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analysis
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Abstract

Background: Sensitivity analysis is an essential step in mathematical modeling because it identifies parameters with
a strong influence on model output, due to natural variation or uncertainty in the parameter values. Recently
behavior pattern sensitivity analysis has been suggested as a method for sensitivity analyses on models with more
than one mode of output behavior. The model output is classified by behavior mode and several behavior pattern
measures, defined by the researcher, are calculated for each behavior mode. Significant associations between
model inputs and outputs are identified by building linear regression models with the model parameters as
independent variables and the behavior pattern measures as the dependent variables. We applied the behavior
pattern sensitivity analysis to a mathematical model of tetracycline-resistant enteric bacteria in beef cattle administered
chlortetracycline orally. The model included 29 parameters related to bacterial population dynamics, chlortetracycline
pharmacokinetics and pharmacodynamics. The prevalence of enteric resistance during and after chlortetracycline
administration was the model output. Cox proportional hazard models were used when linear regression assumptions
were not met.

Results: We have expanded the behavior pattern sensitivity analysis procedure by incorporating model selection
techniques to produce parsimonious linear regression models that efficiently prioritize input parameters. We also
demonstrate how to address common violations of linear regression model assumptions. Finally, we explore the
semi-parametric Cox proportional hazards model as an alternative to linear regression for situations with censored data.
In the example mathematical model, the resistant bacteria exhibited three behaviors during the simulation period: (1)
increasing, (2) decreasing, and (3) increasing during antimicrobial therapy and decreasing after therapy ceases. The
behavior pattern sensitivity analysis identified bacterial population parameters as high importance in determining the
trajectory of the resistant bacteria population.

Conclusions: Interventions aimed at the enteric bacterial population ecology, such as diet changes, may be effective
at reducing the prevalence of tetracycline-resistant enteric bacteria in beef cattle. Behavior pattern sensitivity analysis is
a useful and flexible tool for conducting a sensitivity analysis on models with varied output behavior, enabling
prioritization of input parameters via regression model selection techniques. Cox proportional hazard models are
an alternative to linear regression when behavior pattern measures are censored or linear regression assumptions
cannot be met.

Keywords: Sensitivity analysis, Antimicrobial resistance, Antibiotic resistance, Beef cattle, Behavior pattern, Linear
regression, Survival analysis
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Background
Mathematical models are commonly used to understand
and study biological systems that are complex to replicate
and describe in individual laboratory or field studies.
Models facilitate testing hypotheses that may be difficult or
unethical to test in vivo, identification of critical parameters
within a system, and they guide hypothesis generation and
experimental design. Different types of mathematical
models have improved our understanding of important
issues in veterinary medicine, including infectious disease
management [1–4], drug pharmacokinetics [5–8], and anti-
microbial resistance [9–12]. With the rise in computing
power, models have evolved to be more complex, detailed,
and data-intensive. Simple susceptible-infectious-recovered
models [12, 13] have given way to meta-population models
[1, 4, 9] and now agent-based models [2, 14, 15], in which
individuals (animals, bacteria, etc.) are modeled with
unique characteristics and behaviors [16]. However, each
layer of complexity adds additional sources of uncertainty
to the model outputs, particularly when parameter values
are from varied sources or unavailable and when the mod-
eler must make assumptions about model structure and
parameter values.
A robust sensitivity analysis defends a mathematical

model against the adverse effects of excessive uncer-
tainty. In short, sensitivity analysis attempts to identify
how input parameter natural variation and/or uncer-
tainty affects model output [17, 18]. A modeler can use
sensitivity analysis to achieve many goals, including
elimination of uninfluential parameters (simplification),
model structure and code validation, improved under-
standing of the modelled system, and prioritization of
the most influential parameters [17, 18]. The first sensi-
tivity analysis techniques developed compared changes
in one input parameter at a time to changes in the
model output and hence were termed ‘local’ or ‘one-a-
t-a-time’ approaches. The local parameter influence can
be evaluated directly via partial derivatives [18] or statis-
tically with a correlation coefficient [19]. In contrast,
‘global’ sensitivity analysis considers the entire domain
for all input parameters and assess how changes in each
input affect the model output after accounting for the
effects of the other inputs [18]. Correlation coefficients
and regression models (regressing model output on in-
puts) are commonly used for global sensitivity analysis,
including decomposition of output variance and Taguchi
designs [17, 18, 20]. Regression approaches are employed
in sensitivity analyses because the regression coefficients
can be used to rank model input parameters in their ef-
fect on the outputs [18]; such regression models may be
viewed as meta-models used for investigating statistical
associations between the output and parameter values in
mathematical models [17, 18]. These techniques rely
upon the modeler defining a numerical model output of

interest and choosing a single time-point value of the
output variable as the dependent variable (e.g., max-
imum or minimum value). Importantly, standard sensi-
tivity analysis methods do not account for different
output behaviors produced by one model and in some
instances the behavior is of greater interest than a single
time-point output value [20].
Behavior pattern sensitivity analysis has been proposed

as an alternative and complement to standard sensitivity
analysis when a model produces more than one mode of
output behavior [20] because the behavior mode can
confound associations between model parameters and
outputs. We use the terms “behavior” and “behavior
mode” to describe the model output pattern when the
output is plotted over simulation time. Examples of
behavior modes include, but are not limited to, oscilla-
tions, exponential decay, logarithmic growth, or sigmoid
growth. Hekimoğlu et al. suggest a framework, similar to
the first five steps of Fig. 1, for conducting and interpret-
ing behavior pattern global sensitivity analysis on system
dynamics models [20]. Behaviors are identified, charac-
terized, and then regression models with standardized
input parameter values are built to determine the associ-
ation between input parameters and behavior pattern
measures (Fig. 1) [20]. Such analysis can be useful for
other model types that produce more than one behavior
pattern or for situations where the output behavior mat-
ters more to the modeler than a single output value.
Here we apply behavior pattern sensitivity analysis for

the first time to a pharmacokinetic-pharmacodynamic
and bacterial ecology model of antimicrobial resistance
in enteric bacteria in a beef steer during and after oral
chlortetracycline administration. In 2011, the last time
the U.S. national beef herd was surveyed about anti-
microbial use, 71.7% of feedlots used chlortetracycline
with 18.4% of all cattle receiving chlortetracycline in
their feed during the feedlot period [21]. Most feedlots
use chlortetracycline for disease prevention and control
rather than disease treatment [21]. Although the U.S.
Food and Drug Administration has recently prohibited
in-feed use of medically important antimicrobials for
growth promotion, such use for disease prevention, con-
trol and treatment is still permitted under the oversight
of a veterinarian [22]. It is unclear whether this change
will increase the use of chlortetracycline due to in-
creased disease or decrease its use because of veterinar-
ian oversight. Target pharmacologic models (empirical
or physiologically based), with appropriate sensitivity
analyses, can help create judicious antimicrobial-use pol-
icies by predicting antimicrobial concentrations in body
compartments, such as the intestine, and evaluating
alternative dosage regimens [7].
We build upon the original behavior pattern sensitivity

analysis framework [20]. First, we incorporate principles
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and methods of model selection and model fit compari-
sons in order to improve parameter prioritization. By
identifying which parameters contribute the most to
model behavior variability, research efforts can be directed
to produce data to reduce uncertainty in the values of
those parameters. Next, we suggest techniques to address
statistical assumption violations, including Cox propor-
tional hazard models as an alternative to linear regression

when linear regression assumptions are not met. Finally,
we recommend building parsimonious models by remov-
ing parameters with small coefficients from the regression
models in order to improve interpretability without sacri-
ficing model fit. Using the example model of resistant en-
teric bacteria, we demonstrate how behavior pattern
sensitivity analysis can be used for parameter prioritization
and improved understanding of the modelled system.

Fig. 1 Behavioral sensitivity analysis process. The outputs of Monte Carlo simulations of mathematical models are classified into behavior pattern
modes and pattern measures are defined for each of the modes. Standardized input parameter values from Monte Carlo simulations are used to
build regression models for each pattern measure from each of the behavior pattern modes. Smoothing spline curves are fit to the simulation
outputs if necessary to eliminate noise and enable calculation of the behavior pattern measures. Variable selection and model fit evaluation methods are
used to find each best-fit regression model. Validity of assumptions for the best-fit regression model is evaluated; dependent (simulation outputs) and
independent (parameters) variable transformations or other appropriate approaches such as time-dependent coefficients are used to meet the regression
model assumptions if necessary. To obtain a most parsimonious regression model, parameters with relatively small coefficients in the best-fit model are
eliminated, starting with the smallest, if there is no substantial change in model fit or the other parameter coefficients. Validity of
assumptions is re-evaluated for the most parsimonious regression model
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Results
The proportion of resistant enteric bacteria during and
after chlortetracycline administration fits into one of
three defined behaviors in all 1000 simulations: increas-
ing, decreasing, or peaked. Sixty-seven simulations had
increasing behavior of the proportion of resistant enteric
Escherichia coli over time, 311 simulations had decreas-
ing behavior, and 622 simulations had peaked behavior
(an increase in proportion resistant during chlortetracyc-
line administration followed by a decrease). We identified
3 behavior pattern measures that characterized these
behaviors: equilibrium points, inflection points, and
maximum points. These pattern measures were calculated
in absolute terms (the proportion resistant at the time of
occurrence) and in relative terms, in which the starting
proportion resistant (Day 2) was subtracted from the
proportion resistant at the time of occurrence. Specifically,
increasing behavior was defined by absolute and relative
equilibriums; decreasing behavior was defined by inflec-
tion points, and relative and maximum equilibriums; and
peaked behavior was defined by absolute and relative max-
imum and equilibrium points. However, not every simula-
tion achieved each behavior pattern measure during the
simulated time period (90 days). The proportion resistant
achieved equilibrium in only 36% of increasing behavior
simulations by Day 90. Equilibrium was reached by 38% of
decreasing behavior simulations and only 24% of peaked
behavior simulations after chlortetracycline administration
ended and before Day 90. Inflection points occurred

during chlortetracycline administration in 65% of decreas-
ing behavior simulations. For each behavior pattern meas-
ure and behavior mode, only simulations that had the
behavior pattern measure were included in the linear re-
gression models (i.e. missing data was removed pairwise).
A maximum proportion resistant during chlortetracycline
administration could be calculated for all peaked behavior
simulations. In 80% of such simulations, the maximum
occurred at the last time step during chlortetracycline
administration because the removal of chlortetracycline
inevitably caused a decline in proportion resistant for this
behavior mode.
The results from the final regression models for abso-

lute and relative equilibrium levels of the proportion of
resistant enteric bacteria are presented in Table 1. Five
input parameters predominated in these models: pr (pro-
portion of resistance among bacteria flowing into the
large intestine); startr (Day 0 proportion of resistant bac-
teria in the large intestine), λin (rate of bacteria flowing
into the large intestine, proportional to the total bacteria
population size), λout (rate of bacteria flowing out of the
large intestine, proportional to the total bacteria popula-
tion size), α (fitness cost of resistance for the intermedi-
ate and resistant bacteria). The parameter pr consistently
had the largest coefficient in the regression models, indi-
cating that a one standard deviation change in pr had
the largest effect on the equilibrium proportion resistant
in the large intestine. The parameter startr was signifi-
cant in the relative equilibrium models only and it

Table 1 Linear regression models for proportion-resistant absolute and relative equilibrium levels of the three behavior modes

Behavior
Mode

Behavior Pattern
Measure

Most Parsimonious Model Full Model

Standardized Input Parameters
Coefficient (Standard Error)

Fit Statistics Fit Statistics

pr startr λin λout α AIC BIC Adj.
R2

AIC BIC Adj.
R2

Increasing Equilibrium Level 0.101
(0.0006)

0.005
(0.0007)

−0.004 (0.0007) −
203

−197 .999 −
363*

−
335*

1*

Increasing Relative
Equilibrium Level

0.069
(0.002)

−0.068 (0.002) −
147

−142 .986 −
239*

−211* 0.999*

Decreasing Equilibrium Level 0.097
(0.0001)

0.001
(0.0002)

−0.001 (0.0001) −0.001 (0.0001) −
1321

−
1305

0.999 −
1309

−
1231

0.999

Decreasing Relative
Equilibrium Level

0.065
(0.0004)

−0.063 (0.0004) 0.013
(0.0008)

−
971

−
957

0.997 −
960

− 882 0.997

Peaked Equilibrium Level A 0.121
(0.0001)

0.003
(0.0002)

−0.001 (0.0001) −0.002 (0.0001) −
2040

−
2020

0.999 −
2030

−
1936

0.999

Peaked Relative
Equilibrium Level B

0.081
(0.0005)

−0.081 (0.0005) −0.007
(0.0007)

−
1566

−
1549

0.994 −
1562

−
1468

0.995

The example mathematical model was for the proportion of tetracycline-resistant enteric Escherichia coli in a beef steer during and after administration of oral
chlortetracycline. A separate linear regression model was built for each behavior pattern measure of each behavior mode. The behavior pattern measure was the
dependent variable in the linear regression models. Equilibrium was reached by 36% of increasing behavior simulations, 38% of decreasing behavior simulations
and 24% of peaked behavior simulations after chlortetracycline administration ended and before the end of the simulation period. Simulations that did not reach
equilibrium were excluded from these models. Coefficients and standard errors are listed for the standardized parameters that were included in each most
parsimonious linear regression model. Full model refers to a linear regression model including all the parameters listed in Table 6 as independent variables.
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and adjusted R2 are given for the most parsimonious and the full model. *Full model
excludes log10(βir), log10(βsr), γs and MICi to prevent overfitting. APeaked equilibrium level has 3 outliers removed (from reduced model and from full model).
BPeaked relative equilibrium level has one outlier removed (from reduced model and from full model)
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opposed the effect of pr. In general, the reduced regres-
sion models had improved fit (smaller AIC and BIC)
over the full models (full models included all 26 input
parameters of the mathematical model as independent
variables), except for the regression models for the in-
creasing behavior mode. The final reduced regression
models for all the equilibrium pattern measures and all
three behavior modes had high explanatory power (R2 ≥
0.98). Residual plots from the absolute and relative equi-
librium level models are shown in Fig. 2: the models of
absolute equilibrium level met the assumption of homo-
scedasticity of residuals, while the relative equilibrium
level models for decreasing and peaked behavior violated
that assumption.
A greater number of parameters were consequential in

the final regression models for equilibrium time, com-
pared to the equilibrium level models (Table 2). In
addition, the parameters that were significant and conse-
quential to model fit were different in each of the

behavior modes, with the exception of pr and startr
which were in the equilibrium time models for all three
behavior modes. The coefficients for these and other pa-
rameters had similar absolute values, indicating that the
parameters had approximately equal contributions to
explaining variation in equilibrium time in all three be-
havior modes. In contrast, in the equilibrium level
models, pr often had a coefficient that was 5 to 100
times larger than other parameter coefficients (Table 1).
The equilibrium time models had lower explanatory
power than the equilibrium level models (R2 < 0.74)
(Table 2 vs. Table 1).
Inflection points only occurred in the decreasing be-

havior mode and they occurred during chlortetracycline
administration (between Day 2 and Day 30). Parameters
related to the bacterial population dynamics and chlor-
tetracycline pharmacokinetics-pharmacodynamics all
made significant contributions to predicting the propor-
tion of resistance at the inflection point (Table 3). In

a b

c d

e f

Fig. 2 Standardized residuals of the proportion-resistant equilibrium level linear regression models for the three behavior modes. The three behaviors of
the resistant bacteria in the example mathematical model were: (a, b) increasing, (c, d) decreasing, and (e, f) increasing during antimicrobial therapy and
decreasing after therapy ceases (peaked). Separate linear regression models were built for each of the absolute (a, c, e) and relative (b, d, f) equilibrium
levels in each behavior mode and are described in Table 1. The relative equilibrium level (b, d, f) is the proportion of resistance at the equilibrium point
minus the starting proportion of resistance. The fitted values of the equilibrium level outcome are shown on the x-axis and the standardized residual
values are shown on y-axis
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contrast, only parameters of the bacterial population dy-
namics were significantly associated with the proportion
of resistance at equilibrium points. Consistent with the
equilibrium level models, pr had the largest coefficient in
the inflection level model (Tables 1 and 3). The pharma-
cokinetic parameters δ (chlortetracycline abiotic degrad-
ation rate), VLI (volume of large intestine), and ηLI
(fraction of chlortetracycline adsorbed to digesta) all had
small to moderate negative coefficients. Polynomial
terms of MICs (susceptible E. coli MIC) were added to
improve the linearity between MICs and inflection pro-
portion of resistance (Fig. 3). The addition of polynomial
terms resulted in a minor improvement in model fit
compared to a model without polynomial terms (R2 =
0.885, AIC = − 800, BIC = − 767 with polynomial terms
compared to R2 = 0.864, AIC = − 767, BIC = − 741 with-
out). The final inflection level model explained a large
amount of variation in the proportion of resistant E. coli
at the inflection point (R2 = 0.885).
The linear regression model for the inflection time in

decreasing behavior simulations violated the assumption
of normally distributed residuals but the residual distri-
bution was significantly improved by modeling inflection
time to the fourth power (Fig. 4). Only three parameters
had a substantial impact on the inflection time: pr, startr,
and MICs. The proportion of resistance in inflowing bac-
teria (pr) and the starting proportion of resistance

(startr) had approximately equal but opposing effects
(Table 4). A higher inflowing proportion of resistance
shortened the time to the inflection point whereas a
higher starting level of resistance increased the time to
the inflection point. A higher chlortetracycline MIC for
the susceptible bacteria also increased the time to the in-
flection point. The reduction from 26 to three parame-
ters did not significantly affect the model fit, although
the full and reduced models both had low explanatory
power (R2 = 0.3 for the reduced model).
Similar to the inflection level model for the decreasing

behavior, the maximum level models for the peaked be-
havior incorporated parameters for the pharmacokinetics
of chlortetracycline, E. coli population, and the pharma-
codynamics (Table 3). In addition, the fit also improved
from the full to the reduced model for absolute inflec-
tion level and the absolute maximum level. All the pa-
rameters from the absolute inflection level model were
also included in the absolute and relative maximum level
models and the coefficients had similar magnitude and
direction (Table 3). The maximum level models also in-
cluded effects for the starting proportion of resistance,
outflow rate of bacteria, and one plasmid transfer term
(absolute maximum level model only). The starting level
of resistance had opposite effects on the absolute and
relative maximum levels of resistance. An increase in the
starting level of resistance had a positive association with

a b

c d

Fig. 3 Partial regression plots from the proportion-resistant inflection level linear regression models in decreasing behavior simulations. The
example mathematical model was for the proportion of tetracycline-resistant enteric Escherichia coli in a beef steer during and after administration of
oral chlortetracycline. a is a partial regression plot for a regression model that contains no polynomial terms and shows the effect of MICs on the
inflection level of resistance after accounting for all other variables in the model. b-d are partial regression plots for a regression model that contains
polynomial terms of MICs and show the effects of (b) MICs, (c) MICs

2, and (d) MICs
3 after accounting for all other variables in the polynomial model
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the absolute maximum level of resistance but a negative
association with the relative maximum level of resist-
ance, reflecting the calculation of the relative level as the
absolute minus the starting level.
The time of the maximum proportion resistant in

peaked behavior simulations exhibited large violations of
linear model assumptions (Fig. 5) and therefore should
not be interpreted. This occurred because 80% of the
simulations had a maximum proportion resistant at the
last time-point of chlortetracycline administration, indi-
cating that they had not reached an absolute maximum
but instead had a local maximum due to the abrupt
change in chlortetracycline input. Therefore, a Cox pro-
portional hazard model was fit for the time of maximum
resistance (‘time to’ the ‘event’ of maximum resistance).
A non-censoring model was developed that considered
all simulations to have reached a maximum, i.e. consid-
ering as the event a local or absolute maximum. In a
second censored model, only reaching an absolute max-
imum was considered as the event; those simulations
that had increasing resistance at the end of chlortetra-
cycline administration and may have reached an absolute
maximum at a later time-point were censored. The pa-
rameters retained in the best, most-parsimonious
non-censored and censored models were the same, with
moderate changes in parameter coefficients but no
change in coefficient signs between the two models.
However, several parameters in the best model (cen-
sored) violated the proportional hazard assumption: the
proportion of resistant inflowing bacteria, the proportion
of intermediate inflowing bacteria, the starting propor-
tion of resistance, the inflow rate of bacteria, and the
MIC of susceptible bacteria. The right-censored model
was used to address the proportional hazards violation.
A continuous time-dependent coefficient function could
not be identified for these five parameters, therefore a
step-function was used to create proportional hazards
[23]. The range of maximum times was divided into
equal thirds: Day 10 to Day 16.6, Day 16.7 to Day 23.3,

and Day 23.4 to Day 30. A right-censored Cox propor-
tional model was then fit with this step function for the
five non-proportional hazard parameters. The resulting
model coefficients are presented in Table 5.
With the step function, all parameters met the as-

sumption for proportional hazards. All three pharmaco-
kinetic parameters (chlortetracycline abiotic degradation
rate, large intestine volume, and adsorption of chlor-
tetracycline to digesta) included in the maximum time
Cox model had negative coefficients, indicating that an
increase in those parameters is associated with a de-
crease in the hazard of reaching a maximum resistant
proportion. For example, the hazard decreases by 29%
when the degradation rate (δ) increases by one standard
deviation. A decrease in hazard corresponds to a lower
probability of reaching a maximum and hence a greater
time to maximum. On the other hand, an increase in
hazard corresponds to a greater probability of reaching
maximum and a shorter time to maximum. An increase
in the pharmacodynamic parameter MICs is also associ-
ated with a decrease in hazard but this association
changes over the time strata. The MICs has a larger im-
pact on hazard early in the chlortetracycline administra-
tion period, compared to later in the time period. This
change over time was also true for pr, although it had a
more modest impact on the hazard of reaching max-
imum. An increase in pi and startr both had a positive
association with the hazard and a stronger effect at the
beginning of the time period. Increases in both λin and
λout also had positive associations with the hazard and
the coefficient for λin changed over time.

Discussion
Behavior pattern sensitivity analysis can be useful for
models that have multiple output behaviors because it
includes separate behavior pattern measures and statis-
tical analyses for each output behavior mode. In general,
output behavior modes can be simple or complex, few
or numerous [20]. Correctly classifying the behavior

a b

Fig. 4 Quantile-quantile plots for the decreasing behavior inflection time and inflection time to the fourth power. Residuals from a linear regression model
with (a) inflection time as the output and (b) inflection time to the fourth power as the output are plotted on the y-axis. The theoretical quantiles of a
normal distribution are plotted on the x-axis. The solid red line passes through the quartile-pairs and the dotted red lines encompass a 95% confidence
interval for the theoretical normal distribution
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mode of each simulation is important to the validity of
the analysis and misclassification could bias the regres-
sion models. At best, if the different behavior modes
have similar associations with the same input parameters
(as in Table 1), then there may be little to no discernable
impact of behavior misclassification. However, if the dif-
ferent behavior modes are associated with different input
parameters or have opposite associations with the same
parameters (as in Table 2), then behavior misclassifica-
tion can lead to bias towards the null and the effect of
input parameters may be missed. Since the three behav-
ior modes in the example mathematical model could be
distinguished based on three timepoints (Day 2, Day 30,
Day 90) and all simulations could be classified as one of
the three behaviors, there was likely little to no mis-
classification in the example sensitivity analysis.
By applying model selection methods (e.g., stepwise

variable selection) and model fit measures (R2, BIC,
AIC) to behavior pattern sensitivity analysis we have
demonstrated how a large number of model input pa-
rameters can be efficiently prioritized. Appropriate par-
ameter prioritization helps to focus research efforts on
parameters that have the largest impact on the model
output. Even though many parameters were statistically
significant after the initial regression model selection,
parameters that do not explain a large amount of vari-
ability in the outcome are likely not useful in manipulat-
ing real-world systems. By using standardized parameter
values, the absolute values of the regression coefficients
can be used to prioritize parameters for each behavior
mode and behavior pattern measure [20]. Creating a par-
simonious model by removing parameters with small co-
efficients (< 0.005 in the “level” models, < 240 in the

“time” models), without sacrificing model fit or affecting
other parameter coefficients, facilitates interpretation of
sensitivity analyses. This is similar to the motivation be-
hind LASSO regression, which produces more interpret-
able linear models by constraining the sum of the
coefficients [24].
Large associations between input parameters and be-

havior pattern measures can indicate that the parameters
may have important roles in the biological system and
are leverage points for manipulating the system [2, 20].
On the other hand, caution should be exercised because
a large association could be due to inaccuracies in model
structure or substantial uncertainty in the parameter es-
timate [17, 18]. In some modeling situations, sensitivity
analyses are useful for identifying uninfluential parame-
ters so they can be fixed at a best-estimate value to re-
duce model complexity [17]. Since we sought to build
the smallest possible linear regression models without
sacrificing model fit, we cannot directly evaluate which
parameters had the smallest impact on the behavior pat-
tern measures. When using regression modeling for be-
havior pattern sensitivity analysis, this goal is best
achieved by examining the full regression models [20].
In our example, behavior pattern sensitivity analysis of

a mathematical model of enteric antimicrobial resistance
in beef cattle fed chlortetracycline, parsimonious regres-
sion model selection identified parameters that had a
significant and substantial effect on the proportion of re-
sistant bacteria during and after chlortetracycline admin-
istration. Some parameters (pr, startr, λin, λout, MICs, δ,
VLI, ηLI) were associated with several or all the resistant
proportion behavior pattern measures and are therefore
considered to have great importance in the model of

Fig. 5 Standardized residuals of the time of maximum proportion resistant regression model for the peaked behavior. The fitted values of
the time of maximum outcome are shown on the x-axis and the standardized residual values are shown on y-axis
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antimicrobial resistance. Most of these parameters were
also previously identified via Spearman correlation as as-
sociated with the average proportion of enteric resist-
ance during chlortetracycline administration, across all
simulations and behaviors [11]. The proportion of
inflowing resistance (pr) consistently had a coefficient
five to ten times larger than other parameters when pre-
dicting the level of enteric resistance (Tables 1, 3).
Therefore, this variable could be useful as an interven-
tion to alter the level of enteric resistance. Many

parameters have similarly large coefficients in the equi-
librium time models (Table 2) and inflection time model
(Table 4). Pharmacokinetic and pharmacodynamic
parameters had a significant impact on the level of re-
sistance during (Table 3) but not after (Table 1) chlor-
tetracycline administration. Therefore, depending on the
outcome and time of interest in the modelled system, it
may or may not be worthwhile to expend effort to re-
duce the uncertainty in the pharmacokinetic and phar-
macodynamic parameters. The behavior pattern
sensitivity analysis also identified parameters (α, γLI,
log10(βsr), Hi) that were associated with only one or a
few behavior pattern measures and were not identified
as significant in the previous sensitivity analysis for the
average resistant proportion during chlortetracycline ad-
ministration [11]. These variables could be ranked as
‘second-tier’ importance during parameter prioritization.
In many practical modeling problems, it is important

to have a detailed sensitivity analysis to translate model
findings to real-world applications. For example, all
three behavior modes had the proportion resistant at
equilibrium affected by the same input parameters with
similar coefficients (Table 1). Therefore, we can be
confident that changes to those input parameters in the
real-world will have consistent effects, despite individual
variation in enteric resistance behavior. If the level of re-
sistance after chlortetracycline treatment matters to beef
producers and public health officials, then they can focus
on changing the variables with the strongest, consistent
associations with the equilibrium level of resistance. Diet
changes could be used to reduce the proportion of
inflowing resistant bacteria (pr) and the rate of the in-
flow (λin) and thereby reduce the equilibrium level of re-
sistant enteric bacteria. For example, added probiotics
[25, 26] and silage-based diets [27] have been evaluated
for such purposes. However, such an intervention may
have complex effects on the level of enteric resistance
during chlortetracycline treatment, when pr has a posi-
tive association with resistance levels but λin has a nega-
tive association (Table 3). The effect of a diet change on
the time required to reach the post-chlortetracycline
equilibrium (effectively a resistance-based withdrawal
period) may differ by the underlying behavior of enteric
bacteria in individual animals (Table 2).
We used polynomial terms to address non-linear rela-

tionships between model input parameters and the be-
havior pattern measures, although polynomial terms can
be difficult to interpret. For example, in the maximum
proportion resistant linear regression model for the
peaked behavior, the coefficient of MICs is negative and
the coefficient of MICs

2 is positive. The combined effect
is negative when MICs is between 0 and 2.5 standard de-
viations above its mean and positive when MICs is below
its mean or greater than 2.5 standard deviations above

Table 5 Cox proportional hazard model for time of
maximum proportion resistant of the peaked behavior mode

Standardized
Input
Parameter

Time
Strata

Coefficient Exponentiated
Coefficient

Standard
Error

pr 1 −2.133 0.118 0.33

2 −1.274 0.280 0.30

3 −1.199 0.302 0.166

pi 1 2.156 8.639 0.311

2 1.748 5.745 0.305

3 0.691 1.996 0.136

startr 1 1.945 6.996 0.321

2 1.249 3.485 0.291

3 1.299 3.666 0.164

starti −0.856 0.425 0.110

λin 1 0.810 2.248 0.245

2* 0.164 1.179 0.250

3 1.038 2.822 0.143

λout 0.581 1.787 0.099

log10(βsr) 0.206 1.228 0.098

MICs 1 −8.913 0.0001 1.474

2 −3.631 0.026 0.763

3 −0.824 0.439 0.159

δ −0.343 0.710 0.131

VLI −0.481 0.618 0.113

ηLI −0.384 0.681 0.096

The example mathematical model was for the proportion of tetracycline-
resistant enteric Escherichia coli in a beef steer during and after administration
of oral chlortetracycline. The Cox model presented here uses right-censored
data. In 80% of peaked behavior simulations the maximum proportion
resistant occurred at the last time step of chlortetracycline administration and
these simulations were considered to not have a maximum event occur in the
Cox model (right-censored). Coefficients, exponentiated coefficients, and
standard errors are listed for the standardized parameters that were included
in the most parsimonious model. Time stratification, which allows the effect of
a parameter to vary as a step-function between time strata, was used to meet
the assumption of proportional hazards for pr, pi, startr, λin, and MICs. The
maximum times were divided into three time strata: (1) Day 10 to Day 16.6, (2)
Day 16.7 to Day 23.3, and (3) Day 23.4 to Day 30. Coefficients for these five
parameters were constant within a time stratum and different between time
strata. Parameters that do not have time strata listed met the proportional
hazard assumption without stratification and have just one coefficient,
constant across time. For this model, Cox and Snell’s R2 was 0.248 (maximum
possible 0.584). *P > 0.05
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its mean. We suggest plotting the polynomial equations
to aid in interpretation; then the combined effect of the
linear and polynomial terms at a given input parameter
value can be compared relative to other input parameter
coefficients in the linear regression model. Although
using polynomials can correct violations of linear model
assumptions, they may not substantially increase the
model fit and therefore may not be worth the complexity
of interpretation. We did not pursue interactions be-
tween input parameters because they can be difficult to
interpret, particularly 3rd order and higher interactions.
However, input parameters may interact in some model
structures and therefore interactions may need to be in-
cluded in regression models for the sensitivity analysis.
In their behavior pattern sensitivity analysis frame-

work, Hekimoğlu et al. [20] do not address censored
data, although censoring can occur in mathematical
models when an event does not occur during the
simulated time period. In our example model, some
simulations did not reach an equilibrium point in the
simulated time period, although all simulations tended
towards an equilibrium and would presumably reach
an equilibrium if the simulation time was extended.
There are three potential solutions to this problem:
(1) extend the simulation time until all simulations
have the required event, (2) remove missing data pair-
wise, or (3) use statistical methods for censored data
in the sensitivity analysis. Solution (1) may not reflect
the reality of animal production systems. Animals are
sent to slaughter at predetermined times and cannot
necessarily be held at farms until their gut microbiota
have equilibrized following removal of antimicrobial
therapy. In addition, there are practical and legal limi-
tations on how long antimicrobials can be fed to pro-
duction animals [28], so the chlortetracycline
administration time cannot be extended until all sim-
ulated animals reach an equilibrium or maximum
during the drug administration. In most of linear re-
gression models presented, we used strategy (2), but
for the time to maximum in peaked behavior simula-
tions we applied strategy (3) because the linear re-
gression model severely violated the assumption of
normally distributed residuals. We used survival analysis
(Cox proportional hazard model) to account for ‘censored’
simulations—those that did not reach a maximum propor-
tion resistant during chlortetracycline administration but
rather had a recorded maximum at the last time-point of
the administration. Although Cox proportional hazard
models have fewer assumptions than linear regression
models, the example model data violated the important
assumption of proportional hazards, which was addressed
by using a step-function (time dependent coefficients)
within a right-censored model. The most parsimonious
Cox model (Table 5) contained more input parameters

than the most parsimonious linear regression model for
the time to maximum (Table 4); the Cox model identified
all the parameters in the linear regression model (Table 4)
plus four additional parameters (Table 5), supporting its
suitability for the purpose.

Conclusions
Behavior pattern sensitivity analysis is a flexible method
that can be applied to models of bacterial antimicrobial
resistance, including antimicrobial pharmacokinetic-
pharmacodynamic and bacterial population dynamics
models. It provides a detailed sensitivity analysis for each
model output behavior and highlights similarities and dif-
ferences in parameter importance among the behaviors.
By using stepwise and best subsets model selection tech-
niques, we have expanded the procedures for behavior
pattern sensitivity analysis to efficiently identify the
parameters that have the strongest association with each
behavior pattern measure. We suggest techniques for ad-
dressing violations of linear regression models, including
transformations of dependent and independent variables
and alternative models (Cox proportional hazard models),
thus expanding the techniques for behavior pattern sensi-
tivity analysis. Finally, in the example model of enteric
antimicrobial resistance in beef cattle administered an oral
antimicrobial, we demonstrate that behavior pattern sensi-
tivity analysis identifies important parameters that could
be altered to reduce antimicrobial resistance.

Methods
Example mathematical model
The mathematical model we use as an example has pre-
viously been described in detail [11] and is represented
schematically in Fig. 6. In short, the model combines a
pharmacokinetic stock-flow model of chlortetracycline
in the beef cattle gastrointestinal tract [5] with a popula-
tion dynamics model of resistant and susceptible enteric
Escherichia coli and a pharmacodynamic (sigmoid Emax)
equation of the antimicrobial effect on the bacteria. For
the application of behavior pattern sensitivity analysis
we focused on one chlortetracycline indication and dos-
age: control of bacterial pneumonia in beef steers with
chlortetracycline dosed at 350 mg/steer per day for
28 days. This dosage was chosen because disease preven-
tion is the most common use of in-feed chlortetracycline
in feedlot beef cattle [21]. The model reflected chlor-
tetracycline flows between gastrointestinal, plasma, and
tissue compartments and abiotic degradation. Within
the large intestine, active chlortetracycline inhibited the
growth of E. coli depending on their susceptibility; sus-
ceptible E. coli had slower growth in the presence of
sub-inhibitory chlortetracycline concentrations than re-
sistant E. coli. The model also reflected that resistance
genes could be horizontally transferred between
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resistant, intermediate, and susceptible E. coli, and the
bacterial population could be replenished by ingested E.
coli. Twenty-nine input parameters were assigned distri-
butions based on published literature (Table 6), includ-
ing parameters for chlortetracycline pharmacokinetics,
chlortetracycline pharmacodynamics against E. coli, and
E. coli ecology. Monte Carlo simulations (n = 1000) of
the model were completed by randomly drawing values
from the parameter distributions for each simulation [11];

the random values were recorded as a realization of each
input parameter random variable. The model was simulated
with a 0.1 h time-step for a total of 90 days: a two day
burn-in period, 28 days of chlortetracycline administration,
and an additional 60 days of follow-up after stopping chlor-
tetracycline. The model output was the proportion of
chlortetracycline-resistant E. coli out of total enteric E. coli
over time. The model was built and simulated in MatLab ®
R2016b (MathWorks, Natick, MA, U.S.).

Fig. 6 Schematic of the example mathematical model of tetracycline-resistant Escherichia coli in beef cattle administered oral chlortetracycline.
Pharmacokinetic parameters related to the distribution of chlortetracycline throughout the gastrointestinal tract and excretion via urine and bile are
presented in red. The black parameters are pharmacokinetic constants and were not varied during simulations: absorption rates from the small intestine
(ka), excretion rates (ke) and distribution to (kpt) and from (ktp) tissues. Pharmacodynamic parameters related to the effect of the large intestine
chlortetracycline concentration on enteric E. coli are given in blue. Parameters related to the bacterial population dynamics are given in green. The
definition and distribution of each parameter are presented in Table 6
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Behavior pattern sensitivity analysis framework
The general process for behavior patterns sensitivity
analysis is detailed in Fig. 1 and described below. We
followed the framework laid out by Hekimoğlu et al.
[20] for a behavior pattern sensitivity analysis on system
dynamics models:

1. Run Monte Carlo simulations with predetermined
parameter distributions

2. Identify and separate different output behavior modes
3. Define and compute output behavior pattern

measures for every behavior mode

4. Perform regression analyses with output behavior
pattern measures as dependent variables and
standardized input parameter values as independent
variables

Behavior mode identification and separation
After running 1000 Monte Carlo simulations, we exam-
ined the model output behaviors by plotting the propor-
tion of tetracycline-resistant enteric bacteria over time.
We visually examined all 1000 simulations by plotting the
outputs of 100 simulations at a time and noting behavior
trends. Three distinct behaviors were identified and

Table 6 Parameters, and their distributions, of the example mathematical model

Parameter Distribution Definition

CTC pharmacokinetics

δ Beta (0.54, 37.4) CTC abiotic degradation rate

γs Uniform (0.0535, 0.0895) CTC flow rate from stomachs to small intestine

γupper_si Uniform (0.250, 0.416) CTC flow rate through the upper 1/3 small intestine

γrest_si Uniform (0.100, 0.166) CTC flow rate through the lower 2/3 small intestine

γLI Uniform (0.100, 0.166) CTC flow rate through large intestine

Eb Uniform (0.39, 0.64) Fraction CTC eliminated via bile

ηLI Uniform (0.69, 0.89) Fraction CTC adsorbed to digesta in the large intestine

VLI Uniform (6, 22) Large intestine contents volume

CTC pharmacodynamics

Hs Uniform (1.62, 2.23) Hill coefficient for susceptible bacteria

Hi Uniform (5.71, 9.53) Hill coefficient for intermediate bacteria

Hr Uniform (6.42, 10) Hill coefficient for resistant bacteria

MICs Uniform (0, 4) Anaerobic MIC for susceptible bacteria

MICi Uniform (2.7, 16) Anaerobic MIC for intermediate bacteria

MICr Uniform (14.7, 128) Anaerobic MIC for resistant bacteria

Bacterial population dynamics in the large intestine

r Uniform (0.05, 0.5) Bacterial growth rate in the large intestine

α Uniform (0, 0.03) Fitness cost for intermediate and resistant bacteria

log10(Nmax)
Weibull (14.03, 20.32)
− 7.59

Large intestine carrying capacity for the bacteria

Nstart Uniform (0.1, 0.9) * Nmax Starting bacterial population size

log10(βjk) Gamma (94.17,0.16)
− 22.57

transposon transfer rate between /transposon transfer rate between E. coli subpopulations

λin Uniform (0.001, 0.01) Bacterial in-flow rate to the large intestine

λout Uniform (0.01, 0.02) Bacterial out-flow rate from the large intestine

pi Uniform (0.02, 0.15) Proportion intermediate in in-flowing bacteria

pr Uniform (0.16, 0.61) Proportion resistant in in-flowing bacteria

ps 1- pi - pr Proportion susceptible in in-flowing bacteria

startj Same as pj Starting proportions of resistant (startr), intermediate (starti), and susceptible (starts) bacteria in the large
intestine

The model was for the proportion of tetracycline-resistant enteric Escherichia coli in a beef steer during and after administration of oral chlortetracycline, and has
been previously published (see text). The parameter symbols, definitions, and distributions are given here. Chlortetracycline (CTC)
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confirmed by examining the proportion of resistance over
time from a subset of simulations (Fig. 7): (1) an increase
in the proportion of resistant E. coli across the entire
90 days, (2) a decrease in the proportion resistant across
the entire 90 days, and (3) an increase in the proportion
resistant during chlortetracycline administration followed
by a decrease after stopping chlortetracycline. These be-
havior modes were formally defined by comparing the
proportion resistant at the start of chlortetracycline admin-
istration (Day 2), at the end of administration (Day 30), and
at the end of the simulation period (Day 90). Increasing
behavior was defined as the proportion resistant at Day 2
< Day 30 < Day 90. Decreasing behavior was defined as the
proportion resistant at Day 2 > Day 30 > Day 90. The third
behavior was termed “peaked” and was defined as the pro-
portion resistant at Day 2 < Day 30 > Day 90.

Behavior pattern measures
Behavior pattern measures become the dependent vari-
ables in the regression analyses, with a separate regression
model for each behavior pattern measure from each be-
havior mode. Hekimoğlu et al. suggest that the modeler
should identify a set of behavior pattern measures that
completely characterize each behavior mode. Suggested
pattern measures included the output levels and timing of
the equilibriums, inflection points, tipping points (peaks),
as well as the oscillation periods and oscillation amplitude
slopes [20]. The three behaviors observed in our model
were characterized by the output equilibrium level, time

to equilibrium, the output inflection point level, inflection
point time, the output maximum level, and time of max-
imum. Maximums were found for the peaked behavior
simulations by using the max MatLab function during the
period of chlortetracycline administration (Day 2 to Day
30). We searched for equilibriums after ending chlortetra-
cycline (> Day 30) and for inflection points during chlor-
tetracycline administration (Day 2 to Day 30).
Equilibriums and inflection points can be calculated based
on the first and second derivatives of a curve, respectively.
However, the proportion of resistant E. coli contained too
much noise to calculate informative derivatives or gradi-
ents because chlortetracycline was fed in 12 h intervals,
which created small oscillations in the E. coli proportions.
Therefore, we first fit a smoothing spline curve with the
least-squares method (using the spaps MatLab function)
to each simulation’s output with a tolerance of 0.01, such
that the spline was within 0.01 of the simulated propor-
tion resistant at each time-point. The spline fit was veri-
fied visually by plotting the spline and the model output
(proportion resistant over time) for a subset of the 1000
simulations. Nineteen of the 1000 simulations could not
be fit with a spline and therefore equilibriums and inflec-
tion points could not be found for those simulations. An
equilibrium point was defined as the first time-point
where the absolute value of the spline’s first derivative was
< 1 × 10− 9 and remained < 1 × 10− 9 ten time-steps (1 h
total) later. This equilibrium cut-off value had to be suffi-
ciently small to correctly identify equilibriums in simula-
tions that had relatively small changes in proportion

Fig. 7 Examples of the behaviors of tetracycline-resistant enteric Escherichia coli in beef cattle administered oral chlortetracycline. The day of the
simulation is shown on the x-axis and the proportion of tetracycline-resistant enteric Escherichia coli is shown on the y-axis. The red shaded box is
the period of chlortetracycline administration from Day 2 to Day 30. The solid line is an example of the increasing behavior, with the proportion
of resistance at Day 2 < Day 30 < Day 90. The dashed line is an example of the decreasing behavior, with the proportion of resistance at Day 2 >
Day 30 > Day 90. The dotted line is an example of the peaked behavior, with the proportion of resistance at Day 2 < Day 30 > Day 90
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resistant over time (hence consistently small derivatives),
but still demonstrated clear behavioral patterns. For ex-
ample, one simulation with increasing behavior may have
a 20 percentage point change in proportion resistant from
Day 2 to Day 90 while another simulation may have only a
5 percentage point change from Day 2 to Day 90. The
equilibrium cut-off value was chosen by examining a sub-
set of simulations visually and assessing the derivative
value at the approximate visual equilibrium. The inflection
point in a simulation was found by searching for the first
pair of consecutive time points where the spline’s second
derivative changed from positive to negative or vice versa.
The first time-point of the pair was taken as the time of
the inflection point. The starting proportion resistant (Day
2) was subtracted from the maximum levels and equilib-
rium levels in order to investigate relative maximum levels
and relative equilibrium levels.

Linear regression model building and selection
Three of the parameters (Nstart, ps, starts) were collinear
with other parameters (Pearson correlation coefficient >
0.9) and therefore excluded from the regression models.
Nstart was a function of Nmax so Nstart was excluded and
Nmax was included in the regression models. The incom-
ing proportion of antimicrobial-susceptible E. coli (ps)
was a function of the incoming proportions of inter-
mediate and resistant bacteria, since all three propor-
tions must sum to 1. Similarly, the starting proportion
susceptible (starts) was a function of the starting propor-
tions of intermediate and resistant. Therefore ps and
starts were also excluded from the regression models.
Within each behavior mode, the input parameter values
(xik) were standardized for each of the remaining 26 pa-
rameters, k, to make them dimensionless and facilitate
regression coefficient comparisons [20, 29], as follows:

~xik ¼ xik−xk
σxk

~xik ¼ standardized value of parameter k for simulation i
xik ¼ non‐standardized value of parameter k for simulation i
xk ¼ mean of parameter k across all simulations
σxk ¼ standard deviation of parameter k across all simulations

Linear regression models were built using R 3.4.3 soft-
ware [30] with the RStudio 1.0.136 (RStudio, Inc., Boston,
MA, U.S.) user interface. Each pattern measure for each
individual behavior mode was modeled separately as the
dependent variable, resulting in 14 regression models. All
input parameters (except for the three excluded for collin-
earity) were eligible to be independent variables. Thus the
full regression models contained 26 input parameters as
independent variables. Reduced models were built using
two model selection techniques to obtain a best-fit, most
parsimonious model. First, the models were fit with the
‘forward,’ ‘backward,’ and ‘both’ (stepwise) variable selection
procedures (step, package stats) using the AIC (Akaike In-
formation Criteria) as the fit criteria during the selection

process. The reduced models suggested by the three vari-
able selection routines were compared. Second, the best
model subsets of up to 10 variables were identified using
regsubsets (package leaps), which compares models of the
same size with several selection criteria [31]. The models
suggested by the variable selection routines and the best
subsets were compared using BIC (Schwarz’s Bayesian In-
formation Criteria), AIC, and adjusted R2. Of the models
with similarly small BIC and AIC, and large adjusted R2,
the most parsimonious model was selected as the best-fit
model and was tested for model assumption validity.
Linear regression models must meet six assumptions

in order to make valid predictions:

1. Observations are independent
2. Residuals follow a Normal distribution with a mean

of zero
3. Linear relationship between dependent and

independent variables
4. Homoscedasticity of residuals
5. Minimal or no multicollinearity of independent

variables
6. Outlier observations do not drive the parameter

estimates and predictions

We assessed whether each of the 14 best-fit regression
models met these assumptions by examining the QQ
plots, partial regression plots, standardized residuals
versus fitted dependent-variable values, standardized re-
sidual histograms, Cook’s D plots, and calculating vari-
ance inflation factors. Violations of assumptions were
addressed by transforming independent and dependent
variables and excluding outlier output values when pos-
sible. Transformations included using polynomial terms
for both independent and dependent variables in order to
meet the assumption (3) of a linear relationship between
dependent and independent variables. Input parameters
were not re-standardized after transformations. In cases of
large assumption violations, alternative regression models
(e.g. Cox proportional hazard models) were considered for
the behavior pattern measures.
We then further simplified each of the 14 best-fit

models when possible by eliminating independent vari-
ables with small coefficients (< 0.005 for “level” models
and < 240 for “time” models) as long as the model fit
was not significantly altered (< 10% increase in BIC, < 2
percentage point decrease in adjusted R2, and no sub-
stantial change in residual plots) and coefficients of
other parameters were generally unchanged (< 20%
change). If removing a parameter did alter the model fit
or other parameter coefficients, it was returned to the
model. This process resulted in a best-fit, most-parsimo-
nious model, which was again confirmed to meet linear
regression assumptions.
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Cox proportional hazard model building and selection
Survival analysis was considered as an alternative model
to linear regression for the ‘time to’ pattern measures
(e.g. time to maximum proportion resistant). Survival
analysis handles censored data, which can occur if a
behavior pattern measure (i.e. ‘event’) does not occur
before the end of the simulated time period. Behavior
pattern measures can be considered right-censored if the
‘event’ could occur if the simulated process time or over-
all simulated time was extended. For example, some
peaked-behavior simulations did not reach an absolute
maximum proportion resistant during chlortetracycline
administration (i.e. the proportion was still increasing
when chlortetracycline administration stopped). Al-
though these simulations did reach a local maximum at
the end of chlortetracycline administration, if chlortetra-
cycline administration was simulated for a longer time,
those simulations may have reached an absolute
maximum. Hence this pattern measure can be consid-
ered right-censored; specifically, it has end-of-study cen-
soring. Cox proportional hazard models [32] were built
(coxph, package survival) for the ‘time to’ pattern
measures with the occurrence of a behavior pattern
measure (e.g. maximum, equilibrium) as the ‘event’ and
the time of the occurrence as the ‘event time.’ Both
right-censored (absolute maximum is considered the
event, which was not reached in some of the simulations
that are then considered censored) and non-censored
(local maximum is considered the event, which is reached in
all the simulations and in some of those it is reached at the
last time of chlortetracycline administration) Cox models
were built. The standardized input parameters of the math-
ematical model were independent predictors. Stepwise selec-
tion based on the AIC was used to select the best-fit, most
parsimonious right-censored and non-censored models. The
best-fit model between the right-censored or non-censored
was chosen based on the AIC and BIC, and for that model
the assumption of proportional hazards was validated by
testing for no interaction between Schoenfeld residuals and
time (cox.zph, package survival) [33, 34]. Violations of the
proportional hazard assumption were addressed by using
a time-dependent coefficient for the violating parameter
(i.e. specifying an interaction between time and the
parameter that allows the coefficient to change continu-
ously over time) or by stratifying the simulated time
period into strata and making the parameter coefficient a
step-function of the time strata (i.e. the coefficient is a
constant value within each time stratum) [34, 35].
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