
REVIEW Open Access

Systems healthcare: a holistic paradigm for
tomorrow
Massimo S. Fiandaca1,2,3, Mark Mapstone1, Elenora Connors4, Mireille Jacobson5, Edwin S. Monuki6, Shaista Malik7,
Fabio Macciardi8 and Howard J. Federoff1,9*

Abstract

Systems healthcare is a holistic approach to health premised on systems biology and medicine. The approach
integrates data from molecules, cells, organs, the individual, families, communities, and the natural and man-made
environment. Both extrinsic and intrinsic influences constantly challenge the biological networks associated with
wellness. Such influences may dysregulate networks and allow pathobiology to evolve, resulting in early clinical
presentation that requires astute assessment and timely intervention for successful mitigation. Herein, we describe
the components of relevant biological systems and the nature of progression from at-risk to manifest disease. We
illustrate the systems approach by examining two relevant clinical examples: Alzheimer’s and cardiovascular
diseases. The implications of systems healthcare management are examined through the lens of economics, ethics,
policy and the law. Finally, we propose the need to develop new educational paradigms to enhance the training of
the health professional in an era of systems medicine.

Background
Human beings are complex biological systems that require
coordinated, time-dependent interactions between diverse
functional components for optimum survival advantage
[1]. Biological systems are also directly influenced by a
variety of externalities that act modify the organism’s
homeostatic actuators [2]. Likewise, coordinated health-
care efforts are intimately linked to systems science, as
they require monitoring of unique metrics and efficient
responses to significant variations in order to operate
successfully at both the individual and population levels.
In fact, population health management is predicated on
developing a unique understanding of how best to influ-
ence individuals, their communities, and the environment.
Systems approaches, therefore, encompass an in-depth
understanding of how various components interact over
time.
In contrast, traditional healthcare has relied on diagnostic

and treatment methods that tend to be reductionistic [3].
The patient’s presenting complaint is often analyzed in a
problem-focused manner with the goal of elucidating the
underlying etiology and/or pathogenic mechanism.

Historically, specialty medical training and practice strive to
reduce the problem to a specific organ or biochemical
defect. Such an approach can fail to yield optimal results
since it often ignores the important interactions between
organ systems, cellular outputs and intrinsic (e.g., neural/
endocrine/immune) and extrinsic (e.g., environmental
chemicals, nutrition, infections, etc.) modulators. Interac-
tions among an array of intrinsic and extrinsic modulators,
however, are evident in the complex pathophysiologies
underlying both Alzheimer’s disease (AD) [4] and cardio-
vascular diseases (CVDs) [5], wherein individual dynamic
trajectories, usually unfolding over decades, underlie the
transitions from at-risk, to prodromal, to manifest disease
[6, 7]. Thus, focusing research efforts, drug development
strategies, and healthcare approaches predicated on a single
component of a system, rather than the interacting network
of components comprising such a system, may obscure
important etiologic principles and/or disease mechanisms,
including those evident during presymptomatic stages of
disease. The application of systems science [8] and its ex-
tension into healthcare, therefore, posits that health and/or
disease result from the dynamical interactions of an individ-
ual’s intrinsic multiomic components (e.g., genetic, epigen-
etic, etc.), their resultant phenotype, and the extrinsic
(environmental) factors influencing the intrinsic milieu.
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Herein, we discuss a holistic approach that encourages
researchers, healthcare educators, clinicians and health-
care leaders to consider a more systems-based view of
the individual (as an environmentally-influenced, com-
plex biological system). When aggregated, such personal
information may better explain population diversity (and
population medicine), and thereby, help achieve more
accurate diagnostic, efficacious therapeutic outcomes for
all. (See Fig. 1).

Holism and systems health
A growing evidence base suggests a potential benefit of in-
tegrative health approaches for the purposes of wellness,
health promotion, and disease prevention. Integrative
health approaches, as a whole, emphasize lifestyle changes,
behavior modification and stress reduction which are im-
portant interventions as we identify at-risk individuals
using a systems medicine approach. National survey data
indicate that more people use complementary approaches
to promote health and wellness than to treat a specific ill-
ness [9]. In the 2012 National Health Interview Survey
(NHIS), 94% of respondents who practiced yoga and 89%
of those who used natural product supplements said that
they did so for reasons related to wellness; much smaller
numbers used these approaches as a treatment for a par-
ticular condition [9].
Although the efficacy of integrative health in disease pre-

vention or health promotion has not been tested widely,
the case can be made for a holistic approach to health.
Among the primary means to delay and prevent manifest
disease are lifestyle changes that optimize individual diet,
physical activity, sleep, and stress management. Sleep and

nutrition are central tenants that are primarily emphasized
by integrative practitioners and less so by conventional
primary care providers [10]. Digestive health remains a
central tenant of functional medicine [11], Ayurveda [12],
naturopathic medicine [13] and traditional Chinese
Medicine [14]. Finally, the holistic nature of integrative care
with a mind-body emphasis often results in treatment plans
incorporating psychological and somatic therapies [15, 16].
Holism is premised on the concept that the whole is

more than the aggregation of its parts. To understand
such a system, therefore, one must understand not only
each individual component but also appreciate the time-
dependent, inter-reliant relationships between compo-
nents [17, 18]. The epochs that define the continuum of
health and transition to disease are illustrated in Fig. 2,
and provide a useful framework for this discussion. For-
mally, the system can be characterized by a description of
each component, or node, and each nodal interaction, de-
fined as an edge or element, collaborating to produce the
emergent properties of the network [19, 20]. The system’s
characteristics, therefore, cannot be predicted by a simple
linear summation of the function of individual nodes with-
out taking into account the complex interactions existing
between them. There has been great scientific interest
regarding the emergent properties of such systems,
including specific output behaviors and the pursuit of
insights related to the governing principles influencing the
performance of such coordinated networks. When applied
to healthcare, the systems approach is often referred to as
systems medicine, but we expand on this concept to
include the study of both structure and dynamics of
interacting nodes, forming networks at multiple levels of a

Fig. 1 Systems Healthcare: A New Paradigm. Depicted from left upper corner and proceeding clockwise is the clinical care model with
embedded clinical research that generates conventional clinical and imaging data, new biology (‘omic) data and linked non-traditional data as
from social media. Data mining and reduction utilizing high performance computing and informatics analyses results in risk stratification, more
precise diagnoses and prognoses, these latter reflecting gene-environmental interaction(s) and arriving at patient specific data reduction which
can better inform the next cycle of encounter with the patient. In each of the colored arrows there are derivative benefits as shown in blue
(non-pharmacological interventions), (new networks to discovery additional druggable targets) and green (new biological insights)
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multidimensional matrix, including molecular, cellular,
organ, person, family, community, society, and environ-
ment. For systems health, wellness, and prevention in
humans, we posit that these frequent, diverse and time-
limited interactions mediate change within the complex
organism. Our collective challenge is to deduce the most
salient nodes that underlie different states of being
(healthy, at-risk, or diseased). Once these nodes and inter-
acting edges are identified, the goal should be to benefi-
cially modulate the network, to preserve wellness and
effect secondary disease prevention wherever possible,
and to mitigate pathobiology in those at greatest risk.

Systems health in practice: Dysfunction of
molecular networks
An extension of Lee Hood’s P4 medicine model [21], our
P5 (Precision, Predictive, Preventive, Participatory, Person-
alized) paradigm involves a comprehensive understanding
of the regulation and dysregulation of the complex molecu-
lar networks that forge the phenotype of an individual. In
this framework, disease is a consequence of aberrant recon-
stitution of cellular and molecular networks that lead to
organ and organismal dysfunction (e.g., the patient’s clinical
presentation). The interaction of the diseased organ within
the person produces a cascade of dysregulated networks,
resulting in associated co-morbidities, some of which are
evident and others that are asymptomatic (preclinical). In
the state of wellness, networks are precisely regulated via
complex homeostatic mechanisms. Through one or a series
of network (or sub-network) perturbations, wellness is
driven toward altered nodal activity. Such nodal modulation
constitutes the at-risk state, and although preclinical, it typ-
ically provides systemic signatures, which can be discerned
and quantitated, and enable detection of dysregulation
during a preclinical stage. Systems level wellness, disease

prevention, and health, therefore, aim to characterize spe-
cific nodal perturbations, some environmentally mediated,
others rooted in the complexities of the intrinsic multidi-
mensional networks only revealed via the aforementioned
perturbations. For disease, early preclinical detection war-
rants attention, and likely determines the specific thera-
peutic intervention required to decelerate progression of
the malady, or ideally, fully abrogate the network abnormal-
ities and resultant pathobiology. Such an approach requires
aggregating multi-dimensional datasets and deciphering
them using high-performance computation and analytics.
The goal is to determine interventions that target abnormal
networks and promote systems level improvements. Such a
comprehensive approach to wellness, taking advantage of
multiomic data collected over time, has been attempted
[22] and provides a proof of concept that requires incre-
mental improvements. Such enhancements to our currently
collected medical information will be costly and necessitate
initial support from the federal government, as well as pri-
vate industry, and philanthropic organizations. If and when
significant progress is made in defining critical parameters
of disease, which might respond to specific interdiction and
thereby limit the cost of the disease itself, a convincing ar-
gument can be made to payors of healthcare services for
fiscal support of such potentially life-long efforts. It remains
to be determined as to how often some of these novel per-
sonal data elements should be monitored and when such
monitoring should begin. What is clear, however, is that
serial assessments over time, in both normal subjects and
those exhibiting disease trajectories, will be necessary to
begin to model both health and disease on an individual
and population basis. In the following sections we consider
the systems approaches to both AD and CVD, two disor-
ders that are likely to remain significant health concerns to
the world’s populations. We believe that the understanding

Fig. 2 Systems view of transitions from wellness to disease. The systems view recognizes that biological networks maintain wellness but as they
become perturbed through aberrant nodal and element dysfunction they drive a pathobiological process that begins with preclinical status, moving
to subclinical, prodromal and then manifest disease. The distinction between periods of asymptomatic and symptomatic delimit only that individuals
recognition of somatic changes but importantly the network dysfunction can substantially antedate clinical signs and/or symptoms
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provided by a systems approach to both of these disorders
will impact our ability to prevent or mitigate their impact
on human health. The potential benefits of such a systems
approach include improved population health, a better pa-
tient experience, and a decrease in per capita healthcare ex-
penditures, providing the tenets of the “Triple Aim” [23].

Systems approaches to Alzheimer’s disease
Systems healthcare embraces the inherent multitude and
often-stochastic interactions between network compo-
nents, which together determine organismal functions in
states of health and/or disease. Many individual disease-
specific risk elements are known and used to monitor
transitions to various compromised states of wellness.
The finding of such individual biomarkers, such as the
prostate specific antigen (PSA), or the breast cancer
type-2 (BRCA2) gene mutation, enables closer scrutiny
of health during the preclinical period. The more recent
advances of the “omic” technologies (e.g., genomics, epi-
genomics, transcriptomics, proteomics, metabolomics),
and their analytic methodologies, provide opportunities
to extend the scope of individual elements and their
relevance to health or disease. Through a combined ap-
plication of biologic, mathematical, computer science,
and other approaches to the interrogation of biospeci-
mens, the breadth and depth of the complex interactions
between systems (e.g., organs, biomolecules) are more
readily appreciated. Such added layers of detail provide
an increasingly more relevant understanding of the com-
plexity associated with biological systems.

Investigating Alzheimer’s disease networks
AD is the most common form of dementia in the United
States [24], and around the world. AD is also the most
common neurodegenerative disorder, and currently has
no cure, disease-modifying therapies, or effective treat-
ments. Age is the greatest overall risk factor, with the
prevalence doubling every five years after age of 65, and
eventually reaching nearly 50% prevalence at age 85 [25,
26]. Those over age 65 are projected to increase to ex-
ceed 85 million in 2050 [27]. The healthcare costs for
this group alone will eclipse $1.2 Trillion by that same
year. Without options to delay the onset of AD, the eco-
nomic costs, healthcare burden, and social impact on
afflicted individuals, their families, and society will be
devastating.
If we grasp the dire consequences to the health and vital-

ity of the world’s population posed by the lack of efficacious
treatment options for AD, we must also strive to appreciate
the basis for this lack of salutary success to date. We would
argue that the significant setbacks in therapeutic develop-
ment for AD have resulted, in part, from reductionistic
approaches applied to a very complex disorder. Conditions
featuring complexity are more amenable to systems

biologic approaches as we will discuss in the next
paragraph. We present two past approaches that are in-
formative regarding how reductionistic viewpoints failed to
adequately inform us regarding AD therapeutics.
First, until recently, patient selection for therapeutic

AD trials was predicated on the presence of obvious
clinical manifestations of disease, as either mild cognitive
impairment (MCI) [28] or AD [25]. Waiting to intervene
until the symptomatic stages of AD, however, may not
be optimal for therapeutic efficacy. Associated with the
presence of clinical manifestations of AD, the neural
substrate may be sufficiently damaged as to be incapable
of an efficacious response to a therapeutic. More recent
recommendations for clinical trials [29] have encouraged
the introduction of drug therapies during the preclinical
(i.e., asymptomatic) stages of AD, to take advantage of a
less impaired and potentially more receptive neural sub-
strate. The latter approach requires the development
and availability of biomarkers that accurately classify in-
dividuals at-risk of AD, well in advance of clinical mani-
festations. In addition, despite a wealth of preclinical
and clinical information showing marked etiologic differ-
ences, a clear distinction has not been made in the de-
velopment and testing of therapeutic options directed
towards the two major forms of AD, the early-onset AD
(EOAD) and late-onset AD (LOAD). While both disor-
ders feature similar end-stage elements in brain neuro-
pathology (e.g., plaques and tangles) [30, 31], they differ
significantly in their primary etiologies and clinical tra-
jectories [32, 33]. Specifically, most cases of EOAD are
relatively rare (~5%), present symptomatically prior to
age 65, typically include mutations within one of three
genes (PSEN1, or the presenilin-1 gene; APP, or the
amyloid precursor protein gene; or PSEN2, or the
presenilin-2 gene), and have a familial predisposition,
usually expressed in an autosomal dominant manner. In
contrast, LOAD is the much more common (~95%)
sporadic form that usually presents after 65 years of age,
has no sole genetic basis or familial predilection, and
features a pathobiologic profile suggestive of genetic pre-
disposition influenced by environmental (epigenetic) fac-
tors. While certain transgenic animal models provide
adequate surrogates for genetic forms of EOAD [34, 35],
relevant models for LOAD do not exist.
A reductionist approach would have concluded that

since amyloid beta and tau protein accumulations are
end-stage hallmarks in brains of both EOAD and LOAD,
regulating the accumulation of these molecules might
lead to effective therapeutics for AD. Such agents were
formulated, tested in transgenic animal models, and
noted to attenuate the amyloidogenic processes, similar
to what was featured in genetic forms of EOAD [36].
The vast majority of individuals treated in clinical trials,
however, suffered with symptomatic stages (MCI or AD)
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of LOAD. As a result of such reductionistic thinking,
therapeutic interventions provided efficacy measures
that were either unimpressive or completely lacking dur-
ing late-stage clinical trials [37].
A holistic approach to AD will likely result in the devel-

opment of preclinical treatment options that would be
based on specific differences in pathobiology for EOAD
and LOAD, lying upstream of the end stage neuropathology
featuring accumulations of amyloid and tau. Systems bio-
logical approaches to AD require the willful integration of
diverse sets information to formulate a better understand-
ing of the complex disease state(s). The enormous informa-
tion gained through use of “omic” technologies is at least in
part due to the integration of orthogonal data, providing an
improved appreciation for network functions, including
their complex and often unobservable interactions. The
generated “omic” information’s representation of a complex
network has a basis in mathematical/computational sci-
ences, including graph theory [38]. Specific to biologic sys-
tems, the acquired disparate pieces of information are
ultimately formulated to provide a clearer understanding of
a complex health state (e.g., EOAD or LOAD). The distinc-
tion between reductionism and holism, therefore, is not
nuanced, with the latter potentiating the definition of drug
targets, the disease-specific role or function of a gene or
metabolite, and/or diagnostics for otherwise asymptomatic
disease states.
The following “omic” methods provide examples of

how systems (network) biological principles have been
and continue to be applied to the study of AD. While in-
dividual “omic” methods provide a substantial view of al-
tered networks within a system, the ultimate power of
these technologies will be recognized once a more facile
integration of “multi-omic” data becomes mainstream.

Current approaches to Alzheimer’s disease -
genomics
The use of high throughput DNA sequencing to screen
patient-derived DNA for disease-associated alleles and
deriving a genetic risk assessment is evolving beyond the
laboratory. Currently, the lay public is increasingly able to
access this technology through a variety of for-profit com-
panies that deliver potentially actionable information re-
garding individual risk for certain diseases. Genome-wide
association studies (GWAS) have used large numbers of
subject samples (cases and controls) to identify single nu-
cleotide polymorphisms (SNPs) that may be specifically
related to disease. 23andMe (http://23andme.com), for ex-
ample, offers low cost, direct-to-consumer genomic test-
ing and interpretation. As of 2017, 23andMe provides
analytic options on saliva specimens that inform the indi-
vidual regarding not only genealogy, but also a limited
number of health risk analyses for up to 10 diseases and
health conditions. Duplication of the APP genetic locus,

for example, has been confirmed as a cause of autosomal
dominant EOAD [39]. The specificity of the APP locus in
disease etiology has been additionally supported and fur-
ther detailed by the discovery of a protective mutation
within that gene (A673T), which reduces amyloid beta
production, as noted in a small Scandinavian population
that does not suffer with AD [40]. Together with age, the
best-known risk factor for LOAD is inheritance of the
apolipoprotein E (APOE) E4 allele, with a single genetic
copy increasing the odds of developing LOAD in a normal
lifetime by 2–4 times, while two allelic copies provide
more than 8 times the likelihood [41]. While evaluations
of large monogenic pedigrees helped confirm three highly
penetrant autosomal dominant genes as responsible for
the vast majority of EOAD cases [42], GWAS has pro-
vided evidence for over 20 susceptibility genes in LOAD
[43–46], most of which show significant statistical associa-
tions back to the neuropathology [47]. Some of the genetic
contribution remains unaccounted for [48], although pleo-
morphism of individual loci [49], gene-environment inter-
actions [50], and epistatic gene-gene interactions [51]
could account for much of this “missing heritability.” In-
deed, recent assessments of Alzheimer’s Disease Genetics
Consortium (ADGC) datasets identified numerous SNP-
SNP and gene-gene interactions among LOAD genetic
loci [52], and systems analyses [53] in LOAD subjects have
defined specific genetic nodes, edge interactions, and net-
work perturbations that may eventually elucidate the asso-
ciated complex pathobiological mechanisms. Such in-
depth understanding of the network biology and func-
tional gene modules [53–55] will provide a better oppor-
tunity for therapeutic breakthroughs in related to LOAD
(and also CVD) [56].
With the capabilities provided by the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) and other collabora-
tions, AD genetics coupled with neuroimaging have
provided tremendous momentum to the field, with ADNI
alone being listed as a corporate coauthor on >100
PubMed citations per year since 2010. Relevant examples
include APOE4 linkage to fMRI and other imaging find-
ings years before AD onset [57] and linkage of new
GWAS-confirmed loci associated with reduced hippocam-
pal volume [58]. ADNI cohorts have also been used for
multimodal analyses to define many new putative imaging
biomarkers of AD and MCI, with numerous SNP associa-
tions, outnumbering those linked to neuropathologically-
defined AD [59]. In a recent example [60], a continuous
polygenic hazard score for age-specific AD risk was de-
rived using GWAS SNP (IGAP) data, APOE status, and
population-based AD incidence rates in an ADGC cohort,
and then tested in independent postmortem (NACC with
neuropathology) and premortem cohorts (ADNI with CSF
biomarkers). This polygenic hazard score correlated well
with neuropathologic (Braak stage and CERAD score),
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cognitive (CDR-SB), CSF (AB42 and total tau), and
imaging biomarkers (entorhinal cortex and hippocampal
volumes) [60]. Unfortunately these genomic approaches
remain reductionistic and require addition multiomic in-
put variables, along with additional genomic data inputs,
to provide more holistic assessments of AD risk in clinical
trials and routine patient care.

Current approaches to Alzheimer’s disease –
Metabolomics
Metabolomics investigates alterations in the quantities of
the small molecules derived from anabolic or catabolic
processes, and are detectable within biofluids (blood, urine,
saliva, cerebrospinal fluid), cells, tissues, and organs. The
most commonly used technologies for metabolomic ana-
lyses currently include (a) mass spectrometry, featuring
electrophoretic or chromatographic (gas- or liquid-based)
separation methods, and (b) NMR (nuclear magnetic res-
onance) spectroscopy methods. Metabolomic analytic tech-
nologies have advanced significantly over the last decade
and provide an ever-increasing assessment of complex bio-
logical systems. Metabolomic analyses detail the down-
stream consequences of disease, providing network
information proximal to the clinical phenotype. Such infor-
mation is in contrast to genomic or other “omic” analyses
that provide information that is generally considered up-
stream from the phenotypic manifestation(s). Despite the
tens of thousands of substances available for quantitative
and qualitative analyses using metabolomic methods, many
additional compounds have yet to be fully integrated into
pathways and/or definitively identified (or annotated) [61].
Direct analysis of brain tissue provided the earliest evi-
dence of metabolomic dysregulations associated with AD
[62], with notable reductions in certain sphingolipid spe-
cies. Since then, our group [63–65] and others [66–70]
have confirmed the dysregulation of lipids and other
metabolites, within brain and in the periphery, which may
be relevant to the pathobiology of LOAD, and even herald
the phenoconversion from health to disease. Despite these
advances, analyses using metabolomics alone do not ap-
proach the holistic assessments required for comprehen-
sive risk assessments. Metabolic network abnormalities are
associated with AD (and other disease states), but multi-
modal systems approaches are needed to understanding
the unique interactions between metabolic pathways, other
“omics”, and external environmental influences. Such
methodologies will ultimately contribute to the improved
definition of clinical phenotypes via combinatorial network
approaches that provide a more holistic view of health and
the transition to AD.

Holistic approaches to Alzheimer’s disease
Understanding the basis of health and disease through
systems biological methods may identify a range of

individual life-style choices that can mitigate AD risk. A
prime example comes from the link between metabolism
and the genome, through epigenetic modifications [71,
72], and especially DNA methylation [73, 74]. While
metabolism’s effects on epigenetic regulation remain a
complex field of inquiry for most, the positive health
effects of a Mediterranean diet [75] and exercise [76, 77]
are well recognized, despite limited adoption.
Lacking therapeutics, behavioral modifications may ul-

timately provide the best individual disease prevention
options, especially if adopted as a life-long health strat-
egy. In other words, a key component to controlling per-
sonal health in relation to AD is linked to human diet
and exercise [78, 79]. Specifically, moderate exercise
from mid- to late-life is associated with lower dementia
risk [80]. A high fat diet on the other hand is known to
disrupt circadian clocks [81, 82], alter the gut micro-
biome [83], and thereby negatively impact metabolism
[84] in association with AD. In contrast, an increase in
specific dietary fatty acids and other nutritional supple-
ments may prove beneficial in slowing the progression
of AD in animal models [85], and when administered to
humans during early clinical stages of LOAD [79, 86].
The latter nutritional support is thought to provide sub-
strates for synaptic resuscitation, with documented im-
provements in memory performance [87]. Reductions in
the availability of similar substrates in human plasma
have been associated with preclinical and clinical stages
of AD [63, 69, 70].
Ultimately, direct comparisons between yet to be devel-

oped efficacious therapeutic agents and the aforemen-
tioned lifestyle modification will be tested. A systems
biology perspective, taking into account the variety of in-
trinsic and extrinsic factors associated with health and dis-
ease, will likely provide the identity of future therapeutic
targets required to diminish or prevent AD. Current sys-
tems biology focuses on connectivity mapping to find the-
oretical and/or functional relations between network
nodes made up of genes, proteins, and small molecules,
all sharing a mechanism of action, a physiological process,
a disease, or specific drug target(s) [88]. Starting with a re-
search objective, such as finding novel network interac-
tions within a transcriptomic, proteomic, or metabolic
pathway, investigators can begin to construct complex
networks of genes, proteins, and metabolites to investigate
novel interactions within such “multi-omic” networks.
Such relational information is being added to evolving da-
tabases that include both empirically validated interactions
and those resulting from computational predictions. From
these approaches, therefore, empirically active and theor-
etical networks can be described, and novel disease-
related targets discovered and tested. Connectivity maps,
such as developed by the Broad Institute and Harvard
[89], link gene patterns associated with disease to
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corresponding patterns produced by drug candidates,
thereby allowing researchers the opportunity to screen
compounds against genome-wide disease signatures rather
than a pre-selected set of target genes [90–93]. A multio-
mic approach (Fig. 3) to disease and personalized risk as-
sessments remains in the nascent stages of development,
despite the growing interest defined by the number of re-
cent publications. Specific considerations are provided as
a detailed Case Example and analysis (see Additional file 1),
which considers personal intrinsic and health information
and extrinsic influences that may eventually be used to de-
velop a LOAD risk profile. Similar strategies may ultim-
ately be applicable to other conditions but may ultimately
provide health guidance approaches that empower indi-
viduals to maintain states of health and minimize factors
associated with disease.

Systems approaches to cardiovascular disease
The value of a systems healthcare approach can be fur-
ther evaluated in the context of CVD. Despite advances
in diagnosis and treatment, CVD, and specifically coron-
ary artery disease (CAD), remain the leading cause of
mortality and morbidity in both men and women in the
world. CAD is a heterogeneous disease entity with a
broad range of outcomes that develops over a long
period of time, commencing slowly through a prodromal
stage of about 30–50 years, followed by a fast expanding
asymptomatic period of about a decade and then rapidly
progressing to a clinical stage with symptoms [94, 95].
Macro-environmental factors such as lifestyle, stress,
pollution, as well as social determinants of disease inter-
act with genomic variations to predispose an individual
to early stages of disease. Micro-environmental factors
such as inflammation, lead to expression of cellular sig-
nals that then regulate disease progression [96].
Although CAD events have declined in the past dec-

ade, recent data suggest that this trend may have
reached a plateau and in fact, most recently, an upward
swing in CAD deaths has been observed [97]. The re-
ductionist approach, described above in earlier sections,
has led to breakthroughs in clinical treatment of CAD.
However, even in individuals who are optimally treated
for traditional risk factors, residual risk of incident CAD
events and disease progression persists [98, 99]. In order
to reduce residual risk and improve CAD outcomes, as
in other chronic diseases, a holistic systems medicine ap-
proach which examines relationships among identified
risk factors as well as effect of novel pathways using an
interconnected framework of genetic, molecular and en-
vironmental factors is needed [100, 101]. The holistic ap-
proach of systems medicine has the potential to describe
more precisely the complex clinical CAD phenotype in a
given individual, leading to not only earlier subclinical
disease detection, but also more effective and directed

therapy, thereby eliminating residual risk and improving
outcomes.

Current approaches to cardiovascular disease –
Genomics and epigenetics
Representing tremendous heterogeneity, CVD includes
both monogenic and polygenic conditions. The CAD
loci identified by GWAS are mainly associated with the
early stages rather than the later phases of the athero-
sclerotic clinical disease phenotypes. Meta-analyses of
GWAS through the CARDIoGRAMplusC4D consortium
have now identified 152 susceptibility loci for CAD
[102–104], shedding light on a number of novel biologic
pathways involving genes that appear to be operating in
the vessel wall or in the early atherosclerotic course ra-
ther than later phases of the atherosclerotic clinical dis-
ease phenotypes [105, 106].
Due to the small effect size of each individual SNP, the

clinical utility of individual SNPs to predict disease like-
lihood is quite modest [107]. As a result, the concept of
Genetic Risk Score (GRS) has been utilized; using either
weighted or unweighted SNPs to generate a single aggre-
gate score to assess predictive value for long-term CVD
events [108]. The GRS has incremental predictive value
and clinical utility for incident CVD events, beyond
traditional risk factors, showing a heritable component
attributable to the multiple independent or interacting
variants [109–116]. In the Myocardial Infarction Genes
(MI-GENES) clinical trial a CAD GRS was incorporated
into a conventional risk prediction algorithm. Informing
study participants of their genetic risk for CAD was as-
sociated with lower LDL cholesterol levels than disclos-
ure of clinical risk factors alone [117]. Knowledge of an
underlying genetic predisposition to common polygenic
CAD may prompt both physicians and patients to more
aggressively address modifiable risk factors before dis-
ease onset.
The GWAS approach, using genetic variance alone,

cannot recognize and explain the pathological changes
and clinical progression of CAD phenotypes [118]. The
atherosclerotic process is a complex phenomenon in-
volving epigenetic adjustments that are adapted and pro-
grammed to various gene expressions. Mechanisms
related to epigenetics or modulations of gene expression
include methylation and histone modifications many of
which are triggered by lifestyle factors. Epidemiological
and clinical trials have established that various risk fac-
tors like cholesterol, hypertension, diabetes, smoking
and unhealthy lifestyle behavior are associated with ath-
erosclerotic plaque pathogenesis and gradual progression
to atherosclerotic disease. In a recent study examining
genetic and lifestyle factors in 55,685 participants, in
those with high genetic risk, as assessed by a 50 SNP
GRS, a healthy lifestyle resulted in a nearly 50% lower
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a

b

Fig. 3 Systems biological framework associated with example case. Panels a and b represent the 2-dimensional (2D) and 3-dimensional (3D) depictions,
respectively, of the relevant internal and external network architecture associated with the case. (a) The clinical features associated with our subject are
represented in 2D as nodes (orange rectangles) and edges (lines) directly connecting the nodes to LOAD risk (green), and interacting with other nodes
(red). Yellow numerals express known risk relationships between specific nodes and LOAD risk. Note that the majority of edges have no numerical
representations and that not all nodes are shown to interact via edges. Edges represent either uni- or bi-directional relationships between nodes, and can
provide positive or negative influences. (b) Our example case is now represented in 3D, displaying proposed more holistic relationships for our example
subject’s personal multiomic profile and LOAD risk. Note the complex interactions between nodes (small colored rectangles) in each layer of the individual’s
intrinsic multiomic matrix, including features specific to this case (in bold black letters – APOE, TREM2, DNA methylation) and other features not specific to
this case (in black letters). There are complex, yet to be determined relationships represented within each “omic” layer (solid color edges between nodes),
as well as relationships between nodes of alternative “omic” layers (dotted white edges). Together, these nodes and edges embody a multidimensional
representation of a complex system of interactions that 1) are unique to the individual, and 2) are under constant influence by external (environmental)
factors (i.e. the exposome) acting on various layers of the internal multiomic matrix, in reducing or increasing LOAD risk. LOAD= late-onset Alzheimer’s
disease. APOE = apolipoprotein E gene. TREM2 = trigger receptor expressed on myeloid cells 2 gene. CSF = cerebrospinal fluid. miRs =microribonucleic
acids. lncRNAs = long non-coding ribonucleic acids
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risk of CAD, showing that epigenetic changes triggered
by lifestyle can result in resiliency in the face of adverse
genetic risk [119].

Current approaches to cardiovascular disease –
Metabolomics
Metabolomics studies have begun to reveal previously
unknown factors that may contribute to the mechanisms
and pathogenesis of CAD (and other human disorders),
including dietary and gut microbiome variation and po-
tential links between them. As an example, a high fat
diet appears to alter synchronization of the circadian
clock [81, 82], and also impact the gut microbiome [83].
In turn, the gut microbiome directly influences oscilla-
tory transcriptional programs in the liver [84], evidenced
through metabolomic analyses. Profiling of blood metab-
olites could have an important role in predicting or
monitoring subclinical atherosclerosis and identifying
patients at risk for early CAD. A number of circulating
metabolites, like the trimethylamine-N-oxide (TMAO)
and lysophosphatidylcholines, are considered potential
biosignatures for increased risk of cardiovascular inci-
dents [120, 121]. Specifically, TMAO is produced by the
interaction of the gut microbiome with phosphatidylcho-
lines and carnitine in the diet, and are present in higher
concentrations in a meat-based cuisine [122–124]. In
addition, a multicohort epidemiological study examined
68 plasma metabolites and indicated that higher phenyl-
alanine and monounsaturated fatty acid levels were asso-
ciated with higher CVD risk, and conversely, higher
omega-6 fatty acids and docosahexaenoic acid (DHA)
levels were associated with lower risk of CVD [125].

Holistic approaches to cardiovascular disease –
Imaging, information integration, and beyond
To fully implement a systems medicine approach, accur-
ate assessment and phenotyping of subclinical disease is
critical (see Fig. 2). Cardiac computed tomography (CT)
offers coronary calcium scoring or CT angiography to as-
sess calcification of the arteries, which is correlated with
plaque burden and an accurate measure of subclinical dis-
ease. Optical coherence tomography (OCT) is being used
to measure the lipid and macrophage content of arterial
plaques and give insight about plaque composition and
stability. The development of chemical or biological
probes, and imaging agents in animal models, that sense
molecular pathway alterations, allow monitoring of such
dysregulations in CVD. Magnetic resonance imaging,
fluorescence imaging, bioluminescence imaging, positron
emission/single photon emission computed tomography
(PET/SPECT), and ultrasound are techniques that take
advantage of molecular probes designed to image en-
zymes, receptors, endothelial cells as well as the biological
processes of apoptosis, angiogenesis and thrombosis [126].

Positron emission tomography (PET) using 18F–fluoro-
deoxyglucose (FDG), which is stored in metabolically ac-
tive cells, can mark inflammatory networks involved in
the myocardium and the vasculature. In the systems medi-
cine approach, the use of advanced imaging techniques as
an adjunct to omics technologies allows not only im-
proved definition of the CAD phenotype, from those that
have only prodromal disease to those with the highest vul-
nerability, but also permits monitoring of response to
therapy and disease progression.
The layering of omics and imaging technologies de-

scribed above form part of the data that is needed for a
true grasp of the biosignature of an individual. In addition
to these technologies, Topol describes layering of other
technologies to capture a “panoramic” view of individual’s
health, including layers of data from biosensors, social
media, as well as the exposome or environmental expos-
ure data (Fig. 4) [127]. This level of integration will require
not only storing or retrieving information from a central
repository, but also automated analyses.
The Trans-Omics for Precision Medicine (TOPMed) re-

search initiative developed by the National, Heart, Lung,
and Blood Institute will “couple whole-genome sequen-
cing (WGS) and other -omics data with molecular, behav-
ioral, imaging, environmental, and clinical data from
studies focused on heart, lung, blood and sleep disorders”
[128]. Phenotypic, genomic, behavioral and socioeconomic
data from existing cohort studies (e.g., Framingham Heart
Study and the Jackson Heart Study), will be combined in a
novel manner. The use of these integrated data platforms
may allow a better understanding of the systemic interac-
tions among comorbidities, lifestyle, and socioeconomic
backgrounds that impact CVD outcomes. A systems
medicine framework is starting to be utilized in clinical in-
vestigations as well. The American Heart Association’s re-
cently funded FAMILIA study targets low-income,
underserved, at-risk families in Harlem, NY to understand
the impact of family-based lifestyle intervention on behav-
ioral risk factors among parents/caregivers and preschool-
aged children [129]. In addition to using genomic and mo-
lecular data, this study will assess behavior and lifestyle
across the family unit. The goal of the study is to identify
the genetic, genomic, and molecular signature of favorable
versus poor responders to lifestyle intervention, thus per-
mitting future tailored approaches, as well as identify
novel therapeutic and diagnostic targets in network
models of early atherothrombotic disease.
As data from these basic science, epidemiologic, and

clinical research efforts become available, a systems medi-
cine approach, becomes more plausible on a population-
wide scale. Once adopted, systems medicine will result in
a significant paradigm shift from acute intervention to
prospective, holistic and personalized cardiovascular
health care. It will allow rapid identification of individuals
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predisposed to illness, classifying disease on a molecular
basis to improve diagnostic and prognostic precision, dis-
covering predictive pharmacogenomics profiles, and de-
veloping non-invasive imaging methods to detect disease
and monitor response to therapy with the ultimate goal of
improving quality of life and longevity.
We anticipate that specific systems approaches to both

CVD and AD, including modulatory external influences
on the individual’s intrinsic “omic” functions, such as
through improved lifestyle choices, may provide a posi-
tive impact over the short term in the majority of indi-
viduals at risk of disease. Ultimately, the development of
relevant biomarkers, point of care technologies, and
wearable sensors to assess, process, and provide useful
feedback to the individual, in real-time, will eventually
lead to modifications of behavior and risk that will bene-
fit patients. It is through the perpetual integration of
these data elements that the strength of systems bio-
logical approaches will be realized.

Systems healthcare – Policy, ethical, and social
issues
Systems medicine provides a promise for significant
gains in the diagnosis and treatment of disease and the
delivery of healthcare. At the same time, however, it also
poses substantial challenges to full implementation, in-
cluding current policy and regulatory dynamics, con-
cerns regarding data and privacy, issues surrounding
access and cost, and the difficulty of accounting for the

external factors outside of direct medical care that influ-
ence health.

Systems healthcare – Policy landscape and
specific issues
Continued uncertainty in the U.S. federal policy land-
scape that surrounds healthcare holds broad implica-
tions in the transition to a true systems medicine
approach. Since the Affordable Care Act (ACA) was
passed into law in 2010 [130], the House of Representa-
tives voted over 60 times to amend or repeal the law, in-
cluding repealing provisions that attempted to shift
towards more preventive care and payments that focus
on health outcomes and care coordination. While recent
versions of repeal failed in the Senate [131], there is a
chance for continued uptake of this type of legislation,
and executive and administrative action continues to
dismantle the current law.
Worth highlighting for this discussion is the significant

reduction in prevention programs and coverage require-
ments that would take place if legislation similar to that
passed recently by the House of Representatives were to
be signed into law at some point in the future. Such a
law would eliminate the Prevention and Public Health
Fund, which is now 12% of the Centers for Disease Con-
trol and Prevention’s (CDC) base budget. In addition,
states would have the ability to waive out of the require-
ment that insurance plans in the Marketplace must
cover a package of ten Essential Health Benefits [132],

Fig. 4 Connecting the exposome to the readout of the genome. Given that most major human diseases are genetically complex is it necessary
to characterize the extrinsic (environmental) exposures (exposome) and ingestion nutrients (acting through the microbiome) each capable of
producing epigenomic modifications that alter the transcriptions in multiple visceral organs and CNS or the gastrointestinal tract (microbiome,
innate immune signaling and afferent activation of enteric nervous system). “Figure reprinted from Cell, Volume 157, Issue 1, / Eric J. Topol,
Individualized Medicine from Womb to Tomb, Pages 241-253, 2014, with permission from Elsevier” [127]
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including prevention and wellness services and chronic
disease management. The lack of awareness of the im-
portance of prevention programs and their impact on
overall health suggests a difficulty in translating a true
predictive and personalized medicine approach on the
federal policy level. Indeed, while “innovation” seems to
gain traction, translating that to broad-reaching preven-
tion implementation has proven to be a harder sell.
Despite the President’s Fiscal Year 2018 Budget that

requested deep cuts to federal non-defense discretionary
spending that funds both science and innovation, includ-
ing at the National Institutes of Health (NIH) and the
CDC [133], innovation and “cures” continue to be a pri-
ority of the legislative and administrative branches,
where now “predictive analytics” are discussed as a way
to reduce costs while improving care delivery and man-
agement and cracking down on fraud. The twenty-first
Century Cures Act [134], for example, signed into law in
2016, authorized $6.3 billion in funding (including $4.8
billion to NIH) for precision medicine and biomedical
research. Some of those funds targeted Vice President
Joe Biden’s Cancer Moonshot program and President
Obama’s Precision Medicine Initiative (PMI). While this
money is only authorized (not appropriated yet), funding
commitments via the appropriations process has already
moved forward. In order to offset, or “pay for” the bill,
however, Congress tapped into the Prevention and Pub-
lic Health Fund, arguably the only source of funding that
was originally targeted towards innovation in the public
health sector. Scientific innovation without a pathway
for implementation makes it difficult to realize the ex-
tent of such innovation.
The PMI is an enterprise of the National Institutes of

Health (NIH), spearheaded by the University of Pitts-
burgh, and launched by President Obama in 2015. There
are two main components associated with the PMI. The
shorter-term focus is on cancer while in the longer-term
goal involves viewing health and disease in a broader
framework of understanding the risks and mechanisms
of disease and predictive therapies reach broad-scale im-
pact [135]. A small-scale rollout, recruiting 10,000–
15,000 of the eventual 1 million participants and a na-
tional rollout is planned for next year.
Furthermore, Healthy People 2020 included a new

Genomics topic area with a goal to “improve health and
prevent harm through valid and useful genomic tools in
clinical and public health practices” [136]. The objectives
are based on recommendations from the U.S. Preventive
Services Task Force (USPSTF) and the Evaluation of
Genomic Applications in Practice and Prevention Work-
ing Group (EGAPP), each focused on discrete diseases
with evidence that early screening or intervention could
improve broad-scale health outcomes. While genomics
is just one piece of a fully integrated systems medicine

approach to healthcare, the recognition that genomic-
level data could improve population level health is sig-
nificant and a necessary step towards a systems medicine
implementation.
It is now widely recognized that there are numerous

causes of disease and pathways that impact our ability to
be and stay healthy. These select examples are not ex-
haustive, rather a sample to illustrate how there is con-
sideration of the underlying components of disease and
efforts towards understanding how to prevent and treat
disease even at the federal policy level which tends to be
slower moving and less nimble than the private sector.

Systems healthcare – Data, privacy, and
discrimination
A systems medicine approach requires storing and shar-
ing a significant amount of very sensitive information
with many types of health professionals and a variety of
administrative systems, all of which raise a host of priv-
acy concerns. In most circumstances, formal data shar-
ing plans will be required, including how best to protect
protected health information (PHI). The vast amount of
data required to harness systems medicine raises import-
ant questions, such as: who owns the data, where is it
stored, and who has access to it? The current realm of
“Big Data”, especially the immense amount of digital in-
formation now stored and readily accessible electronic-
ally, is directly linked to evolving systems medicine
approaches. Big Data is now using sophisticated analytics
to predict what an individual’s future healthcare needs
might be, based on interaction with providers, medical
history, internal “omic” measures, and external social
and environmental influences. The collected information
might also include an individual’s presence on social
media [137]. The vast amounts of electronic health re-
cords now available contribute to massive datasets fea-
turing clinical information, demographics, and treatment
course of individuals that are prime for data analytics
[138], but must be safeguarded from intrusions [139].
Recent hacking of large digital databases [140] should
provide the impetus for improved security going for-
ward. A significant number of systems, however, are not
online or are not easily integrated with other systems,
providing data fragmentation and limited utility. With-
out the opportunity for all clinical records and data on
varying systems to be linked to one-another, systems
medicine will be hard to implement.
More public and private payers are harnessing Big

Data in healthcare but the privacy concerns surrounding
these advanced algorithms remains worrisome, as de-
scribed above. Current privacy structures – such as the
Health Insurance Portability and Accountability Act
(HIPAA) [141] and anti-discrimination laws such as the
Genetic Information Non-Discrimination Act (GINA)
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[142] are limited and likely not suited for an environment
where the scope of PHI has broadened so significantly.
Security breaches of PHI from insurance companies are
devastating; expanding the scope of information collected
will likely regulatory structure to ensure privacy and pro-
tection of sensitive data. Additionally, the fluid nature of
real-time data collected and stored means that security
risks must constantly be updated.
The use of data for personal decision-making is a sig-

nificant factor as the pace of our technological advances
increases. If we can identify the disease-specific bio-
markers, and predict the disease onset, how much does
an individual want to know about their disease risk and
when? Would the answer change if the identified disease
has no known cure or any treatment to slow its progres-
sion? Conversations on this topic need to be expanded
and include all of society. In addition, new technologies
are being developed that can create genetic changes or
“edits” that can be passed on to future generations [143].
To what end could we choose to edit what is inherited
and what is not? How can we predict the unintended
consequences of tinkering with the genetic code, such as
accidental gene mutations? [144, 145].
More recently, under the guise of restoring internet

freedom, the U.S. Administration has proposed changes
to net neutrality rules that have significant implications
on health care. The proposed rules may result in broad-
band providers charging more for different levels of con-
nectivity, which could leave smaller healthcare practices
and rural hospitals unable to afford a fast connection,
hampering their data collection ability [146]. Addition-
ally, the development and usage of health apps could be
impacted, which would make disease monitoring and be-
havior change programs less effective.

Systems healthcare – Access and cost
New and innovative technologies will always bring about
issues of access and equity. How do we ensure that the lat-
est and greatest is available to everyone? If a new treat-
ment is expensive, insurance companies may only cover a
portion of it, which means that only those individuals that
can afford to pay out of pocket realize the benefits; in-
creasing existing disparities in health outcomes. Payers
haven’t yet begun to fully embrace genetic testing, one of
the multiple components of a systems medicine approach.
To truly make progress in population health through a
systems medicine approach, we need to understand how
to prevent and reduce the onset of chronic diseases, par-
ticularly in underserved populations. How can we guaran-
tee equal access to new diagnostic techniques and
therapies when millions of Americans aren’t even receiv-
ing basic primary care? While the cost of sequencing the
human genome has decreased significantly over the last
decade [147, 148], the cost to maintain the massive

datasets of information that require constant updating can
be cost prohibitive [149].

Systems healthcare – Social determinants
Often disregarded in genomics-level discussions on dis-
ease and health are the external variables, or social de-
terminants, that influence our health that a systems
medicine approach would incorporate. These include
our environment – the ability to breath air free from
pollutions and maintain an active lifestyle with walkable
green spaces; access to healthy foods; education; employ-
ment status; socioeconomic status, among others, as well
as how each of these variables influence one another
across the life-span and generations. Definitions of the
social determinants of health vary from the broad: “any
nonmedical factors influencing health” and “not control-
lable by the individual but affect the individual’s environ-
ment”; to more specific “the conditions in which people
are born, grow, live, work and age, and which are shaped
by the distribution of money, power and resources at
global, national and local levels” [150]. While there is an
increasing recognition that nonclinical factors have a
major impact on people’s health, measuring outcomes –
particularly those that might not realize results for years
to come or involve significant investments to maintain –
can be a challenge.
Progress is being made to harness all factors involved

in the health of an individual. Evidence based interven-
tions can address common risk factors for multiple dis-
ease states, but a mere 3 % of federal health spending is
currently directed towards preventing an illness before it
occurs. Even less is attributed towards these non-
medical causes of poor health and disease. To truly
“bend the cost curve” and ensure robust health solutions
for all, external factors – where we live, work, and play
need to be addressed.

Systems healthcare – Economic implications
The returns to a systems approach to healthcare should
extend beyond improved quality of life and increased lon-
gevity for individuals. In particular, a systems approach –
through its promotion of population-based wellness and
prevention – has the potential to generate meaningful sav-
ings of both public and private health care expenditures
and have beneficial spillovers to the family members and
friends who help care for the sick. A systems approach to
Alzheimer’s disease and secondary prevention of cardio-
vascular disease offer illustrative cases in point.
In 2010, annual health care costs attributable to de-

mentia, i.e., net of the financial burden of other co-
occurring diseases, were between $41,000 to $56,000 per
person or $159 billion to $215 billion in aggregate [151].
About three-quarters of these costs are from institu-
tional and home-based long-term care [151]. Although
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these estimates place a monetary value on informal care
provided by family members and friends, they do not
account for the substantial non-monetary costs to care-
givers in terms of negative consequences to social, phys-
ical, and psychological well-being [152, 153]. To the
extent that a systems approach to Alzheimer’s disease
can delay disease onset by even a couple of years, it has
the potential to save hundreds of billions in direct health
care costs and even more in terms of improved well-
being for caregivers.
Treatment for cardiovascular disease (CVD) accounts

for about 1 out of every six health care dollars or about
$313 billion annually [154, 155]. Numerous reviews have
shown that secondary prevention of CVD, particularly
disease management programs that promote lifestyle
change (e.g., smoking cessation and exercise), medica-
tion adherence and multidisciplinary team-based care,
can improve quality of life, reduce hospital admissions
and lower health care spending [156, 157]. Transitional
care models that foster secondary prevention have in
fact been shown to be cost saving [158, 159]. To the ex-
tent that secondary prevention is integral to a systems
approach to CVD, it has the potential to save billions of
dollars annually.

Conclusions
To integrate systems approaches into clinical practice,
emerging and current healthcare workers must be ex-
posed to new and different training programs. Training
would involve scientists, clinicians, and other providers
who embrace holistic approaches that encompass care for
the whole person (mind, body, and spirit) and incorporate
these with information technologies. Fully-integrated sys-
tems training would therefore involve a broad range of
healthcare professionals, including nurse practitioners,
clinical psychologists, nutritionists, and licensed providers
of alternative therapies (naturopathic doctors, acupunctur-
ists, yoga instructors and massage therapists), providing
each with foundational knowledge about each others’ dis-
ciplines and to enable ideal education on behalf of patients
[160]. This integrated, trans-disciplinary approach to
training is also seen in the biopsychosocial model of dis-
ease, wherein dimensions of behavior and social milieu
are recognized along with biology [161]. Ultimately, such
training would lead to collaborative team-based coordi-
nated care that will best serve our patients.
Relatively few “best practices” for such training have

been established, but some are emerging. The Coordinat-
ing Action Systems Medicine (CASyM) [162] established
a European plan for systems medicine education that en-
compasses the following goals: (1) establishing frame-
works that span all aspects of medical education and all
relevant disciplines; (2) facilitating courses on “traditional”
topics that incorporate dynamic systems approaches and

visualization-based gadgets; (3) educating research physi-
cians and clinical practitioners more thoroughly in statis-
tics, bioinformatics, omics technologies, and modeling for
medical purposes; and (4) adapting software for practical
usage by clinicians. A number of US academic institutions
have initiated programs relevant to systems medicine
given the training imperative [3, 163, 164], with longitu-
dinal training being an important consideration given the
longer cadence of learning compared to other clinical
areas [135]. Different department, school, and center-
based programs have been initiated for pre-doctoral and
post-doctoral trainees [3, 164], with NIH CTSAs, systems
biology centers, and ACGME fellowships in clinical in-
formatics (instituted in 2014) serving as additional seeds
or focal points for interdisciplinary training. K-12 [165]
and CME programs aimed at practicing physicians [3]
have begun to fill in additional gaps in the training pipe-
line for systems medicine.
In the near term systems healthcare must be both peda-

gogically inter-professional and clinically multi-disciplinary
to achieve the full impact of the overall approach. Modifica-
tions to existing post-graduate clinical programs are needed
and this must be coordinated with the accreditation bodies.
Demonstrations of improved clinical and cost effectiveness
will be necessary to drive reimbursement reform and ultim-
ately the wide scale adoption. The robustness of systems
oriented multimodal data when reduced and made action-
able by providers and patients will further stimulate clinical
utility and bring about an inflection or tipping point. This
future is scheduled to arrive soon at clinic near you.
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