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Abstract

Background: Sequencing technologies applied to mammals’ microbiomes have revolutionized our understanding of
health and disease. Hence, to assess diseases’ progression as well as therapies longterm effects, the impact of maladies
and drugs on the gut-intestinal (GI) microbiome has to be evaluated. Typical metagenomic analyses are run to associate
to a condition (disease, therapy, diet) a pool of bacteria, whose eubiotic/dysbiotic potential is assessed either
by α-diversity, a measure of the varieties populating the microbiome, or by Firmicutes to Bacteroides ratio, associated
to systemic inflammation, and finally by manual and direct inspection of bacteria’s biological functions, when known.
These approaches lead to results sometimes difficult to interpret in terms of the evolution towards a specific microbial
composition, harmed by large areas of unknown.

Results: We propose to additionally evaluate a microbiome based on its global composition, by automatic annotation
of pathogenic genera and statistical assessment of the net varied frequency of harmless versus harmful organisms. This
application is intuitive, quantitative and computationally efficient and designed to cope with the currently incomplete
species’ functional knowledge. Our results, applied to human GI-microbiome data exemplify how this layer of information
provides additional insights into treatments’ impact on the GI microbiome, allowing to characterize a more physiologic
effects of Prednisone versus Methotrexate, two treatments for rheumatoid arthritis (RA) a complex autoimmune systemic
disease.

Conclusions: Our quantitative analysis integrates with previous approaches offering an additional systemic level of
interpretation here applied, for its potential to translate into clinically relevant information, to the therapies for RA.
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Background
With the development of high-throughput technologies,
large amounts of metagenomic data have been produced,
especially with the sequencing of the 16S ribosomal
RNA gene, used as proxy for taxa abundances in a
microbial community. This has demonstrated how the
gut intestinal (GI) microbes respond and adapt to different
situations [1], how alterations of the microbial community
impact on the development and functioning of the
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immune and metabolic systems [2], and, globally, how
divergences from homeostasis (eubiosis) in this district are
predictive of diseases (dysbiosis). Typical approaches to
analyze these data consist of the evaluation of the α-
diversity of Operational Taxonomic Units (OTUs, com-
putational proxies for species) within each sample to
understand the microbial population structure using
Shannon [3] and Simpson [4] indexes. This is based on
the observation that more variability offers a larger
spectrum of microbial molecular functions and hence of
responses to environmental variations [5], and, reversely,
this criterion relies on the observed limited α-diversity in
inflammatory bowel disease [6] and obesity [7].
Along the same line, evaluation of the imbalance in the

physiologic abundances of Bacteroides and Firmicutes is
observed to be a measure of the inflammatory state of the
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system and a proxy for dysbiosis due to the relative
increase of facultative anaerobic microbes able to exploit
byproducts of the host inflammatory processes [8].
From a different perspective, differential analyses com-

pute microbial variations, and highlights OTUs whose
abundance are significantly changed between two condi-
tions, followed by annotation of OTUs to taxa and manual
search of known organisms whose functions within the
host environment help to shed light, for example, on the
mechanisms that trigger or sustain a disease.
Worldwide, large efforts are ongoing to complete the

taxonomy of mammalians’microbes, with a particular focus
on their effects on health and disease (Human Microbiome
Project, HMP) in synergy with metatranscriptomics and
metaproteomics analyses to elucidate functional informa-
tion [9]. Nevertheless, little is still known to date. As a
result, despite the possibility to screen GI microbiomes at
relatively low costs and with minimal invasiveness, it
remains difficult to gain global understanding on the bene-
ficial or deleterious effect of a condition, limited by the
known bacteria (functions), thus leaving unaddressed, for
example, the impact a novel therapy on the GI tract and, in
the long run, on the immune and metabolic systems.
While awaiting for a (more) complete characterization

of bacteria in the human GI microbiome, we propose to
add a layer of interpretation by quantification of the
varied composition of pathogens, with respect to a base-
line, in statistical terms. This represents an informed
base to further screen specific strains.
In fact, microbiology has cumulated, on harmful bac-

teria, a remarkable amount of information. From the
well and long known Mycobacterium tuberculosis [10],
more recent findings have shown how previously un-
suspected noncommunicable diseases are also affected
by bacterial alterations leading to the characterization
of Porphyromonas gingivalis [11] in the mouth micro-
biome and Prevotella copri [12] in the GI microbiome
as drivers of RA and to Lactobacilli-rich food con-
versely reported to improve RA symptoms [13].
As a result, it is possible to define bacteria as harmful

when explicitly associated to a disease, or harmless (rather
than beneficial, in a conservative perspective) otherwise.
The collection of such information is not yet centralized,
and we here offer a first curated database of this type of
classification (part of the eudysbiome package, also added
as Additional file 1: Table S1 for convenience).
This approach overcomes two current lacks: on one

side, efficient and automated usability of the pathogenic
potential information; and on the other side, a genera
annotation strategy capable to fill the paucity of infor-
mation available at the OTU level. Namely, we overcome
these issues by: (i) centralizing available pathogenic
annotation resources; (ii) devising a pathogenic genera
definition, both implemented in a statistical pipeline
available as Bioconductor package, offering tabular and
graphical output.
Two words of cautions must be put forward for the

usage of this approach. First, to offer the most detailed an-
notation we rely on OTUs/species (see Methods), that
however imply a number of unknown/unannotated ele-
ments discarded from further analyses to avoid bias in the
results. Second, the abundance of pathogens must be put
into context, for example, healthy and long-lived hunter-
gatherer populations are characterized by GI microbiomes
with higher α-diversities than urban populations [14], in-
cluding in this diversity numerous pathogens; however,
when comparing the effects of treatments on a clinically
uniform set of patients, the increased abundance of patho-
gens represents an added risk of comorbidity in individ-
uals with already debilitated general health conditions. It
is recommended, as in any omic analysis, to further manu-
ally investigate such global harmless/harmful trends by
manual investigation of the emerging strains (as it is done
for example in transcriptomics with the manual inspection
of the genes identified in a statistically significant Gene
Ontology biological function).
Globally, this approach should be considered as inte-

grative and complementary to the existing ones to shed
additional light on the effects of maladies, treatments
and other external input on the host-microbiome
supra-organism. To present the usability and inform-
ativeness of this approach, we apply it to the analysis of
the GI microbiome of patients affected by rheumatoid
arthritis (RA), a model for chronic, inflammatory and
autoimmune diseases, spreading at very fast pace, and
whose microbial composition is being continuously
unveiled. For its incidence (1 % worldwide) and its
exemplar characteristics (model disease) our results
represents not only an important example of applica-
tion but also meaningful results per se.

Implementation
Reference database
The human bacteria pathogens were integrated into a
Genus-Species table by collecting lists of microbes anno-
tated as pathogens based on metagenomes information
(references 1–3); virulence factors used to assess infec-
tions (reference 4); clinical studies to be frequently found
in diseases (references 5–6) as summarized in Fig. 1:

1. National Center for Biotechnology Information
(NCBI) Pathogen Detection system (http://
www.ncbi.nlm.nih.gov/pathogens/), using
information on human pathogens (not foodborne
pathogens) of “Acinetobacter” and “Klebsiella”;

2. Genome Database of Pathogens (GeneDB, [15]) for
prokaryotic and eukaryotic pathogens and closely
related organisms, collected via downloading the

http://www.ncbi.nlm.nih.gov/pathogens/
http://www.ncbi.nlm.nih.gov/pathogens/


Fig. 1 Statistics of pathogenic species in reference databases
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bacteria information in a “protein-coding” Gene
Type giving rise to 12 pathogenic genera;

3. Pathosystems Resources Integration Center
(PATRIC, [16]), a bacterial information system with
2365 bacteria genomes hosted by humans and
involved in diseases;

4. Virulence Factor Database (VFDB, [17]), an
integrated and comprehensive online resource for
virulence factors of 30 pathogenic genera and related
species;

5. Human Opportunistic Pathogens (HOPs) library,
collected by the Gifu University, Genetic
Information Genetic Resource Center of Human
Pathogens (http://gtc.jpn.com/?p=1);

6. “Indigenous and pathogenic microorganisms by
human body site”, by the Hardy Diagnostics
company (https://catalog.hardydiagnostics.com/
cp_prod/Content/hugo/IndigPathogOrganisms.htm)
with two attributes: frequency (expected in a clinical
specimen, from 1 to 3) and pathogenicity (expected
when the organism is present, ≧2).

Additional missing species were searched in Pubmed
with query terms < species name, human, pathogen>,
manual screening of the resulting literature, and finally
update into the above Genus-Species table.
eudysbiome R package
The package eudysbiome is developed in the statistical
computing environment R and is released under the
GNU General Public License within Bioconductor [18].
It performs the analysis including species-level classifi-
cations of unknown 16S rRNA sequences, genus anno-
tation as harmful or harmless based on the described
pathogenic Genus-Species table above, and tests the
association between microbial variations and a given
condition.
The package takes as input a list of differential
microbes abundances’ (reads) variation (Δg = g1 – g2)
defined as the difference between a genus’ abundance in
condition1 (g1) and at the baseline condition2 (g2). The
calculation of Δg is left to the users, given the different
types of normalizations and considerations to be done
on a case by case basis. We here recommend to use
limma [19] for good performance on small sample data,
and tools such as metagenomeSeq [20], LefSe [21],
metastats [22] for more general cases.
As a genus can collect under its name both harmful and

harmless species, the proper annotation of a genus as
harmless or harmful can benefit from the investigation of
the species actually present in each dataset, so that, if a
genus, including by definition also harmful species, does
not include them in a specific sample, the genus can be
annotated as harmless. By the same token, if none of this
genus’ species actually appears in the data under study,
the genus is discarded from the analysis for lack of (anno-
tation on the) species, leading to the impossibility to anno-
tate the genus as harmful/harmless. eudysbiome allows
this (optional) more careful species classification and
hence annotation, even in the case where the input data is
given in the form of differential genera by directly calling
the Mothur [23] command “classify.seqs” and mapping
the unknown 16S rRNA sequences to a well-curated
representative dataset of 16S rRNA reference sequences
by Wang’s naïve Bayesian classifier, recognized as an
efficient method and accurate classifier [24, 25]. To guar-
antee a fast species-level classification and minimize the
needed computational resources, the package rely on
the latest QIIME [26] released SILVA [27] (16S/18S,
SSU119, https://www.arb-silva.de/no_cache/download/
archive/qiime/) representative set created by clustering
at 97 % sequence identity. After the annotated Δgs
are made available, the package permits to group
frequencies |Δg| into ∑|Δg| as increase of harmless
bacteria abundances plus decrease (absolute value) of
harmful bacteria abundances for the eubiotic contri-
butions and viceversa for the dysbiotic. This is visu-
ally represented in a Cartesian plane with harmful/
harmless microbes on the x-axis and ∑|Δg| on the y-axis,
and summarized in a Condition × Impact table, both
outputs of the package. The package further evaluates
statistically the abundance of harmless/harmful varia-
tion’s impact of a given condition on the microbiome,
in comparison to the microbiome of the reference con-
dition. To elaborate the significance of the association
between conditions and eubiotic/dysbiotic impacts,
Fisher's exact test [28] is used on the frequency counts
for testing the null hypothesis that conditions are
equally likely to lead to a mostly harmless-composed
microbiome when compared to the control (two-sided) or
that one condition is more likely to be associated to a

http://gtc.jpn.com/?p=1
https://catalog.hardydiagnostics.com/cp_prod/Content/hugo/IndigPathogOrganisms.htm
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mostly harmless microbiomes than the other (one-sided
Fisher).

Application to rheumatoid arthritis (RA)
16S rRNA genes from human samples collected in [12] rep-
resent the GI microbiomes of RA patients, either newly di-
agnosed (new onset RA, NORA) or chronically affected
(Chronic RA, CRA), as well as psoriatic arthritis patients
(PsA) treated with methotrexate (MTX), prednisone,
opioids and, optional for all treatments, nonsteroidal anti-
inflammatory drugs (NSAIDs). These data are analyzed, in
the manuscript of origin, in search of disease-associated
(NORA, CRA, PsA) variations of the GI microbiome in
comparison to a healthy (HLT) baseline, independently of
the therapy. Here, we deepened the investigation in search
of RA treatment-associated GI variations. Irrespectively on
the assumption of NSAIDs, samples were selected and re-
grouped into five arms: 39 untreated new-onset rheumatoid
arthritis (NORA), 11 untreated chronic rheumatoid arth-
ritis (UCRA), 9 CRA samples treated with MTX (MTX), 3
CRA samples treated with prednisone (Prednisone) and 28
healthy controls (HLT). The only patient treated with opi-
oids was removed from the analysis and so were the PsA
patients. The representative sequences for each OTU and
Fig. 2 Microbial community structure in RA 16S rRNA-seq samples. a. Shan
Bacteroides ratio. Data are presented as mean ± s.e.m. (standard error of m
the OTUs abundance table with read counts down to the
genus classification were downloaded from https://github.-
com/polyatail/scher_et_al_2013/tree/master/16S_Analysis.
Microbial diversity and differential analysis
OTU-based diversity was evaluated on read counts by
Shannon [3] and inverse Simpson index [4] calculated
by the R Vegan package [29] and averaged among sam-
ples in each arm for comparisons. OTUs were grouped
at the genus level before differential analysis and genera
lacking of genus classifications were classified to their
higher-order taxonomy. To minimize the noise associ-
ated to low abundance, reads with small within group
variance, genera with null abundance in more than 1
sample or summed abundance among samples below 5,
were filtered out. Abundances were further normalized
with trimmed mean of M-values (TMM) and converted
to log2-cpm (counts per million) by Voom in the
edgeR package to make data suitable to linear regres-
sion in limma differential analysis. Significantly differ-
ential genera were selected by fold change (FC > 2) and
p-value (p < 0.05), differential ones with higher-order
classifications were removed from further analyses.
non index b. inverse Simpson index c. Phyla histogram d. Firmicutes to
ean)

https://github.com/polyatail/scher_et_al_2013/tree/master/16S_Analysis
https://github.com/polyatail/scher_et_al_2013/tree/master/16S_Analysis
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Results and Discussion
The original analysis by Scher et al. [12] focuses on the
GI variations from a healthy baseline (HLT) in associ-
ation to a (stage of the) disease (NORA, CRA, PsA). As
drug interventions strongly affect the immune response
via the modulation (also) of the GI microbiome [30], we
deepen the characterization of the GI microbiomes,
disease-wise and explore additionally the effects of RA
on the GI microbiome, therapy-wise (NORA, UCRA,
MTX, Prednisone).
By both measures of α-diversity (Fig. 2a-b), NORA

appears to be the most severely affected by a reduced
α-diversity, followed by UCRA and MTX, further followed
by HLT and Prednisone. Comparable α-diversities in the
two latter arms (HLT and Prednisone) suggest that Pred-
nisone well controls the RA-associated dysbiosis allowing
for a spectrum of species within the GI district that is
broader than the one allowed by UCRA and MTX, and
comparable to the physiological (HLT) α-diversity.
By the Firmicutes/Bacteroides criterion (Fig. 2c), the

UCRA arm stands out with a ratio 2.4, 2.9, 3.3 and 2.8
folds higher than HLT, NORA, MTX and Prednisone,
Fig. 3 Variations of differential genera. Identified by limma (FC > 2, p-value
respectively (Fig. 2d), matching the well known inflam-
matory/dysbiotic state of UCRA patients. Globally we
can conclude that the progression of the disease (NORA
to CRA) is characterized by increasing diversity, where
the increasing OTUs variety falls into the Firmicutes
phylum (at the expenses of Bacteroides [8]).
It seems that once UCRA patients receive treatment,

MTX lowers the diversity (Fig. 2a-b) and the inflamma-
tory environment (Fig. 2c-d) bringing the system back to
levels characteristic of the earlier stage of the disease
(NORA), while Prednisone allows for a more physio-
logical gain of diversity (Fig. 2a-b) and inflammatory
environment (Fig. 2c-d), seemingly bringing the state of
the GI closer to the HLT samples.
To gain further insight into these mechanisms, OTU

representative sequences were classified into species by
mapping to SILVA representative sequences at 97 % simi-
larity with eudysbiome package (see elapsed time of taxo-
nomic classification in Additional file 2: Table S2), building
on further differential analysis (Fig. 3 and Additional file 3:
Table S3) we additionally characterized the variations
among these compositions by eudysbiome. Table 1b shows
< 0.05)



Fig. 4 Cartesian plane of eubiotic/dysbiotic impacts. Harmful/harmless ann
compared condition (y-axis)

Table 1 Contingency and contingency tests with HLT baseline

a. Contingency ∑|Δg| Eubiotic frequency Dysbiotic frequency

NORA-HLT 314 7977

UCRA-HLT 0 16

MTX-HLT 1965 0

Prednisone-HLT 266 102

b. Contingency test p-values NORA UCRA MTX Prednisone

NORA 0.54 1 1

UCRA 1 1 1

MTX 0 3.95E-40 1

Prednisone 1.24E-251 2.99E-09 1

a. Condition-impact contingency table with cumulated frequencies accounted
for harmless and pathogenic impacts (column) under the compared conditions
(row). ∑|Δg| is the result of an increase of harmless bacteria abundances plus
decrease (absolute value) of harmful bacteria abundances for eubiotic microbiomes
and viceversa for dysbiotic. b. Contingency test assessing the hypothesis that the
condition in the row is more associated to a more harmless composition than the
condition in the column. One-sided Fisher’s exact test, p< 0.05, in bold)
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a striking and significantly different contribution of patho-
gens in the untreated versus treated arms that can be ex-
plored further in Fig. 4 that details the figures in Table 1a.
In particular, we can see that the eubiotic trend in

Prednisone is due to the sole contributions of increasing
harmless genera (1st quadrant in Fig. 4, Eubiotic
frequency = 266 in Table 1a), limited by a dysbiotic
contribution given by the increase of pathogens (2nd

quadrant in Fig. 4 and Dysbiotic frequency = 102 in
Table 1a). Differently, MTX presents only eubiotic varia-
tions (Dysbiotic frequency = 0 in Table 1a), obtained by
the two fold contribution of harmless genera increase
(1st quadrant) and pathogens’ decrease (3rd quadrant,
globally reaching the Eubiotic frequency = 1965 in
Table 1a). This leads, remarkably, in the MTX samples
to the reduction of the population of Prevotella, well
known trigger of the disease [12], which remains
conversely uncontrolled in Prednisone.
These results account for variations across a large num-

ber of species in the GI suggesting a systemic effect broader
than the the host metabolism as anti-inflammatory action
otated genera (x-axis) and their abundance variations (Δg) among the
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known for Prednisone [31] and the host anti-proliferative
effect for MTX [32]. Indeed despite the well known limits
of MTX and although its therapeutic activity is known to
be associated to adverse effects also in the GI districts [33],
not enough focus has been put yet on the broader impact
of drugs on the patients as a whole, and only marginal
attention is put to compensate such detrimental events
with GI protective or boosting strategies [13, 34].
Conclusions
In order to help elucidate the functionalities promoted
or harmed in the GI district by diseases and other
environmental triggers, we propose to integrate the
study of the composition of the GI microbiome with an
automated and statistical characterization of its patho-
genic potential. Application of this approach should be
done in synergy with current approaches like the study
of α-diversity and the Firmicutes/Bacteroides ratio. In
particular we present an application to rheumatoid
arthritis, a model malady for all autoimmune diseases
(including diabetes), whose etiology and control at the
microbiome level represent a critical topic in clinical
research and we show how the addition of the patho-
genic information can help in differentiating the forces
at work in the complex host-microbiome interaction
system.
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