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Abstract

Background: The recent development of single-cell transcriptomics has enabled gene expression to be measured
in individual cells instead of being population-averaged. Despite this considerable precision improvement, inferring
regulatory networks remains challenging because stochasticity now proves to play a fundamental role in gene
expression. In particular, mRNA synthesis is now acknowledged to occur in a highly bursty manner.

Results: We propose to view the inference problem as a fitting procedure for a mechanistic gene network model
that is inherently stochastic and takes not only protein, but also mRNA levels into account. We first explain how to
build and simulate this network model based upon the coupling of genes that are described as
piecewise-deterministic Markov processes. Our model is modular and can be used to implement various biochemical
hypotheses including causal interactions between genes. However, a naive fitting procedure would be intractable. By
performing a relevant approximation of the stationary distribution, we derive a tractable procedure that corresponds

to a statistical hidden Markov model with interpretable parameters. This approximation turns out to be extremely
close to the theoretical distribution in the case of a simple toggle-switch, and we show that it can indeed fit real
single-cell data. As a first step toward inference, our approach was applied to a number of simple two-gene networks
simulated in silico from the mechanistic model and satisfactorily recovered the original networks.

Conclusions: Our results demonstrate that functional interactions between genes can be inferred from the
distribution of a mechanistic, dynamical stochastic model that is able to describe gene expression in individual cells.
This approach seems promising in relation to the current explosion of single-cell expression data.

Keywords: Single-cell transcriptomics, Gene network inference, Multiscale modelling, Piecewise-deterministic

Markov processes

Background

Inferring regulatory networks from gene expression data
is a longstanding question in systems biology [1], with
an active community developing many possible solutions.
So far, almost all studies have been based on population-
averaged data, which historically used to be the only
possible way to observe gene expression. Technologies
now allow us to measure mRNA levels in individual cells
[2-4], a revolution in terms of precision. However, the
network reconstruction task paradoxically remains more
challenging than ever.
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The main reason is that the variability in gene expres-
sion unexpectedly stands at a large distance from a trivial,
limited perturbation around the population mean. It is
now clear indeed that this variability can have functional
significance [5-7] and should therefore not be ignored
when dealing with gene network inference. In particular,
as the mean is not sufficient to account for a population
of cells, a deterministic model — e.g. ordinary differ-
ential equation (ODE) systems, often used in inference
[8, 9] — is unlikely to faithfully inform about an underlying
gene regulatory network. Whether such a deterministic
approach could still be a valid approximation or not is a
difficult question that may require some biological insight
into the system under consideration [10]. Another key
aspect when considering individual cells is that they gen-
erally have to be killed for measurements: from a statistical
point of view, temporal single-cell data therefore should
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not be seen as a set of time series, but rather snapshots, i.e.
independent samples from a time series of distributions.

On the other hand, single-cell data give the opportu-
nity of moving one step further toward a more accurate
physical description of gene expression. Molecular pro-
cesses of gene expression are overall now well understood,
in particular transcription, but precisely how stochas-
ticity emerges is still somewhat of a conundrum. Har-
nessing variability in single-cell data is expected to allow
for the identification of critical parameters and also
to provide hints about the basic molecular processes
involved [11, 12]. Moreover, the variability arising from
perturbations in cell populations is often crucial for net-
work reconstruction to succeed [13, 14] as the determin-
istic inference problem suffers from intrinsic limitations
[15]. From this point of view, the same information is
expected to be contained in the variability between cells
in single-cell data. Some of the few existing single-cell
inference methods follow this path, for example using
asynchronous Boolean network models [16] or generat-
ing pseudo time series [9, 17]. In this article, we use a
mechanistic approach in the sense that every part of our
model has an explicit physical interpretation. Importantly,
mRNA observations are not used as a proxy for proteins
since both are explicitly modeled.

Besides, mechanistic models that are accurate enough to
describe gene expression at the single-cell level usually do
not consider interactions between genes. For example, the
so-called “two-state” (aka random telegraph) model has
been successfully used with single-cell RNA-seq data [18],
but the joint distribution of a set of genes contains much
more information than the marginal kinetics of individual
genes: our aim is to exploit this information while keeping
the mechanistic point of view.

Namely, we propose to view the inference as a fit-
ting procedure for a mechanistic gene network model.
Whereas the goal here is not to achieve global predictabil-
ity performances (e.g. as in [19]), our framework makes it
possible to explicitly implement many biological hypothe-
ses, and to test them by going back and forth between
simulations and experiments. The main point of this arti-
cle is to show that a tractable statistical model for network
inference from single-cell data can be derived through
successive relevant approximations. Finally, we demon-
strate that our approach is capable of extracting enough
information out of in silico-simulated noisy single-cell
data to correctly infer the structures of various two-gene
networks.

Methods

In this part, we aim at deriving a tractable statistical
model from a mechanistic one. We will use the two-state
model for gene expression to build a “network of two-state
models” by making the promoter switching rates depend
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on protein levels. Then, successive relevant simplifica-
tions will lead to an explicit approximation of a statistical
likelihood.

A simple mechanistic model for gene regulatory networks
Basic block: stochastic expression of a single gene

Our starting point is the well-known two-state model of
gene expression [20—-23], a refinement of the model intro-
duced by [24] from pioneering single-cell experiments
[25]. In this model, a gene is described by its promoter
which can be either active (on) or inactive (off) — possi-
bly representing a transcription complex being “bound”
or “unbound” but it may be more complicated [26] —
with mRNA being transcribed only during the active
periods. Translation is added in a standard way, each
mRNA molecule producing proteins at a constant rate.
The resulting model (Fig. 1) can be entirely defined by the
set of chemical reactions detailed in Table 1, where chemi-
cal species G, G*, M and P respectively denote the inactive
promoter, the active promoter, the amount of mRNA and
proteins. The mathematical framework generally assumes
stochastic mass-action kinetics [27] for all reactions, since
they typically involve few molecules compared to Avo-
gadro’s number. In this fully discrete setting, one can use
the master equation to compute stationary distributions:
for mRNA the exact distribution is a Beta-Poisson mixture
[28], and an approximation is available for proteins when
they degrade much more slowly than mRNA [29]. In addi-
tion, the time-dependent generating function of mRNA is
known in closed form [30] and can be inverted in some
cases to obtain the transient distribution [28].

In practice, the formulas involve hypergeometric series
that are not straightforward to use in a statistical infer-
ence framework. Besides, these series essentially arise
from the fact that such a discrete model has to enumerate
all potential collisions between molecules (the stochas-
tic mass-action assumption in the master equation). It
is therefore natural to consider keeping only the most
important source of noise, that is, keeping a molecular
representation for rare species but describing abundant
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Fig. 1 Scheme of the two-state model of gene expression. We use it
as the basic block of our network model
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Table 1 Chemical reactions defining the two-state model. The
rate constants are usually abbreviated to rates as they correspond
to actual reactions rates when only one molecule of reactant is
present. In the stochastic setting, these rates are in fact
propensities, i.e. probabilities per unit of time

Reaction Rate constant Interpretation

G— G* Kon gene activation

G* =G Koff gene inactivation
G*—> G"+M ) transcription

M— M+P 5 translation

M- @ do mMRNA degradation
P—> g d protein degradation

species at a higher level where molecular noise averages
out to continuous quantities. A quick look at reactions
in Table 1 indicates that the only rare species are G
and G*, with quantities [ G] and [ G*] being equal to 0
or 1 molecule and satisfying the conservation relation
[G]+[G*]= 1. The other two, M and P, are not con-
served quantities in the model and reach a much wider
range in biological situations [31], meaning that satura-
tion constants so/dp and s1/d; are much larger than 1
molecule.

Hence, letting E(¢), M(¢) and P(¢) denote the respec-
tive quantities of G*, M and P at time £, we consider a
hybrid version of the previous model, where E has the
same stochastic dynamics as before, but with M and P now
following usual rate equations:

E@t):0%n 1, 155
M () = soE(t) — doM(2) (1)

P (t) = siM(t) — d1P(t)

This system simply switches between two ordinary dif-
ferential equations, depending on the value of the two-
state continuous-time Markov process E(f), making it
a Piecewise-Deterministic Markov Process (PDMP) [32].
From a mathematical perspective, model (1) rigorously
approximates the original molecular model when s¢/dy
and s;/d; are large enough [33, 34] and interestingly, it
has already been implicitly considered in the biological
literature [22, 23]. Note also that the stationary distribu-
tion of mRNA is a scaled Beta distribution that is exactly
the one of the Beta-Poisson mixture in the discrete model
[28]. Similarly to a recent approach for a two-gene toggle
switch [35], we will use (1) as a basic building block for
gene networks.

When both ko, < kot and dy < kofr, mRNA is tran-
scribed by bursts, i.e. during short periods which make
the mRNA quantity stay far from saturation. Hence, the
amount transcribed within each burst is approximately
proportional to the burst duration, whose mean is 1/kogt
by definition: this justifies the quantity s/k. often being
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called “burst size” or “burst amplitude”. Furthermore, pro-
moter active periods are much shorter than inactive ones
so they can be seen as instantaneous, justifying the name
“burst frequency” for the inverse of the mean inactive
time kon. We place ourselves in this situation as it often
occurs in experiments [22, 23, 36—38]. Note however that
these two notions are not clearly defined when relations
kon < koff and dop < kofr do not hold.

Adding interactions between genes: the network model

Now considering a given set of n genes, a natural way of
building a network is to assume that each gene i produces
specific mRNA M; and protein P;, and to define a version
of model (1) with its own parameters:

kon,i koff,i
E@®:0—1, 1—0
My (¢) = so,Ei(t) — doiMi(®) )

P/ (8) = 51,M;(t) — d,iP;(¢)

Still, genes have static parameters and do not interact
with each other. To get an actual network, we need to
go one step further: reactions G; — G;* and G;* — G;
are not assumed to be elementary anymore, but rather
represent complex reactions involving proteins so that
promoter parameters kon,; and kofr; now depend on pro-
teins (Fig. 2a), and a fortiori on time. Our network model
will correspond to the explicit definition, for all gene i,
of functions kon,i(P1,...,Py) and koft;(P1,...,Py). These
functions shall also depend on network-specific param-
eters quantifying the interactions, thus making the link
between “fitting a chemical model” and “inferring a net-
work” As a toy example, consider replacing G; — G;* with
two parallel elementary reactions

0;, 0;j
G =% G and G;+P —> G*+D 3)

for which applying the law of mass action directly gives
koni(P1,...,Py) = 0o + 6;;P;. In a regulatory net-
work (Fig. 2b), it would correspond to adding a directed
edge from gene j to gene i, with ;o the basal parame-
ter of gene i, and 6;; the strength of activation of gene i
by protein P;. We emphasize that the action of P; on the
promoter G; is not necessarily direct. For example, P;
can instead indirectly modulate the amount/activity of a
transcription factor: we suppose in this article that such
hidden reactions are fast enough regarding gene expres-
sion dynamics so that protein P is a relevant proxy for the
transcription factor. Moreover, although we assume here
that interactions can only happen at the level of ko; and
koft,;, mainly for identifiability purposes, it is also possible
to make dj; and s;,; depend on proteins without funda-
mentally changing the mathematical approach (e.g. see
[39, 40]).

In order to simplify notations, we normalize model (2)
into a dimensionless equivalent model: we rewrite it in
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Fig. 2 Different views of the network model. a Two genes interacting with each other, forming a network. Interactions are assumed to arise from the
dependence of promoter dynamics on protein quantities. b A higher level of abstraction leads to the traditional gene regulatory network
representation. ¢ A toy example of reactions defining the interactions between genes 1 and 2, making the link between representations (a) and (b)

(o
G+ P 2 G+ Py
82,2 %
Go + Py 25 GE+ Py
GT+P2&>G1+P2

62,1
G+ P, = Gy + Py

doidyi P
50,i81,i ~ ¢

which have values between 0 and 1, and report this scale
change in the definition of kopn ; and kofr; (see section 1.1 of
Additional file 1 for details). In the remainder of this arti-
cle, the new variables will still be denoted by M; and P; as
no confusion arises. The resulting normalized model is:

terms of new variables M; = %M, and P; =
'

Kon,i Koft,i
Eit):0— 1, 1—0
M (t) = do; (Ei(t) — My(t)) (4)

P/ (t) = dy,; (M;(t) — P;(¢))

still omitting the dependence of kon; and kog; on
(P1(2), ..., Py(2)) for clarity. This form enlightens the fact
that so; and s;; are just scaling constants: given a path
(E;, M, P;); of system (4), one can go back to the physi-
cal path by simply multiplying M; by (so,;/do,;) and P; by
(50,i/do,i) < (s1,i/d1,).

Therefore, we get a general network model where each
link between two genes is directed and has an explicit
biochemical interpretation in terms of molecular inter-
actions. The previous example is very simplistic but one
can use virtually any model of chromatin dynamics to
derive a form for kon; and kof;, involving hit-and-run
reactions, sequential binding, etc. [41]. Such aspects are
still far from being completely understood [42—45] and
this simple network model can hopefully be used to assess
biological hypotheses. In the next part, we will introduce a
more sophisticated interaction form based on an underly-
ing probabilistic model, which is both “statistics-friendly”

and interpretable as a non-equilibrium steady state of
chromatin environment [43].

Some known mathematical results

Thanks to some recent theoretical results [40, 46], sim-
ple sufficient conditions on kopn,; and koff; ensure that the
PDMP network model (4) is actually well-defined and that
the overall joint distribution of (E;, M;, P;); converges as
t — 400 to a unique stationary distribution, which will be
the basis of our statistical approach. Namely, we assume in
this article that kop ; and kofr; are continuous functions of
(P1,...,Py,) and that they are greater than some positive
constants. These conditions are satisfied in most inter-
esting cases, including the above toy example (3) when
00 > 0.

Contrary to creation rates so; and s; ;, degradation rates
do,; and d ; play a crucial role in the dynamics of the sys-
tem. Intuitively, the ratios (kon, + koff,i)/do, and dy,;/d1
respectively control the buffering of promoter noise by
mRNA and the buffering of mRNA noise by proteins. A
common situation is when promoter and mRNA dynam-
ics are fast compared to proteins, i.e. when dy; > dj ; with
(Kon,i + koft,i) /do,i fixed. At the limit, the promoter-mRNA
noise is fully averaged by proteins and model (4) simplifies
into a deterministic system [47]:

kon,i(P(2))

P%w=d»( eve —PUO (5)
: Y\ koni(P(®)) + kotts(P(®)

where P(¢) = (P1(%),...,P,(t)). The diffusion limit,

which keeps a residual noise, can also be rigorously

derived [48]. Unsurprisingly, one recovers the traditional
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way of modelling gene regulatory networks with Hill-
type interaction functions. Equation 5 is useful to get an
insight into the behaviour of the system (4) for given kop,;
and ko, yet it should be used with caution. Indeed, the
do,;/d,; ratio has been shown to span a high range, averag-
ing out to the value dy;/d;,; ~ 5 in mammalian cells [31],
for which taking the limit do; > dj; is not obvious. This is
consistent with recent single-cell experiments showing a
high variability of both mRNA and protein levels between
cells [37]. In that sense, the PDMP model is much more
robust than its deterministic/diffusion counterpart while
keeping a similar level of mathematical complexity, which
motivates our approach.

Simulation

We propose a simple algorithm to compute sample paths
of our stochastic network model (4). It consists in a hybrid
version of a basic ODE solver, making it efficient enough
to perform massive simulations on large scale networks
involving arbitrary numbers of molecules, which would be
intractable with a classic molecule-based model (Fig. 3).
The deterministic part of the algorithm is a standard
explicit Euler scheme, while the stochastic part is based
on the transient promoter distribution for single genes:
this can be justified by the fact that during a small enough
time interval, proteins remain almost constant so genes
behave as if kon,; and koff; were constant. We therefore
use Bernoulli steps, in a similar way of a diffusion being
simulated using gaussian steps.

After discretizing time with step &f, the numerical
scheme is as follows. Starting from an initial state
(Eio, MO, Pio)i, the update of the system from ¢ to t + 5t is
given by:

Ef ~ B (xf)
M = (1 — do i SOM,' + doStE! (6)
POt = (1 — dy i 86)P + dy i 5tM;
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where the Bernoulli distribution parameter 7/ is derived
by locally solving the master equation for the promoter
[49], i.e.

t t
a:; a: ty gt
t i t i —(at+bt)ét
T = +\E — ——— e i
Yoal+ b ( oAb+ bt.>

4 4

with the notation a! = koni(Pi,...,P,") and b} =
kotti(P1%, . . ., PyY). Intuitively, the algorithm is valid when
8t <« 1/ max; {I<on,i;1(off,i; dO,i: dl,i} where Kon,i and Kot,i
denote the maximum values of functions kop,; and kot ;.

Deriving a tractable statistical model

We will now adopt a statistical perspective in order to
deal with gene network inference, considering a set of
observed cells. If they are evolving in the same environ-
ment for a long enough time, we can reasonably assume
that their mRNA and protein levels follow the stationary
distribution of an underlying gene network: this distribu-
tion can be used as a statistical likelihood for the cells.
Furthermore assuming no cell-cell interactions (which
may of course depend on the experimental context), we
obtain a standard statistical problem with independent
samples. Since the stationary distribution of the stochastic
network model (4) is well-defined but a priori not analyt-
ically tractable, we will derive an explicit approximation
and then reduce our inference problem to a traditional
likelihood-based estimation. We will do so in two cases:
when there is no self-interaction, and for a specific form
of auto-activation.

Separating mRNA and protein timescales

It is for the moment very rare to experimentally obtain
the amount of proteins for many genes at the single-cell
level. We will therefore assume here that only mRNAs are
observed. To deal with this problem, we take the protein
timescale as our reference by fixing d;,; and assume that
promoter dynamics are faster than proteins, i.e. (kon,; +

Promoter active periods Promoter active periods
ST ST T T
5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
x102 mRNA levels — M %102 mRNA levels — M
4 T T T T T T T T T 4 T T T T T T T T T
3L 4 3L
21 4 2t
1+ 1t
0 N n 1 L n h 0 L . r n L Y
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
1.0x10¢ Protein levels — P 1.0 x10¢ Protein levels — P
0.8} 0.8}
0.61 0.6
0.41 0.4
0.2f 0.2
0.0 R R R R R R R R " 0.0 N R R R R R R " R
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Time (h) Time (h)

Fig. 3 Simulations of the two-state model for a single gene. a Sample path of the PDMP model using our hybrid numerical scheme (computation
time & 0.05 s). b Sample path of the classic model using exact stochastic simulation [27] (computation time =~ 10 s). Parameters values are

kon = 0.34, kot = 10,50 = 103,57 = 10,do = 05and d; = 0.1 (inh™")
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koft;) > di,; in a biologically relevant way, say (kon,; +
kotti)/d1,; > 10 (thus the deterministic limit (5) does not
necessarily hold). Furthermore, in line with several recent
experiments [37, 50], we assume that dy; is sufficiently
larger than d;,; so that the correlation between mRNAs
and proteins produced by the gene is very small: model (4)
then can be reduced by removing mRNA and making pro-
teins directly depend on the promoters (see section 1.2 of
Additional file 1). The result is

kon,i koff,i
{Ei(t):0—>1, 1 2% 0 )

P/ (t) = du,; (Ei(t) — P;(2))

which still admits the deterministic limit (5). Since mRNA
dynamics are faster than proteins, one can also assume
that, given protein levels P = (Py,...,P,), each mRNA
level M; follows the quasi-steady state distribution

kon,i(P) koff,i(P) )

, — (8)
do,; do,;

M;|P ~ Beta (
corresponding to the single-gene model [28, 39] with con-
stant parameters kon,i(P) and kof;(P). Numerically, this
approximation works well even for moderate values of d ;,
such as dy; = 5 x dy; (see the “Results” section).

Biologically, Egs. (7) and (8) suggest that correlations
between mRNA levels may not directly arise from cor-
relations between promoters states (which in fact are
weak because of (kon; + koft;) >> di1,), but rather origi-
nate from correlations between promoter parameters kop, i
and kofr;, which themselves depend on the protein joint
distribution.

Table 2 sums up the successive modelling steps intro-
duced so far. From now on, we will always assume the

Table 2 Successive dynamical models introduced in this article.
We recall for each step the main feature and the form of the
mMRNA stationary distribution. The full network model (step 3) is
used for simulations, while the simplified one (step 4) is used to
derive the approximate statistical likelihood

1 Single-gene, discrete [29]

o All molecules are discrete

& mRNA distribution: Beta-Poisson
2 Single-gene, PDMP (1)

© Only the promoter is discrete

Abundant species treated
continuously

o mRNA distribution: Beta Introduction of interactions

3 Network (2), normalized version (4) via Kon, Koff
© Both accurate and fast to simulate

© mRNA distribution: unknown Timescale separation of

4 Simplified network (7) Protein/mRNA (do > dh)
o MRNA is removed from the network

<o Conditional mRNA distribution: Beta (8)
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form (8) for the mRNA distribution, and thus our model
is reduced to Eq. (7) which only involves proteins.

Hartree approximation

In this section, we present the Hartree approximation
principle and provide an explicit formula in the particu-
lar case of no self-interaction. The simplified model (7)
is still not analytically tractable, but it is now appropriate
for employing the self-consistent proteomic field approxi-
mation introduced in [51, 52] and successfully applied in
[53, 54]. More precisely, we will use its natural PDMP
counterpart, which will be referred to as “Hartree approx-
imation” since the main idea is similar to the Hartree
approximation in physics [51]. It consists in assuming that
genes behave as if they were independent from each other,
but submitted to a common “proteomic field” created by
all other genes. In other words, we transform the original
problem of dimension 2" into # independent problems of
dimension 2 that are much easier to solve (see section 2 of
Additional file 1 for details).

When kon; and kofr; do not depend on P; (i.e. no
self-interaction), this approach results in approximat-
ing the protein stationary distribution of model (7) by
the function

n ai(y)—1 _ anbi(y)—1
_ Yi =)
S e RN ®)
where y = (y1,...,94) = (P1,...,Py) = P, ai(y) =

kon,i(¥)/d1,i» bi(y) = kotti(¥)/d1,; and B is the standard
Beta function. Note that promoter states have been inte-
grated out since they are not required by Eq. (8).

The function u is a heuristic approximation of a prob-
ability density function. It is only valid when interactions
are not too strong, that is, when kon; and kof; are close
enough to constants, and it becomes exact when they are
true constants. Besides, it does not integrate to 1 in gen-
eral. However, this approximation turns out to be very
robust in practice and it has the great advantage to be fully
explicit (and significantly simpler than in the non-PDMP
case), thus providing a promising base for a statistical
model.

When kop,; and kofr; depend on P;, one can still explic-
itly compute the Hartree approximation in many cases:
we will give an example in the next section. Alterna-
tively, it is always possible to use formula (9) even with
self-interactions, giving a correct approximation when the
feedback is not too strong, as for other proteins.

An explicit form for interactions

We now propose an explicit definition of functions kop ;
and kof ;. Recent work [36, 55, 56] showed that appar-
ent increased transcription actually reflects an increase
in burst frequency rather than amplitude. We therefore
decided to model only kopn,; as an actual function and to
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keep koff; constant. In this view, the activation frequency
of a gene can be influenced by ambiant proteins, whereas
the active periods have a random duration that is dictated
only by an intrinsic stability constant of the transcription
machinery.

Our approach uses a description of the molecular activ-
ity around the promoter in a very similar way as Coulon
et al. [42]. Accordingly, we make a quasi-steady state
assumption to obtain kop,;. This idea based on thermody-
namics was also used in the DREAM3 in-Silico Challenge
[57] to simulate gene networks. However, only mean tran-
scription rate was described (instead of promoter activity
in our work), which is inappropriate to model bursty
mRNA dynamics at the single-cell level.

We herein derive kon,; from an underlying stochas-
tic model for chromatin dynamics. We first introduce
a set of abstract chromatin states, each state being
associated with one of two possible rates of promoter
activation, either a low rate ko, or a high rate k1,; > ko;.
More specifically, such chromatin states may be
envisioned as a coarse-grained description of the
chromatin-associated parameters that are critical for
transcription of gene i. Second, we assume a sepa-
ration of timescales between the abstract chromatin
model and the promoter activity, so that the promoter
activation reaction depends only on the quasi-steady
state of chromatin. In other words, the effective ko is
a combination of kg; and k;; which integrates all the
chromatin states: its value depends on the probability of
each state and a fortiori on the transitions between them.
We propose a transition scheme which leads to an
explicit form for kop;, based on the idea that pro-
teins can alter chromatin by hit-and-run reactions
and potentially introduce a memory component.
Some proteins thereby tend to stabilize it either in a
“permissive” configuration (with rate kj,;) or in a “non-
permissive” configuration (with rate ko;), providing
notions of activation and inhibition. A more precise
definition and details of the derivation are provided in
section 3 of Additional file 1.
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The final form is the following. First, we define a
function of every protein but P;,
1 + exp(0;) (/i)™
L+ (j/sip)™

®;(y) = exp@;) | |

J#i

which may represent the external input of gene i. Then,
Kkon,i is defined by

ko,i + k1,:®; () (yi/si,)"

— (10)
14+ @;(0) (yi/si,) "™

kon,i (V) =

Hence, when the input ®;(y) is fixed, kop,; is a standard
Hill function which describes how gene i is self-activating,
depending on the Hill coefficient m;; (Fig. 4). The neu-
tral value is set to ®;(y) = 1, so that for this particular
value, s;; is the usual dissociation constant. Moreover, if
0;; = 0 for all j # i, then ®; becomes the constant func-
tion ®;(y) = exp(b;,;), and thus 6;; may be seen as a “basal”
parameter, summing up all potential hidden inputs. On
the contrary, if some 6;; > 0 (resp. §;; < 0), then ®;
becomes itself an increasing (resp. decreasing) Hill-type
function of protein Pj, where m;; and s;; again play their
usual roles.

The 1 x n matrix 8 = (6;;) therefore plays the same role
as the interaction matrix in traditional network inference
frameworks [8]. For i # j, 6;; quantifies the regulation of
gene i by gene j (activation if 6;; > 0, inhibition if §;; < 0,
no influence if §;; = 0), and the diagonal term 6;; aggre-
gates the “basal input” and the “self-activation strength”
of gene i. Note that self-inhibition could be considered
instead, but the choice has to be made before the inference
since the self-interaction form is notoriously difficult to
identify, especially in the stationary regime. In the remain-
der of this article, we assume that parameters ko,;, k1,i, 772;
and s;; are known and we focus on inferring the matrix 6.

A benefit of the interaction form (10) is to allow for a
fully explicit Hartree approximation of the protein distri-
bution (see section 3 of Additional file 1 for details). In
particular, if m;; > 0 and ¢; = (ki; — ko,i)/(d1,;mi;) is a

R m;i=0 R m;i=1 s m;i=2 Value of ®;
—_— 102
1015
15} g 15 101
— 100.5
S r 1 100
10-0.5
0.5 0.5 10-1
— 10-1.5
0 0 — — 10-2
0 0.05 0.1 0.15 0.2 [ 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
Yi Vi Yi
Fig. 4 Different auto-activation types in the network model. Each color corresponds to a fixed value of ®; in formula (10), and each curve represents
kon, as a function of y; for m;; = 0 (no feedback), m;; = 1 (monomer-type feedback) and m;; = 2 (dimer-type feedback). The neutral value ®; = 1 is
represented by a dashed gray line. Here kog; = 0.01, k1; = 2and s;; = 0.1
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positive integer for all i, the approximation is given by

n Ci air—1 bi—1
_ BN
o= 1} ( PO ) )

with a;,r = ((¢; — r)ko,i + rk1,)/(d1,ici), bi = Koft,i/d1,; and
() B(air bi) (@i() /s:)"
S0 () Blaiw, b) (i) /)"

In other words, the Hartree approximation (11) is a
product of gene-specific distributions which are them-
selves mixtures of Beta distributions: for gene i, the a;,
correspond to “frequency modes” ranging from ko ; to ki ;,
weighted by the probabilities p;,(y). It is straightforward
to check that inhibitors tend to select the low burst fre-
quencies of their target (a;, ~ ko ;) while activators select
the high frequencies (a;, ~ ki,;). If m;; = 0 for some i,
then kop,,; does not depend on P; so one just has to replace
the i-th term in the product (11) with the single Beta
form as in Eq. (9), which is equivalent to taking the limit
¢; — +oo0. Finally, when m;; > 0 but ¢; is not an integer,
using [¢;] instead keeps a satisfying accuracy.

(11)

r=f

pi,r(y) =

The statistical model in practice

Our statistical framework simply consists in combining
the timescale separation (8) and the Hartree approxima-
tion (11) into a standard hidden Markov model. Indeed,
conditionally to the proteins, mRNAs are independent
and follow well-defined Beta distributions

L x A0 =11 — b1
o1 B@), bi(y)

where x = (x1,...,%,) = My1,...,M,) = M, 4;(y) =
kon,i(y)/do; and b;(y) = kosi(y)/do;. Then one can
use (11) to approximate the joint distribution of pro-
teins. Hence, recalling the unknown interaction matrix 6,
the inference problem for m cells with respective levels

(My, Pr)1<kgm is based on the (approximate) complete
log-likelihood:

¢=0My,..

v(x,y) = (12)

-)Mm7P11~~~1PWl|9)

“ (13)
= log(u(Py)) + log(v(My, Py))
k=1
where we used conditional factorization and indepen-
dence of the cells.

The basic statistical inference problem would be to max-
imize the marginal likelihood of mRNA with respect to 6.
Since this likelihood has no simple form, a typical way to
perform inference is to use an Expectation-Maximization
(EM) algorithm on the complete likelihood (13). How-
ever, the algorithm may be slow in practice because of
the computation of expectations over proteins. A faster
procedure consists in simplifying these expectations using
the distribution modes: the resulting algorithm is often
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called “hard EM” or “classification EM” and is used in
the “Results” section. Moreover, it is possible to encode
some potential knowledge or constraints on the network
by introducing a prior distribution w(0). In this case,
from Baye’s rule, one can perform maximum a posteriori
(MAP) estimation of 6 by using the same EM algorithm
but adding the penalization term log(w(0)) to £ during
the Maximization step (see section 4 of Additional file 1
and the “Results” section). Alternatively, a full bayesian
approach, i.e. sampling from the posterior distribution of
6 conditionally to (My, ..., M,,), may also be considered
using standard MCMC methods.

Taking advantage of the latent structure of proteins,
we can also deal with missing data in a natural way: if
the mRNA measurement of gene i is invalid in a cell k
owing to technical problems, it is possible to ignore it by
removing the i-th term in the conditional distribution of
mRNAs (12). This only modifies the definition of v for cell
k in Eq. (13), ensuring that all valid data is effectively used
for each cell.

Results

In this part, we first compare the distribution of the
mechanistic model (4) to the mRNA quasi-steady state
combined with Hartree approximation for proteins, on
a simple toggle-switch example. Then, we show that the
single-gene model with auto-activation can fit marginal
mRNA distributions from real data better than the
constant-ko, model. Finally, we successfully apply the
inference procedure to various two-gene networks simu-
lated from the mechanistic model.

Relevance of the approximate likelihood

Starting from the normalized mechanistic model (4), two
approximations were used to derive the final statisti-
cal likelihood (13): the quasi-steady state assumption for
mRNAs given protein levels, and the Hartree approxi-
mation for the joint distribution of proteins. Crucially,
this approximate likelihood has to be close enough to the
exact one in order to preserve the equivalence between
inferring a network and fitting the mechanistic model.
To get an idea of the accuracy, we considered a basic
two-gene toggle switch defined by kop,,; following Eq. (10)
with the interaction matrix given by 611 = 6y = 4
and 01, = 61 = —8 (full parameter list in section 6
of Additional file 1). By computing sample paths (Fig. 5),
we estimated the stationary distribution and compared
it with our approximation, which appeared to be very
satisfying, both for proteins and mRNAs (Fig. 6).

Fitting marginal mRNA distributions from real data

A particularity of single-cell data is to often exhibit bursty
regimes for mRNA (meaning kon < koff and dy < Koff)
and potentially also for proteins (adding di < koff), which
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Fig. 5 Sample path of a two-gene toggle switch. The first gene is plotted in red and the second in green. While always staying in a bursty regime
regarding mRNAs, genes can switch between high and low frequency modes (here at t & 50 h). From this example, it is clear that the overall joint
distribution can contain correlations even if the bursts themselves are not coordinated
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Fig. 6 Exact and approximate stationary distributions for the example of toggle switch. True distributions (left side) were estimated by sample path
simulation, while approximations (right side) have explicit formulas. a True distribution of proteins. b Approximate distribution of proteins, from
formula (11). € True distribution of mRNAs. d Approximate distribution of mRNAs, obtained by integrating the conditional distribution of mRNA (12)
against (b)
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are well fitted by Gamma distributions [37]. At this stage,
it is worth mentioning that the Gamma distribution can
be seen as a limit case of the Beta distribution. Intuitively,
when b > 1 and b >» a (typically a = kon/dp and b =
koft/dp), most of the mass of the distribution Beta(a, b) is
located at x < 1 so we have the first order approximation

N1 — x)bl =y exp((b — 1) log(1 — x))

~ 5L exp(—bx)

and thus Beta(a,b) ~ y(a,b). This way, formulas (11)
and (12) can be easily transformed into Gamma-based dis-
tributions. Parameters so and ko then aggregate in kofr/so
because of the scaling property of the Gamma distribu-
tion, so only this ratio has to be inferred: from an applied
perspective, it simply represents a scale parameter for
each gene. This remark leads to a possible preprocessing
phase that can be used for estimating the crucial basal
parameters of the network, without requiring the knowl-
edge of such scale parameters (see section 5 of Additional
file 1).

In addition, our network model is able to generate mul-
tiple modes while keeping such bursty regimes (Fig. 5),
as noticeable in the stationary distribution (11). Inter-
estingly, this feature has already been considered in the
literature by empirically introducing mixture distributions
[58, 59]. As a first step toward applications, we compared
our model in the simplest case (independent genes with
auto-activation) to marginal distributions of single-cell
mRNA measurements from [38]. Our model was fitted
and compared to the basic two-state model in the bursty
regime, i.e. to a simple Gamma distribution: Fig. 7 shows
the example of the LDHA gene. Although very close when
viewed in raw molecule numbers, the distributions differ
after applying the transformation x — x* witha = 1/3,
which tends to compress great values while preserving
small values. The data becomes bimodal, suggesting the
presence of two bursting regimes, a “normal” one and a
very small “inhibited” one: the auto-activation model then
performs better than the simple Gamma, which necessar-
ily stays unimodal for 0 < a < 1. Note that the RTqPCR
protocol used in [38] was shown to be far more sensitive
than single-cell RNA-seq in the detection of low abun-
dance transcripts [60]. Since the data also contains small
nonzero values, this tends to support a true biological
origin for the peak in zero. Besides, the case of distribu-
tions that are not bimodal until transformed also arises for
proteins [61].

Application of the inference procedure

By construction of the mechanistic model, the interac-
tion matrix 6 can describe any oriented graph by explicitly
defining causal quantitative links between genes, which
is difficult to do within traditional statistical frameworks
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Fig. 7 Fitting marginal distributions from real single-cell data:
example of the LDHA gene. The red curve is the stationary
distribution associated with our interaction form (here a single gene
with auto-activation), while the dashed blue curve corresponds to the
basic two-state model in the bursty regime (Gamma distribution).

a The raw data seems to be well fitted by the Gamma distribution,
which in this view is close to our model. b Same fit viewed after
applying the transformation x — x'/3. The data becomes bimodal
and the fit appears to be better with the auto-activation model

(e.g. bayesian networks or undirected Markov random
fields). The logical downside is that identifiability issues
seem inevitable. In a first attempt to assess this aspect, we
implemented the inference method presented above and
tested it on various two-gene networks, assuming auto-
activation for each gene (i.e. m;; > 0) with Eq. (10) to
maximize variability without considering perturbations of
the system (parameter list in section 6 of Additional file 1).

We decided to investigate the worst case scenario in
terms of cell numbers. We are fully aware of the existence
of technologies allowing to interrogate thousands of cells
simultaneously, but most of the recent studies still rely
upon a much smaller number of cells. For each network,
we therefore simulated mRNA snapshot data for 100 cells
using the full PDMP model (4). We then inferred the
matrix 6 using a “hard EM” algorithm based on the likeli-
hood (13), that is, alternatively maximizing the likelihood
with respect to # and with respect to the (unknown)
protein levels of each cell. A lasso-like penalization term,
corresponding to a prior distribution, was added to the 6;;
for i # j to obtain true zeros — so that the inferred net-
work topology is clear — and to prevent keeping both 6;;
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and 6;; when one is significantly weaker (see section 4 of
Additional file 1 for details of the penalization and the
whole procedure).

We obtained highly encouraging results since every
structure was inferred with a high probability of success
(Fig. 8), meaning that the non-diagonal (i.e. interaction)
terms of 6 had the right sign and were nonzero at the
right places. A list of the inferred values is provided in
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Additional file 1: Table S3. It is very important at that stage
to emphasize that we are not trying to infer 0 exactly: we
only assess whether it has a zero or nonzero value and
its sign. Although the results tend to support the identi-
fiability of the full matrix 6 in this simple two-gene case,
one has to be aware that the quantity we maximize (an
approximate likelihood) is a priori non convex and can
have several local maxima (i.e. networks that are relevant

true network

a dataset (100 cells)

inference

O—@ — - i

— @—)@ success

— @—@ failure

1 3 4 5 6 7
1 @ @ 9 1 0 0 0 0
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Fig. 8 Testing our inference method on simple networks. a For each network, numbered from 1 to 7, we simulated 100 cells using the full
mechanistic model until the stationary regime was reached. Then we took a snapshot of their mRNA levels and inferred the parameters from this
data. The result was called successful when the inferred structure (topology and nature of the links) was the same as the true network. b For each
network (rows), 10 datasets were simulated and the results were reported by counting the number of inferred 6 corresponding to each structure
(columns), highlighting successes (blue) and failures (orange). The perfect inference would lead to 10 for all the diagonal terms and 0 everywhere
else. ¢ Examples of simulated mRNA datasets (one for each network). Although having coherent signs, Pearson’s correlation coefficients (top right of
each plot) would clearly be insufficient to distinguish between the different networks
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candidates to explain the data). The result of the infer-
ence thus can depend on the starting point: in this first
approach we chose the null matrix to be the starting
point for 6, which corresponds to the — biologically rel-
evant — expectation of “balanced” behaviors (e.g. we do
not expect 61,1 < 0o7). Alternatively, one can consider
some probabilistic prior knowledge on 6 to implement a
(possibly rough) idea of parameter values from a Bayesian
viewpoint: it is worth mentioning that any knockout infor-
mation can be implemented this way in our model.

Finally, we assessed the inference behavior in the pres-
ence of dropouts, i.e. genes expressed at a low level in a
cell that give rise to zeros after measurement [4]. Our first
tests tend to indicate that our approach is robust regard-
ing dropouts, in the sense that up to 30% of simulated
dropouts does not drastically affect the estimation of 6
once the other parameters have been estimated correctly
(see Additional file 1: Table S4 for an example).

Discussion

In this paper, we introduce a general stochastic model
for gene regulatory networks, which can describe bursty
gene expression as observed in individual cells. Instead
of using ordinary differential equations, for which cells
would structurally all behave the same way, we adopt a
more detailed point of view including stochasticity as a
fundamental component through the two-state promoter
model. This model is but a simplification of the com-
plexity of the real molecular processes [42]. Modifications
have been proposed, from the existence of a refractory
period [23] to its attenuation by nuclear buffering [62]. In
bacteria, the two states originate from the accumulation
of positive supercoiling on DNA which stops transcrip-
tion [63]. In eukaryotes, although its molecular basis is
not quite understood, the two-state model is a remarkable
compromise between simplicity and the ability to cap-
ture real-life data [18, 22, 36—38]. Our PDMP framework
appears to be conceptually very similar to the random
dynamical system proposed in [64] but it has two major
advantages: time does not have to be discretized, and the
mathematical analysis is significantly easier. We also note
that a similar framework appears in [65, 66] and that a
closely related PDMP — which can be seen as the limit of
our model for infinitely short bursts — has recently been
described in [67].

We then derive an explicit approximation of the sta-
tionary distribution and propose to use it as a statis-
tical likelihood to infer networks from single-cell data.
The main ingredient is the separation of three physical
timescales — chromatin, promoter/RNA, and proteins —
and the core idea is to use the self consistent proteomic
field approximation from [51, 52] in a slightly simpler
mathematical framework, providing fully explicit formu-
las that make possible the massive computations usually
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needed for parameter inference. From this viewpoint, it is
a rather simple approach and we hope it can be adapted
or improved in more specific contexts, for example in
the study of lineage commitment [68]. Besides, the main
framework does not necessarily has to include an under-
lying chromatin model and thus it can in principle also be
used to describe gene networks in procaryotes.

Mechanistic modelling and statistical inference

An important quality of the PDMP network model is
that the simulation algorithm is comparable in speed
with classic ODE and diffusion systems, while providing
an effective approximation of the “perfect’, fully discrete,
molecular counterpart [33, 35]. It is worth noticing that
the PDMP - at least the promoter-mRNA system — nat-
urally appears as an example of Poisson representation
[28, 69], that is, not a simple approximation but rather the
core component of the exact distribution of the discrete
molecular model. Furthermore, such a simulation speed
allowed us to compare our approximate likelihood with
the true likelihood for a simple two-gene toggle switch,
giving excellent results (Fig. 6). This obviously does not
constitute a proof of robustness for every network: a
proper quantitative (theoretical or numeric) comparison
is beyond the scope of this article but would be extremely
valuable. Intuitively, it should work for any number of
genes, provided that interactions are not too strong.

Besides, some widely used ODE frameworks [8, 17, 57]
can be seen as the fast-promoter limit of the PDMP model:
this limit may not always hold in practice, especially in
the bursty regime. In particular, Fig. 5 highlights the risk
of using mRNA levels as a proxy for protein levels. It also
explains why ordering single-cell mRNA measurements
by pseudo-time may not always be relevant, as found in
[38]. In [70], the authors use a hybrid model of gene
expression to infer regulatory networks: it is very close to
the diffusion limit of our reduced model (7) with the dif-
ference that the discrete component, called “promoter” by
the authors, would correspond to the “frequency mode” in
the present article, as visible for proteins in Fig. 5. From
such a perspective, our approach adds a description of
bursty mRNA dynamics that allows for fitting single-cell
data such as in Fig. 7.

Finally, our method performed well for simple two-gene
networks (Fig. 8), showing that part of the causal infor-
mation remains present in the stationary distribution: this
suggests that it is indeed possible to retrieve network
structures with a mechanistic interpretation, even from
bursty mRNA data.

Perspectives

We focused here on presenting the key ideas behind the
general network model and the inference method: the log-
ical next step is to apply it to real data and with a larger



Herbach et al. BMC Systems Biology (2017) 11:105

number of genes, which is the subject of work in progress
in our group. In particular, we propose a functional pre-
processing phase, detailed in section 5 of Additional file 1,
that only requires the knowledge of the ratio dy;/d;; to
estimate all the relevant parameters before inferring 6.
The ratio between protein and mRNA degradation rates
(or half-lives) hence appears to be the minimum required
for such a mechanistic approach to be relevant. Depend-
ing upon the species, mRNA and protein half-lives values
can be found in the literature (see e.g. [31] for human
proteins half-lives), or should be estimated from ad hoc
experiments.

From a computational point of view, the main challenge
is the algorithmic complexity induced by the fact that pro-
teins are not observed and have to be treated as latent
variables. There is a priori no possibility of reducing this
without loosing too much accuracy, and therefore some
finely optimized algorithms may be required to make the
method scalable. Furthermore, the identifiability proper-
ties of the interaction matrix 6 seem difficult to derive
theoretically. In this paper we focused on the stationary
distribution for simplicity: importantly, several aspects
such as time dependence (computing the Hartree approx-
imation in transitory regime) or perturbations (changing
the cell's medium or performing knockouts [71], which
can be naturally embedded in our framework) could
greatly improve the practical identifiability.

From a biological point of view, our model does not
really describe individual cells but rather a concatenation
of trajectories obtained by following cells throughout divi-
sions. Experiments suggest that it should be a relevant
approximation, providing one considers mRNA and pro-
teins levels in terms of concentrations instead of molecule
numbers [72], which is made possible by the PDMP
framework. In this view, the cell cycle results in increasing
the apparent degradation rates — because of the increase
in cell volume followed by division — and thus plays a
crucial role for very stable proteins. However, at such a
description level, many aspects of possible compensation
mechanisms [73] and chromatin dynamics [74] remain to
be elucidated. Regarding the latter aspect, our abstract
chromatin states were not modeled from real-life data —
chromatin composition for instance — but our approach
is relevant in that partitioning into dual-type chromatin
states as we did is now known as a pervasive feature of all
eukaryotic genomes [75-78].

Conclusions

Protein and mRNA measurements in individual cells
have revealed the importance of stochasticity in gene
expression, which may potentially affect many aspects
of gene regulation within cells. The traditional paradigm
of gene network dynamics consisting in a determinis-
tic structure plus an external noise — historically based
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on population-averaged data — should therefore be ques-
tioned, as such a noise appears to be itself part of the
network structure and far from a small perturbation.

By modelling gene networks using piecewise-
deterministic Markov processes, which are a simple
way to introduce the minimum amount of mechanis-
tic, non-diffusive stochasticity (corresponding to low
molecule numbers), we derived a likelihood-based
statistical model with interpretable parameters that
successfully describes single-cell expression data.
Our first results show that oriented interactions can
indeed be inferred using such a method. Hence, this
type of approach may take gene network inference to
the next level by optimally exploiting single-cell data
and improving the physical interpretability of inferred
networks.

Additional file

Additional file 1: Additional file 1. Supplementary information. This
document contains details of the theoretical derivations and all the
parameter values used in the examples. (PDF 362 kb)
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