in Additional file 10.
However, if the number of children sets becomes enor-
mously increased since the children sets are not elimi-
nated by the two removal rules, then the complexity
might become high. As a result, if we cannot complete
the construction of converging tree, we need to modify
our algorithm such that the number of children sets is
restricted.

Additional files

Additional file 1: Completion of construction of the converging tree in
Fig. 2e. (PDF 174 kb)

Additional file 2: The update rules of the MAPK network model, its
simplified update rules and attractors of the model. (XLSX 27 kb)

Additional file 3: The controlled state space has multiple attractors
which have the desired value. (XLSX 56 kb)

Choo et al. BMC Systems Biology  (2018) 12:49 Page 13 of 15

https://doi.org/10.1186/s12918-018-0576-8
https://doi.org/10.1186/s12918-018-0576-8
https://doi.org/10.1186/s12918-018-0576-8


Additional file 4: Figure S1. MAPK network in [29]. The four stimuli are
marked with magenta circles and the three green nodes denote the
output nodes. (TIFF 647 kb)

Additional file 5: Completion of construction of the converging tree of
the simplified MAPK network . (PDF 143 kb)

Additional file 6: Comparison of PCK with a target control method.
(PDF 108 kb)

Additional file7: Numbers of control nodes and sets for full control
methods. (PDF 168 kb)

Additional file 8: Figure S2 Cancer cell signaling network in [29].
Mutagen, GFs, Nutrients, TNFa, Hypoxia and Gli marked with magenta
balls are the inputs to the network in which output nodes are AcidLactic,
Apoptosis, Glut_1 and DNARepair marked with green balls. (TIFF 1104 kb)

Additional file 9: Construction of the converging tree of the simplified
cancer cell signaling network up to the level containing the control node
CHK1/2. (PDF 118 kb)

Additional file 10: Two converging trees of the simplified cancer cell
signaling network. One is for a single phenotype node and the other for
multiple phenotype nodes. (XLSX 31 kb)

Abbreviations
MAPK: Mitogen-activated protein kinase; MFVS: Minimum feedback vertex
set; PCK: Phenotype control kernel

Acknowledgments
Not applicable.

Funding
This work was supported by the National Research Foundation of Korea
(NRF) grants funded by the Korea Government, the Ministry of Science and
ICT (2017R1A2A1A17069642, 2015M3A9A7067220, and 2013M3A9A7046303).
It was also supported by the KAIST Future Systems Healthcare Project from
the Ministry of Science, ICT & Future Planning, the KUSTAR-KAIST Institute,
Korea under the R&D program supervised by the KAIST, and the grant of the
Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic
of Korea (HI13C2162).

Availability of data and materials
The data supporting the results of this article are included and cited within
the article and its additional files.

Authors’ contributions
Conceived and designed the experiments: SMC and KHC. Performed the
experiments: SMC, BB and JIJ. Analyzed the data: SMC, BB, JIJ and KHC.
Wrote the paper: SMC and KHC. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Mathematics, University of Ulsan, Ulsan 44610, Republic of
Korea. 2Department of Bio and Brain Engineering, Korea Advanced Institute
of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Received: 12 May 2017 Accepted: 27 March 2018

References
1. Milenkovic T, Memisevic V, Bonato A, Przulj N. Dominating biological

networks. PLoS One. 2011;6(8):e23016.
2. Nacher JC, Akutsu T. Dominating scale-free networks with variable

scaling exponent: heterogeneous networks are not difficult to control.
New J Phys. 2012;14(7):073005.

3. Wuchty S. Controllability in protein interaction networks. P Natl Acad
Sci USA. 2014;111(19):7156–60.

4. Khuri S, Essentiality WS. Centrality in protein interaction networks revisited.
Bmc Bioinformatics. 2015;16:109.

5. Nacher JC, Akutsu T. Minimum dominating set-based methods for analyzing
biological networks. Methods. 2016;102:57–63.

6. Zhang XF, Ou-Yang L, Zhu Y, Wu MY, Dai DQ. Determining minimum
set of driver nodes in protein-protein interaction networks. Bmc
Bioinformatics. 2015;16:146.

7. Wang H, Zheng H, Browne F, Wang C, editors. Minimum dominating sets in
cell cycle specific protein interaction networks. 2014 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM); 2014. p. 2–5.

8. Liu YY, Slotine JJ, Barabasi AL. Controllability of complex networks. Nature.
2011;473(7346):167–73.

9. Gao J, Liu YY, D'Souza RM, Barabasi AL. Target control of complex networks.
Nat Commun. 2014;5:5415.

10. Wu FX, Wu L, Wang J, Liu J, Chen L. Transittability of complex networks and its
applications to regulatory biomolecular networks. Sci Rep-Uk. 2014;4:4819.

11. Fiedler B, Mochizuki A, Kurosawa G, Saito D. Dynamics and control at
feedback vertex sets. I: informative and determining nodes in regulatory
networks. J Dyn Differ Equ. 2013;25(3):563–604.

12. Mochizuki A, Fiedler B, Kurosawa G, Saito D. Dynamics and control at
feedback vertex sets. II: a faithful monitor to determine the diversity of
molecular activities in regulatory networks. J Theor Biol. 2013;335:130–46.

13. Gates AJ, Rocha LM. Control of complex networks requires both structure
and dynamics. Sci Rep-Uk. 2016;6:24456.

14. Cornelius SP, Kath WL, Motter AE. Realistic control of network dynamics.
Nat Commun. 2013;4:1942.

15. Kauffman SA. Metabolic stability and epigenesis in randomly constructed
genetic nets. J Theor Biol. 1969;22(3):437–67.

16. Glass L, Kauffman SA. The logical analysis of continuous, non-linear
biochemical control networks. J Theor Biol. 1973;39(1):103–29.

17. Wang RS, Saadatpour A, Albert R. Boolean modeling in systems biology: an
overview of methodology and applications. Phys Biol. 2012;9(5):055001.

18. Kim J, Park SM, Cho KH. Discovery of a kernel for controlling biomolecular
regulatory networks. Sci Rep-Uk. 2013;3:2223.

19. Zanudo JG, Albert R. Cell fate reprogramming by control of intracellular
network dynamics. PLoS Comput Biol. 2015;11(4):e1004193.

20. Wang RS, Albert R. Elementary signaling modes predict the essentiality of
signal transduction network components. BMC Syst Biol. 2011;5:44.

21. Akutsu T, Hayashida M, Ching WK, Ng MK. Control of Boolean networks:
hardness results and algorithms for tree structured networks. J Theor Biol.
2007;244(4):670–9.

22. Akutsu T, Zhao Y, Hayashida M, Tamura T. Integer programming-based
approach to attractor detection and control of Boolean networks. Ieice T Inf
Syst. 2012;E95d(12):2960–70.

23. Cheng DZ, Qi HS. Controllability and observability of Boolean control
networks. Automatica. 2009;45(7):1659–67.

24. Murrugarra D, Veliz-Cuba A, Aguilar B, Laubenbacher R. Identification of
control targets in Boolean molecular network models via computational
algebra. BMC Syst Biol. 2016;10:94.

25. Murrugarra D, Dimitrova ES. Molecular network control through boolean
canalization. EURASIP J Bioinform Syst Biol. 2015;2015(1):9.

26. Grieco L, Calzone L, Bernard-Pierrot I, Radvanyi F, Kahn-Perles B, Thieffry D.
Integrative modelling of the influence of MAPK network on cancer cell fate
decision. PLoS Comput Biol. 2013;9(10):e1003286.

27. Fumia HF, Martins ML. Boolean network model for cancer pathways:
predicting carcinogenesis and targeted therapy outcomes. PLoS One. 2013;
8(7):e69008.

28. Lord CJ, Ashworth A. Mechanisms of resistance to therapies targeting BRCA-
mutant cancers. Nat Med. 2013;19(11):1381–8.

Choo et al. BMC Systems Biology  (2018) 12:49 Page 14 of 15

https://doi.org/10.1186/s12918-018-0576-8
https://doi.org/10.1186/s12918-018-0576-8
https://doi.org/10.1186/s12918-018-0576-8
https://doi.org/10.1186/s12918-018-0576-8
https://doi.org/10.1186/s12918-018-0576-8
https://doi.org/10.1186/s12918-018-0576-8
https://doi.org/10.1186/s12918-018-0576-8


29. Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and
non-oncogene addiction. Cell. 2009;136(5):823–37.

30. Wang T, Yu H, Hughes NW, Liu B, Kendirli A, Klein K, et al. Gene essentiality
profiling reveals gene networks and synthetic lethal interactions with
Oncogenic Ras. Cell. 2017;168(5):890–903. e15

31. Kaelin WG Jr. The concept of synthetic lethality in the context of anticancer
therapy. Nat Rev Cancer. 2005;5(9):689–98.

32. Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer.
2011;11(6):393–410.

33. Saadatpour A, Albert R, Reluga TC. A reduction method for Boolean
network models proven to conserve attractors. SIAM J Appl Dyn Syst. 2013;
12(4):1997–2011.

34. Steinway SN, Zanudo JGT, Michel PJ, Feith DJ, Loughran TP, Albert R.
Combinatorial interventions inhibit TGFbeta-driven epithelial-to-
mesenchymal transition and support hybrid cellular phenotypes. NPJ Syst
Biol Appl. 2015;1:15014.

35. Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ.
CellNet: network biology applied to stem cell engineering. Cell. 2014;
158(4):903–15.

36. Cho KH, Joo JI, Shin D, Kim D, Park SM. The reverse control of irreversible
biological processes. Wiley Interdiscip Rev Syst Biol Med. 2016;8(5):366–77.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Choo et al. BMC Systems Biology  (2018) 12:49 Page 15 of 15


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	The layered network and converging tree of an example network
	Two biological network models
	The simplified MAPK network and control strategy
	The layered network of the simplified MAPK network
	The converging tree of the simplified MAPK network
	Comparison with other control methods
	The simplified cancer cell signaling network with threshold update functions
	Construction of the converging tree based on the layered network of the simplified cancer cell signaling network

	Discussion
	Conclusions
	Methods
	Layered network
	The first removal rule for included control sets
	The second removal rule for contradictory children sets
	Algorithm for the converging tree

	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

