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Abstract

tissue modelling with the cerebellum as reference region.

HT,a receptor in the canine brain.

Background: Currently, ['8F] altanserin is the most frequently used PET-radioligand for serotonin, (5-HT54)
receptor imaging in the human brain but has never been validated in dogs. In vivo imaging of this receptor in the
canine brain could improve diagnosis and therapy of several behavioural disorders in dogs. Furthermore, since dogs
are considered as a valuable animal model for human psychiatric disorders, the ability to image this receptor in
dogs could help to increase our understanding of the pathophysiology of these diseases. Therefore, five healthy
laboratory beagles underwent a 90-min dynamic PET scan with arterial blood sampling after ['°F] altanserin bolus
injection. Compartmental modelling using metabolite corrected arterial input functions was compared with reference

Results: The distribution of ['®F] altanserin in the canine brain corresponded well to the distribution of 5-HT,
receptors in human and rodent studies. The kinetics could be best described by a 2-Tissue compartment (2-TC)
model. All reference tissue models were highly correlated with the 2-TC model, indicating compartmental
modelling can be replaced by reference tissue models to avoid arterial blood sampling.

Conclusions: This study demonstrates that ['®F] altanserin PET is a reliable tool to visualize and quantify the 5-

Keywords: Canine brain, Kinetic modelling, 5HT2a receptor, Mood-disorders

Background
The G-protein coupled 5-HT;4 receptor is the main exci-
tatory serotonergic receptor in the brain [1, 2]. Studies in
humans and rodents found the highest densities of 5-
HT,4 receptors in the cortex, mainly in frontal regions.
The hippocampus and striatum exhibit lower densities of
the receptor, while the cerebellum is virtually devoid of 5-
HT,4 receptors [1, 3, 4]. The receptor is also widely dis-
tributed in peripheral tissues, where it mediates platelet
aggregation, capillary permeability and smooth muscle
contraction [2, 5].

Besides its influence on numerous physiological func-
tions, the 5-HT,, receptor is believed to be involved in
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the pathophysiology of several neurological and psychi-
atric disorders including depression, anxiety disorders,
personality disorders, obsessive-compulsive disorder, bi-
polar disorder, Alzheimer’s disease and schizophrenia [2,
5-13]. Positron emission tomography (PET) is an inter-
esting tool in brain imaging research, permitting the
visualization of the 5-HT,, receptor in the living brain
by using receptor specific radioligands [14-16]. In vivo
study of this receptor is an important field of research as
it improves our understanding of the various diseases in
which the receptor is implicated. Although several PET
radioligands for the 5-HT,, receptor have been evalu-
ated, the clinical use of the majority of these radioligands
is limited due to low selectivity or high nonspecific bind-
ing [17, 18]. Currently, the selective antagonist [*8F]
altanserin is the most frequently used PET radioligand
for 5-HT,5 receptor imaging. ['®F] altanserin is
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characterised by a high brain uptake, high affinity (kq: 0.3
nM) and high selectivity towards the 5-HT,, receptor
[19-22]. In human neuroimaging, the in vivo formation of
lipophilic radiolabeled metabolites that cross the blood
brain barrier complicates kinetic modeling with this radio-
tracer [15, 17, 20, 21]. However, correction for these radi-
olabeled metabolites can be achieved by the application of
a bolus-infusion protocol with equilibrium imaging [23]
or by using a dual-input functional approach [24] but is
not feasible in clinical routine. Besides in human clinical
PET studies, [*®F] Altanserin has been used in studies with
baboons and rodents. Unlike in humans or baboons, only
polar radiometabolites have been identified in rodents [1,
3, 21]. To the authors’ knowledge, PET imaging with ['®F]
Altanserin in dogs has never been demonstrated. How-
ever, since they show naturally occurring behavioral disor-
ders which are related and possibly homologues to
particular human psychiatric disorders, the dogs might
present a valuable animal model for them [25-29]. In
addition, dogs have a relatively large frontal cortex in
comparison with rodents, which makes imaging studies of
this region more feasible [30]. Previously performed
SPECT and psychopharmacological studies with dogs
have already reported a potential involvement of the 5-
HT,4 receptor in impulsive aggression, pathological anx-
iety and other affective behavioral disorders [27, 28, 31,
32]. For example, a decreased binding potential of the 5-
HT,4 receptor in brain regions assumed to play an im-
portant role in the pathophysiology of anxiety disorders
was reported in dogs with pathological anxiety [28]. On
the contrary, increased binding potential of the 5-HT;
receptor was found in dogs suffering from impulsive ag-
gression [31]. These findings emphasize the role of the 5-
HT,4 receptor in canine behavioral disorders. Using the
advantages of PET imaging over other imaging techniques
to study the 5-HT,, receptor in the dogs, its involvement
in several behavioral disorders can be further investigated
which could help to gain insight in the pathophysiology of
certain canine behavioural disorders and would help to
guide the treatment of these disorders.

The first objective of this study was to quantify [*°F]
altanserin binding in the canine brain using compart-
mental modelling and a metabolite corrected arterial in-
put function. A second objective was to investigate
whether compartmental modelling can be replaced by
reference tissue modelling in future experiments, since
this would avoid invasive arterial blood sampling and
therefore facilitate application of the radiotracer in fu-
ture studies.

Results

Radiosynthesis

['8F] altanserin was obtained after 70 min of synthesis
with end of synthesis (EOS) activities of 3.14 + 1.16 GBq
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(n=5). High chemical and radiochemical purities of >
99% were achieved with a minimal specific activity of
100 GBq/umol at EOS.

Blood input function and metabolites

The parent compound fraction in plasma over time
(mean for five dogs) is visualised in Fig. 1a and illustrates
a slow metabolization of ['°F] altanserin during the PET
scan. After 10 min, 86+59% of total activity in the
blood plasma was intact ['8F] altanserin and further de-
creased to 55 +4.9% at 90 min. Using HPLC one major
unknown polar metabolite (Tg =ty) could be identified
which increased up to 41 + 3.9% at 90 min. Furthermore,
two lipophilic metabolites could be separated from [**F]
altanserin (Tg: 10 min) during HPLC analysis: an un-
known metabolite (Tgr: 6 min) and a metabolite identi-
fied as ['®F] Altanserinol (Tg: 8 min). These lipophilic
metabolites together never transcended 2% of total
radioactivity in plasma. Thereafter, a Watabe function
was fitted to the intact fraction of [**F] altanserin in the
plasma for every individual dog and a metabolite-
corrected plasma input curve was calculated using
PMOD (Fig. 1b).

Brain analysis

A bolus injection of 352 +27.7 MBq ['®F] altanserin
showed a fast uptake in all of the regions followed by a
relative fast wash-out. High radioactive uptake was
found in the following cortical regions: frontal cortex,
parietal cortex, anterior cingulate cortex and subgenual
cortex. Moderate uptake was seen in the temporal cortex
and occipital cortex. The cerebellum represented the
lowest radioactive uptake (i.e. the reference region). Fig-
ure 2 represents a summed PET image (frames 1 to 40)
co-registered with the MR image. Figure 3 represents
the corresponding time-activity curves for the different
VOI’s and display a fast equilibrium was achieved after
bolus injection of ['8F]altanserin.

Kinetic modelling

V-, BPNp- and AIC-values (mean + SD) for the six differ-
ent modelling methods (n=5) are added in Additional
data (Additional file 1). Small standard errors (SE) were
seen for the 1-TC and 2-TC model with a maximum of
6.56 and 4.47% in the cerebellum, respectively. The 2-TC
model showed excellent fits for the target ROI TACs in
contrast to the 1-TC model confirmed by the remarkable
lower AIC-values observed in all of the brain regions using
the 2-TC model compared to the 1-TC model. When
plotting the BPyp-values of the 1-TC model and 2-TC
model in a Bland-Altman plot (Fig. 5) a large overesti-
mation (38.8 + 3.57%) of the BPyp-values was found using
the 1-TC model, which is clearly illustrated in Fig. 4.
Moreover, a significant difference between de BPyp-values
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Fig. 1 a: A Watabe function fitted to the mean fraction of intact ['®F] altanserin (mean + SD) in plasma over time for five dogs. b: Example of an
individual total plasma activity curve and corresponding metabolite corrected plasma input function

of the 1-TC model and 2-TC model was found for all
ROIs (left frontal cortex: p <0.001, right frontal cor-
tex: p=0.012, left temporal cortex: p<0.001, right
temporal cortex: p=0.022, left occipital cortex p<
0.001, right occipital cortex p =0.029, left parietal cor-
tex p<0.001, right parietal cortex p=0.015, anterior
cingulate gyrus p<0.001, posterior cingulate gyrus
p =0.004, subgenual cingulate gyrus p=0.038 and
presubgenual cingulate gyrus: p <0.001). Nevertheless,
the BPyp-values derived from the 1-TC and 2-TC
model are well correlated (R*=0.994) (Fig. 5). Fur-
thermore, a high correlation was also found between
BPyp-values obtained from the Logan plot compared
to the 2-TC model. The Logan plot showed a small
BPyp underestimation of —9.84 +1.93% in all regions
compared to the 2-TC model but was not significant
different (p-value >0.05) (Figs. 4 and 5).

The calculated BPyp-values of [*®F] altanserin in all of the
ROIs using the reference tissue models (RTMs) (SRTM2,
MRTM?2 and Logan reference model) were plotted against
those obtained with the 2-TC model (Figs. 4 and 5). The
BPnp values of the different reference tissue models were
not statistically different from the 2-TC model in any of the
ROTI’s (p-values >0.05) and showed a SE, . of 4.87%. Plot-
ting the obtained BP\p values using Bland-Altman plots a
general underestimation of the BPyp could be found for all
RTM compared to the 2-TC model (5.63 £ 0.96% (Logan
Reference), 6.57+157% (MRTM2) and 6.92+3.02%
(SRTM2)) (Fig. 5). Nevertheless, all RTMS are highly corre-
lated with the 2-TC model (R*SRTM2) =0.982, R*(Logan
Reference) = 0.999, R*(MRTM2) = 0.999) (Fig. 5). Addition-
ally, the Bland-Altman plots illustrate constant differences
(%) between the BPyp for the RTM and 2-TC model with
increasing BPyp-value.
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Fig. 2 Summed PET image after bolus injection of ['®F] altanserin co-registered with the MR image. 1: frontal cortex, 2: temporal corte, 3: occipital
cortex, 4: presubgenual cingulate gyrus, 5: cerebellum, 6: parietal cortex. Subgenual cingulate gyrus, ACC and PCC are not included in this figure

Time stability of the parameters Semi-quantitative analysis

When artificially shortening the dynamic scanning time  The results of a semi-quantitative analysis using the con-
to 60 min, BPyp values showed a small reduction of trast of radioactivity (kBq/cc) in each ROI, over the
345 +2.18% using the 2-TC model and 1.72+3.22%  radioactivity (kBq/cc) in the reference region for the dif-
using the Logan Reference model. In contrast, the BPyp  ferent time intervals (10-30 min; 20—-40 min; 30—50 min;
values slightly increased when using the SRTM2 model  40-60 min) are shown in Table 1. When plotting these
(0.94 + 2.1%) and MRTM 2 model (1.33 + 3.33%). contrast against the BPyp derived from the 2-TC model,
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Fig. 3 Regional time activity curves after bolus injection of 352 + 27.7 MBq ['®F] altanserin for the presubgenual cingulate gyrus, subgenual
cingulate gyrus, frontal cortex, temporal cortex occipital cortex, parietale cortex, anterior cingulate cortex (ACC), posterior cingulate cortex (PCC)

and cerebellum (i.e. reference region). Data were corrected for radioactive decay
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Fig. 4 The bars describe the mean value of BPyp + SD for six different modelling methods in five ROIs (presubgenual cingulate, subgenual cingulate,
frontal cortex, parietal cortex and ACC). The modelling methods that are applied are: 1-tissue-compartmental model (1-TC), 2-tissue-comparmental
model (2-TC), Logan plot, simplified reference tissue model 2 (SRTM2), Logan reference model and 2 parameter multilinear reference tissue model
(MRTM2). The BPyp calculated with the 1-TC model and 2-TC model were significantly different for all ROIs [*p-value < 0.05]. No significant difference
was found between the 2-TC model and the Logan plot and all three RTMs [p-value > 0.05]

high correlation values were obtained for all of the intervals:
R*(10-30 min) = 0.955, R*20—40 min) = 0.986, R*30-50
min) = 0.989 and R*(40—60 min) = 0.997.

Discussion
To the authors knowledge, this is the first study that in-
vestigates the potential use of ['®F] altanserin as PET-
tracer to quantify the 5HT,, receptor density in dogs.
The ability to quantify the 5HT,4 receptor in the canine
brain is of interest for both canine and human research,
since it could improve diagnosis and therapy of behav-
ioral and neuropsychiatric disorders in both species.
Highest radioactive uptake in all brain regions was de-
tected 5 minutes after bolus injection of [**F] altanserin
and was followed by a relative rapid washout. Time-
activity curves were derived from the blood based PET
data for all the ROI's and are represented in Fig. 3. In
accordance with studies in humans and rodents, the
highest uptake of [**F] altanserin was found in the cor-
tical regions. Lowest uptake was found in the cerebel-
lum, supporting the absence of the 5HT,, receptors in
the cerebellum and approving its use as reference region

in RTMs (Fig. 2). In contrast, a rapid equilibrium was
reached after bolus injection of ['®F] altanserin com-
pared to its very slow kinetics in humans (Fig. 3) [1, 3,
23].

Opposed to imaging studies in humans and baboons,
moderate metabolism of [*®F] altanserin with very low
formation of lipophilic blood-brain barrier penetrating
metabolites was observed [24, 33]. However, this is in
agreement with rodent studies, were only polar metabo-
lites have been reported [3]. After 10 min, ['®F] altan-
serin accounted for 86+5.9% of total activity in the
blood plasma and further decreased to 55 +4.9% at 90
min. One major un-identified polar metabolite (Tg: to)
was found and accounted for 40.8 + 4.09% of total radio-
activity in blood plasma after 90 min scanning. Further-
more, two lipophilic metabolites were detected and
could be identified as the known metabolite [**F] Altan-
serinol (Tg: 8 min). Although previous studies with [18F]
altanserin in humans and baboons reported up to 20%
of certain lipophilic metabolites, in this study the two
lipophilic metabolites together never transcended 2% of
total radioactivity in plasma. Therefore, there is no need
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Table 1 Activity contrast of ROIs over the cerebellum for 20 min static scans

Region 10-30 20-40 30-50 40-60
Presubgenual cingulate gyrus 094+0.18 134+£023 146+0.22 1.51+£022
Subgenual cingulate gyrus 1.01+0.18 140+ 022 150+ 022 1.54+022
Frontal cortex L 063+0.10 092+0.14 099+0.14 1.00£0.15
Frontal cortex R 0.56 £0.07 083£0.11 091+0.12 0.94£0.14
Temporal cortex L 0.52+£0.11 0.73£0.12 082+0.23 0.77£0.12
Temporal cortex R 046 +0.06 0.66 +0.09 0.70+0.09 0.70+0.10
Occipital cortex L 040+ 0.09 0.55£0.09 0.57+0.08 0.56 £0.07
Occipital cortex R 037+0.08 053+0.07 0.55+0.06 0.54+0.05
Parietal cortex L 069+0.16 095+0.14 098=+0.15 097+0.15
Parietal cortex R 0.71£0.12 095+0.13 099+0.13 0.98£0.13
ACC 0.78+0.18 0.16+023 1.26+0.23 131£0.23
PCC 041+0.12 065+0.14 070+£0.13 073+£0.13
Correlation to 2-TC model 0971 0.995 0.996 0.997

The contrast + SD for every ROl over the cerebellum for four different time intervals of 20-min scans (10-30 min; 20-40 min; 30-50 min; 40-60 min). Additionally,

the correlation factor (R?) with the 2-TC model was presented per time interval

to use a dual-input function compartmental model for
BBB permeable metabolites or apply a bolus-infusion
protocol [24, 33].

Based on the data obtained with arterial blood sam-
pling, V1-, BPyp- and AIC-values derived from the 1-
TC and 2-TC model were compared with each other.
According to the excellent curve fitting and remarkable
lower AIC-values in all of the ROIs, the 2-TC model was
the compartmental model of choice for [**Flaltanserin.
Although the BPyp-values obtained with the Logan plot
were highly correlated with those from the 2-TC model
(R*=0.979) and not significantly different from each
other, a mean underestimation of 9.84 + 1.93% compared
to the 2-TC model should be kept in mind when using
this graphical analysis.

Furthermore, BPyp-values were estimated using three dif-
ferent RTMs (SRTM2, MRTM2 and Logan reference model)
with the cerebellum as reference region and plotted against
the compartmental model of choice, the 2-TC model (Fig. 5).
Despite the general underestimation of the reference tissue
models compared to the 2-TC model, illustrated by the
Bland-Altman plots, (5.63 +0.96% (Logan Reference) 6.57 +
1.57% (MRTM?2) and 6.92 + 3.02% (SRTM?2)), all models were
highly correlated with the 2TC-model (RA(SRTM2) = 0.982,
R*(Logan Reference) = 0.999, R*(MRTM2) =0.999) (Fig. 5).
Moreover, no significant difference could be found between
each of the different RTM and the 2-TC model (p-values >
0.05). This high correlation between the RTMs and 2-TC in-
dicates that, in future experiments with [**F] altanserin in
dogs, the invasive blood sampling can be replaced by RTMs,
which requires no arterial catheterisation or blood sampling.
Hereby, the MRTM2 model or the Logan reference tissue
model would be the most appropriate, as they showed the
highest correlation (R% = 0.999) with the 2-TC model.

A shorter scanning time is always desirable for the
wellbeing of the patient and can significantly increase
the throughput of patients/animals per batch of radio-
tracer. Therefore, the possibility to reduce the scanning
time to 60 min was investigated. Shortening the scan
time to 60 min instead of 90 min yielded to stable out-
comes with a mean bias of less than +3.5% for both 2-
TC model based on arterial input function and RTMs. A
shorter scan time could be considered in future experi-
ments, especially when using the SRTM2 or MRTM2
model. Finally, a semi-quantitative analysis using the
contrast of radioactivity (kBq/cc) in each ROI, over the
radioactivity (kBq/cc) in the reference region showed
high correlation values with the 2-TC model for all con-
sidered intervals. Highest correlation was found in the
interval 40 to 60 min post bolus injection (R*=0.997).
Therefore, a 20 min static PET scan between 40 and
60 min post bolus injection of ['8F] altanserin could
be considered as an alternative method to further
simplify the evaluation of 5HT,, receptor binding in
future canine studies.

A limitation of this study was mentioned earlier by us
and concerns the possible effects of the used anaes-
thetics on the kinetics of the PET tracer, in this case
[*®F] altanserin [34]. However, the use of anaesthesia
cannot be avoided in dogs undergoing PET-scans and a
common anaesthesia protocol was used in our study.
Since the use of anaesthetics during a PET scan with
[*®F] altanserin in dogs will be inevitable, our results are
relevant for future studies. Another limitation of this
study is the small number of animals that were included,
due to animal welfare restrictions. However, despite the
small sample size, highly similar results were found in
the individual dogs, therefore, the authors believe that
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increasing the sample size would probably not provide
additional information. Another concern is the fact that
only female dogs were included in this study. It is known
that pharmacokinetics and metabolism may differ be-
tween both sexes, possibly due to differences in sex hor-
mones and other hormones [35, 36]. Therefore, all dogs
were neutered before the start of the study. Finally, in
order to help calculating the sample size of future PET
studies with ['®F] altanserin, the assessment of the test-
retest variability can be performed in a future study.

Conclusions

In conclusion this first-in-dog study describes a first step
in the visualization and quantification of the 5HT,, re-
ceptor in the canine brain after bolus injection of
[*®F]altanserin. A moderate metabolism with negligible
formation of lipophilic blood-brain barrier penetrating
metabolites of [*®F] altanserin was observed. The study
showed that ['®F] altanserin follows two-tissue compart-
ment kinetics in the canine brain. To avoid invasive
blood sampling in future experiments, reference tissue
models can be used instead of compartmental modelling,
using the cerebellum as reference region. Furthermore, a
shorter scan time (60 min) could be considered, espe-
cially when using the SRTM2 or MRTM2 model. In
order to further simplify the evaluation of the 5HT,A re-
ceptor binding, the authors propose to perform a 20-
min static PET scan between 40 and 60 min post bolus
injection. This study is of great value as the ability to
quantify the 5HT,A receptor in the canine brain could
help to improve our understanding of the various canine
and human diseases in which the receptor is implicated.
Better knowledge of the underlying pathophysiology of
these diseases can in turn improve diagnosis and treat-
ment strategies.

Methods

Experimental animals

The research project was authorized by the Ethical com-
mittee of Ghent university (EC approval 17/108) and all
manipulations were performed according to good animal
practice. Based on previous similar experiments per-
formed in house, five neutered female laboratory beagles
(4.7 £ 0.1 years; 11.8 £+ 1.19 kg) were included in this pro-
ject [34, 37]. All dogs were provided by the Faculty of
Veterinary Medicine (Ghent University) and were con-
sidered to be healthy after general clinical examination.
The dogs were fasted for at least 12 h before the start of
the experiments but were allowed access to fresh water
ad libitum. Following intramuscular (i.m.) premedication
with dexmedetomidine (375 ug/m> body surface area,
Dexdomitor®, Orion Corporation, Espoo, Finland), the
dogs were allowed to relax in a quiet dimmed room. At
the PET centre, one of the cephalic veins was
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catheterized using a 22G over-the-needle catheter and a
Lactated Ringer’s solution (Vetivex® 500 mL, Dechra Vet-
erinary products, Heusden-Zolder, Belgium) was infused
iv. at a rate of 5mL/kg/h. The general anaesthesia
protocol was similar to the one used in the study of Pau-
welyn et al. 2019 [34]. In brief, anaesthesia was induced
with propofol (Propovet®’, Abbott laboratories, Queen-
borough, UK) administered intravenously (i.v.) to effect
and maintained with isoflurane (Isoflo®, Abbott labora-
tories, Queenborough, UK) vaporized in oxygen. Subse-
quently, the dog was positioned on the bed of the PET/
CT scanner and a 22G over-the-needle catheter was
placed in one of the dorsalis pedis arteries to enable ar-
terial blood sampling. Heart rate, respiratory rate, end
tidal carbon dioxide concentration and arterial haemo-
globin oxygen saturation were monitored by pulse oxim-
eter and capnography.

Radiosynthesis

The radiosynthesis of ['*F] altanserin was performed on
a Synthra RN® module (Synthra GmbH, Hamburg,
Germany) with 4 mg nitro-altanserin (ABX, Radeberg,
Germany) dissolved in 750 pL. anhydrous DMSO as pre-
cursor solution (Sigma Aldrich, Germany). Reaction
conditions and purification methods were identical as
described in Pauwelyn et al. [34] for the PET tracer
[**FIMPPF.

Data acquisition

First, a CT scan (120 kV, 35 mA, pitch of 0.7, 20 slices of
3 mm) was acquired, serving as anatomical framework
and attenuation correction. Subsequently, each dog re-
ceived a bolus injection of 352 + 27.7 MBq (mean: 29.8
MBq/kg) ['®F] altanserin, and was dynamically scanned
with a Siemens Biograph mCT Flow 20 clinical PET/CT
imaging system (Siemens, Knoxville, USA) during 90
min. The acquired PET data were reconstructed in 40
frames (12 x10s, 6 x30s, 10x 60s, 9x300s, 3 x 600s),
each consisting of a 512 x 512 matrix with a voxel size of
0.797 x 0.797 x 2mm, using the TrueX algorithm. All
along the PET acquisition, manual arterial blood sam-
pling was performed at 17 time points and collected in
and in KsEDTA tubes (15, 30 and 45s, 1, 1.5, 2, 4, 6, 8,
10, 15, 20, 30, 40, 60, 75 and 90 min). Calculating the
plasma input curve and % metabolization was similar to
previously reported methods [34, 37]. In short, after cen-
trifugation (10 min, 4000 rpm, 4°C) of the blood sam-
ples, radioactivity was measured in the plasma fraction
using a gamma counter (Cobra®, Packard, Canberra,
Australia) and corrected for decay. The fraction (%) of
parent compound in the plasma and the presence of
radiolabelled metabolites was measured using an iso-
cratic HPLC method at six different time points (1, 4,
10, 30, 60 and 90 min). Acetonitrile (Sigma Aldrich,
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Saint Louis, US) (1:2) was added to the remaining
plasma and centrifuged (10 min, 4000 rpm at 4 °C). 2 mL
supernatant was injected onto a semipreparative HPLC
system (Column: Symmetry Prep C18 column (7 pm,
7.8 mm x 300 mm, Waters, Milford, Massachusetts, US);
Solvent: 0.05 M NaOAc buffer pH 5/MeOH/THF: 50/32/
18 (V/V); flow: 3 mL/min). During 15 min, HPLC eluent
was collected into 30 different fractions and was mea-
sured for radioactivity in a gamma counter (Cobra®,
Packard, Canberra, Australia).

Image analysis

A 3T Magnetom Trio Tim system MRI scanner (Sie-
mens, Erlangen, Germany) was used to acquire T1
weighted anatomical images (3D MPRAGE sequence,
176 sagittal slices, TR: 2250 ms, TE: 4.18 ms, TI: 900 ms,
parallel acquisition method = GRAPPA acceleration fac-
tor: 2, matrix size: 256 x 256, FOV: 220 mm, flip angle: 8
°, voxel size: 1 x 1 x 1 mm?®). Thirteen regions of interest
(ROI) were manually drawn on the MR image using the
information of a dog brain atlas [38]: left/right frontal
cortex, left/right temporal cortex, left/right occipital cor-
tex, left/right parietal cortex, anterior cingulate gyrus,
posterior cingulate gyrus, subgenual cingulate gyrus, pre-
subgenual cingulate gyrus and cerebellum. Afterwards,
the MR images were co-registered with the acquired
PET/CT images. As described in Pauwelyn et al. [34],
for each of the ROIs, time-activity curves were retrieved,
a Watabe function was fitted to the % metabolization
curve for each dog individually and added to the corre-
sponding plasma input function resulting in a
metabolite-corrected plasma input function [39].

Kinetic modelling

The total volume of distribution (Vt), was calculated for
the different ROIs using the one- and two-tissue com-
partment (1-TC and 2-TC) model [40] and the Logan
plot [41] using PMOD software. The following equations
describe how the V can be calculated for 1-TC and 2-
TC model from the obtained rate constants [42].

One-tissue compartment model:

K1

VT = (1)

Two-tissue compartment model:

K1 k3
VI =2 <1 + H) (2)

Consequently, for both compartmental models and the
Logan plot, the non-displaceable binding potential
(BPnp), referring to the ratio at equilibrium of specific-
ally bound radioligand to that of non-displaceable (ND)
radioligand in tissue [42], was calculated. In order to
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determine the fraction of non-displaceable binding, a re-
gion devoid of the targeted receptors (i.e. a reference re-
gion) needs to be defined. The cerebellum has been used
as reference region in different clinical studies with [**F]
altanserin [3, 14, 23]. The BPy\p for the compartment
models and Logan plot can be calculated as follows [42]:

VT

BPND = ———-
VND

1 (3)

Vnp representing the volume of distribution of the
non-displaceable radioligand.

Using the Akaike Information Criterion (AIC) value,
the goodness-of-fit for each compartment model was
evaluated [43]. In order to correct the brain activity for
the contribution of plasma activity, the cerebral blood
volume in the regions of interest was assumed to be
0.05 mL/cm?®,

Three RTMs were considered: the 2-step simplified
reference tissue model (SRTM2) [44], the 2 parameter
multilinear reference tissue model (MRTM?2) [45] and
the Logan reference tissue model [46]. The capability to
reproduce the previous calculated BPyp obtained with
the Logan plot and the compartmental models with the
RTMs were analysed. The BPyp-values were calculated
using a fixed ky’-value based on the mean k,-value of
seven high binding regions: presubgenual cingulate
gyrus, subgenual cingulate gyrus, left/right frontal cortex
L, left/right parietal cortex L, and ACC. For both the
SRTM2 and Logan reference model, regional coupling
with the SRTM2 model was used to calculate the ky’
value. For the MRTM2 model, the MRTM model was
used to calculate the ky -value.

Finally, the possibility to perform a semi-quantitative
compartmental analysis was investigated using the con-
trast of radioactivity (kBq/cc) in each ROI, over the
radioactivity (kBg/cc) in the reference region, at different
scan times (Eq.4):

Activity contrast = Activity (ROD) 1 (4)
v ~ Activity (Cerbellum)

This contrast was calculated by summing the time
frames of four different 20-min intervals of the dynamic
scan (10-30, 20-40, 30-50 and 40-60min). Conse-
quently, these values were plotted against the preferred
compartmental model.

Statistical analysis

Statistical analysis was similar to previously reported
analysis by Pauwelyn et al. [34] using RStudio 1.1.456
with packages MASS (version 7.3-50) and Sommer (ver-
sion 3.0). In summary: A multivariate linear mixed
model with heterogeneous (unstructured) variances was
set up on the data, containing BP\p as response variable
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and the delineated ROI’s as outcome variable. Further-
more, the kinetic models were set as fixed factor and the
individual animals as random factor. Using the Welsh-
Satterthwaite equation, the degrees of freedom could be
calculated and the type-I error a was set at 0.05 and a
random intercept was included. Pearson correlation co-
efficients (R?) were calculated in Microsoft Office Excel
(Microsoft office 365, version 2018).
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