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Abstract

Background: Sensitivity to macrocyclic lactones, which are commonly used in veterinary clinics, was first found in
Rough Collies, and was attributed in 2001 to a 4 bp deletion in the MDR1 gene. The list of affected breeds currently
includes 13 breeds. Researchers from different countries and continents examined the allelic frequencies of the
nt230(del4) MDR1 mutation, emphasizing the clinical importance of this test not only to mutation-prone dogs, but also
to their crosses and mongrels, since treatment of a deletion carrier with these compounds may lead to its death.
In this study, the allelic frequencies of nt230(del4) MDR1 mutation in affected breeds, their crosses, unrelated pure
breeds and mongrels are reported for the state of Israel (n = 1416 dogs). The Israeli data were compared with reports
from the US, Europe, UK, Australia and Japan.

Results: The allelic frequencies of nt230(del4) MDR1 mutation in Israel for Australian, Swiss and German Shepherds
(31%, 17% and 2.4%, respectively) are similar to the corresponding frequencies worldwide, much higher for Border
Collies (4.8%), twice lower for Rough Collies (28%, compared to 55% or more elsewhere), and ~1% for mongrels. The
frequencies for crosses of Australian Shepherd and Border Collies in Israel are 4 and 1.6 times lower, respectively,
compared to the frequencies for the respective pure breeds.

Conclusions: This work, that for the first time presents the frequency of nt230(del4) MDR1 mutation in Israel, along
with a worldwide survey, has implications for clinicians, owners and breeders of sheepdogs and their crosses and
supports the need for extra care in treatment and in future breeding. Of note, the relative proportion of affected
breeds, in the overall tested dogs, might be higher than their actual proportion in Israel due to directed samples
collection by veterinarians for clinical purposes, as these are mainly limited to certain affected breeds or dogs that
resemble them.
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Background
The multi drug resistance 1 (MDR1) gene, a member of
the ATP-binding cassette (ABC) transporters superfamily,
is a highly conserved ATP-dependent P-glycoprotein
(P-gp) membrane transporter [1]. In eukaryotes, the
extrusion transporters have a fundamental function as
eliminators of several toxic compounds, mainly hydro-
philic and amphiphatic ones [2–4]. ABCB1 (ABC
subfamily B member 1, also referred to as MDR1 and
PGY1) transporters are expressed in several organs and
their role in the gut epithelia and the blood-tissue
barriers (blood-brain barrier, blood-testis barrier and
placenta) of mammals has been studied extensively [5].
While MDR1 activity in the small intestine can limit
the bioavailability of various drugs, its inactivity in the
luminal membranes of the endothelial cells of the brain
can lead to toxic accumulation of xenobiotics in the
central nervous system (CNS) and to severe adverse
effects, including death [6, 7].
Since the early 1980s, sheepdogs were reported to have

sensitivity to ivermectin, a relatively new macrocyclic
lactone parasiticide drug [8, 9]. Elevated concentrations
of ivermectin were found in the CNS of affected dogs
[10]. In 2001, ivermectin sensitivity in Rough Collies was
associated with a 4-base pair (bp) deletion mutation in
the fourth exon of the canine ABCB1 gene [11]. The
deletion, usually annotated ABCB1:c.227_230delATAG
or ABCB1–1Δ (MDR1) mutation (hereafter nt230(del4)
MDR1 mutation), causes a frameshift that leads to a pre-
mature stop codon and a truncated transporter of 91
amino acids as opposed to 1281 amino acids, i.e. only
7.1% of the full-length mature P-gp protein [12]. Later
studies showed that nt230(del4) MDR1 mutation hetero-
zygous dogs can be regarded as having an intermediate
macrocyclic lactone sensitive phenotype. This is a
relevant clinical notion in cases of high-dose protocols
[6, 13]. Pertinent macrocyclic lactones include ivermec-
tin, doramectin, moxidectin and milbemycin oxime.
Other drugs commonly used in the veterinary clinic, such
as P-glycoprotein substrates of the non-macrocyclic
lactones type, were also reported as toxic to nt230(del4)
MDR1 mutation homozygote dogs (−/−). These include
vincristine, digoxin, mexiletine, quinidine, fexofenadine,
vinblastine, and loperamide, cyclosporine A, verapamil,
paclitexal, doxorubicin, dexamethasone and others
[14–19]. Moreover, treating nt230(del4) MDR1 muta-
tion heterozygote dogs (+/−) with reduced doses of
P-glycoprotein substrates such as vincristine, vinblast-
ine and doxorubicin (but not a full dosage treatment
of a non-P-glycoprotein substrate) may cause delayed
drug excretion, and consequently drug toxicosis and
myelosuppression [20]. Recently, a collie affected
(homozygote) by the Nt230(del4) MDR1 mutation
mutation experienced exaggerated CNS depression

when treated with apomorphine [21], an opioid which has
not been described as a P-glycoprotein substrate. Yet,
other opioids, including loperamide and butorphanol, are
known substrates for canine P-glycoprotein [22]. A cell
line for assessing drugs as canine P-gp substrates was
recently developed [23]. Noteworthy, based on its anti-
parasitic and anti-inflammatory activities, ivermectin has
recently received US Food and Drug Administration
(FDA) and EU approval for the treatment of adult human
patients for a growing number of indications [24].
The nt230(del4) MDR1 mutation has to date been

detected in diverse dog breeds, including Rough Collies
and other related sheepdogs, such as Australian
Shepherds, miniature Australian Shepherds, Border
Collies, Shetland Sheepdogs, Old English Sheepdogs,
English Shepherd, German Shepherd, White Swiss
Shepherd, McNab as well as Wäller and two sight-
hounds, Longhaired Whippet and Silken Windhound.
From a genealogy perspective, all of the above breeds
share a common ancestor that lived in Great Britain be-
fore the breeds were classified and registered in 1873
[15, 25]. This notion is consistent with genomic data
that cluster these breeds in common clusters or some-
times even fail to differentiate between close varieties
that may have undergone recent selection based on size,
such as in the case of Rough Collies and Shetland
Sheepdogs [26, 27].
A fast and simple detection method using allele-specific

loop-mediated isothermal amplification (AS-LAMP) [28]
as well as PCR-based diagnostic tests [29, 30] and the
TaqMan allelic discrimination assay [15] were designed as
a result of the high clinical importance of nt230(del4)
MDR1 mutation detection. Efforts to map allele frequen-
cies in affected pure breed dogs, some of their crosses,
and unrelated purebred dogs have been made in different
parts of the world [19, 25, 31–40]. These studies supply
clinicians with regional information on the mutation dis-
tribution in their countries and highlight the need for a
genetic test prior to any treatment involving common par-
asiticides in affected breeds and their crosses.
In Israel, spirocercosis is a widespread disease and

dogs are routinely treated with macrocyclic lactones
parasiticide. On average, more than 20 dogs are diag-
nosed annually, with the highest infection rates in the
center of the country [41, 42]. The aim of this study was
to determine the frequency of the mutant allele in Israel
in the affected breeds, their crosses and undefined dogs,
and to compare the data with recent worldwide studies.
To the best of our knowledge, this is the first report on
nt230(del4) MDR1 mutation frequency in Israel and it
may provide a comparative perspective. It should be
noted that the evaluation of nt230(del4) MDR1 mutation
genetic disposition in diverse canine breeds was per-
formed in order to inform medical and clinical
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professionals, rather than to illuminate the relationship
of different genotypes with the clinical signs in each
breed. The latter is not within the scope of this study.

Methods
Animals
Biological samples from 1416 dogs (blood, blood on
paper and hair roots) were voluntarily and non-
selectively obtained from veterinarians, breeders and
owners from all regions of the country, and analyzed for
the nt230(del4) MDR1 mutation as part of the diagnostic
research service at our institute. A total of 481 samples
from 7 purebred breeds known to bear the nt230(del4)
MDR1 mutation allele (including 5 crosses of two of
these breeds) and 280 crosses of these same breeds (dogs
for which one parent was known to be a purebred dog,
often either Australian Shepherd or Border Collie), 61
unrelated purebred dogs and 594 unclassified crosses
(mongrels, dogs for which either both parents were
known to be non-purebred dogs or the parentage was
unclassified) were obtained. Breed status was reported
by the veterinarian or owner, and was not confirmed by
other inspection.

DNA extraction
DNA from blood and blood on paper samples was
extracted with the Chelex method using Bio-Rad,
‘InstaGeneTM Matrix’. Briefly, 5 μL of whole blood (or
0.25 cm2 paper with blood) were incubated at room
temperature for 15–30 min and then centrifuged at
12,000 rpm for 3 min. The supernatant was carefully
withdrawn and 200 μL of InstaGene matrix were added
to the pellet and incubated at 56 °C for 15–30 min,
vortexed and incubated in a 100 °C heat block for 8 min.
After incubation, spin down was performed at 12,000 rpm
for 3 min. The resulting supernatant contained the DNA.
DNA from hair roots was extracted with the nexttec
‘Special Protocol DNA Isolation Hair by nexttec™ 1-Step’.
Briefly, three to five hair roots were dissolved with
Proteinase K and DTT. Samples were then incubated in a
shaker (at 56 °C, 200 rpm for 2 h). Then, 100 μL of the
lysates were incubated for 3 min at room temperature and
later centrifuged and eluted at 700×g for 1 min. All proce-
dures were performed according to these kits’ extraction
manuals and according to the facility guidelines.

Genotyping by Taqman assay
nt230(del4) MDR1 mutation was screened using the
Fluidigm BioMark apparatus (Fluidigm Corporation
US) with an Assay-specific TaqMan fluorescence probe
mix. The probe sequences, which were designed follow-
ing NC_006596.3, are as follows: VIC Probe Sequence
was ATGACAGATAGCTTTGCAA (wt), FAM Probe
Sequence AACATGACAGCTTTGCAAA (mutant); the

forward and reverse primers are CCATCATCCATG
GAGCTGC and CACAAATAATACTTACTTTCATTA
ATTATAACTGG, respectively, amplicon size 133 bp.
Assay along with PCR master mix were run in duplicate
by loading 5 μl into each well of the primed 96.96
Fluidigm Chip. The chip was then placed in the inte-
grated fluidic circuit controller and loaded before ana-
lysis with the BioMark reader. The following thermal
cycling protocol was used: 50°C (2 min), 70°C (30 min),
25°C (10 min), 50°C (2 min), and 95°C (4 min). This
was followed by 40 cycles of 95°C (10 s) and 61°C
(30 s). The initial cycle [50°C (2 min), 70°C (30 min),
25°C (10 min)]. Data were analyzed and cycle threshold
(CT) values were determined using BioMark real-time
PCR analysis software (Fluidigm Corp.), and automated
mutation calling was carried out using an algorithm
based on the change in CT (DCT) values between the
wild-type and the mutant.

Validation by PCR and Sanger sequencing
Each nt230(del4) MDR1 mutated allele was validated by
PCR and Sanger sequencing. The nt230(del4) MDR1
mutation region was amplified using a touchdown
reaction (4 cycles: 94°C (30 s), 58°C (30 s), 72°C (30 s);
30 cycles: 94°C (30 s), 56°C (30 s), 72°C (30 s)) with the
following forward and reverse primers: TTTTTAGTTT
CGCTATTCAAATTGGC and CAAACTTATTACCAA
TATTAACTGTAGCTC, respectively. Sequencing reac-
tions for both DNA strands were performed with BigDye
Terminator Cycle Sequencing Ready Reaction Kit
(Applied Biosystems, Foster City, CA) and analyzed with
an automatic sequencer (Applied Biosystems).

Data analysis
Breeds were classified into two main groups according
to nt230(del4) MDR1 mutated allele breed genealogy:
Related (as detailed in the introduction) and non-related
(all others). Within each group, breeds were subse-
quently separated into pure breeds and mix breeds.
Worldwide mapping of the allelic frequency of
nt230(del4) MDR1 mutation only includes breeds for
which at least 50 dogs were genotyped.

Results and discussion
nt230(del4) MDR1 mutation allelic frequencies in Israel
Raw data is provided in Additional file 1 (for each sample
ID, the breed and MDR1 genotype status are indicated).
Table 1 summarizes the allelic frequencies of the canine
nt230(del4) MDR1 mutation in Israel in all mentioned
subgroups. The nt230(del4) MDR1 mutation frequency
varied markedly by breed. Among the relatively abundant
breeds (sample size greater than 10 dogs, not including
37.5% for Old English Sheepdog where the sample size
was only 4 dogs), it was highest for Australian Shepherds
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(31.4%, where 9.0% of 145 dogs were homozygotes for the
mutation), Rough Collies (27.5%, n = 20 and 5.0%, respect-
ively), and Shetland Sheepdog (26.9%, n = 13 and 0%,
respectively), followed by White Swiss Shepherd
(16.7%, n = 12 and 8.3%, respectively), Border Collie
(4.8%, n = 269 and 2.3%, respectively), and German
Shepherd (2.4%, n = 21 and 0%, respectively). As
expected, an intermediate frequency (10.0%) was ob-
served in crosses of pure Australian Shepherds and
pure Border Collies (n = 5). The respective allelic fre-
quencies among crosses of these breeds were much
lower compared to their purebred counterpart, as ex-
pected: 4 and 1.6 times lower in Australian Shepherd
(7.8%, n = 32) and Border Collie (3.0%, n = 183), re-
spectively. The nt230(del4) MDR1 mutation allele was
not detected in any of the unrelated purebred dogs
(n = 61), as expected [43]. Almost 2% (n = 594) of the
mongrels are affected (heterozygotes for the mutation,
allelic frequency of almost 0.9%), a finding that justi-
fies a more cautious approach in the clinic in case of
unspecified dogs. This value is at the lower end of
the previously reported 2–7% [32, 37].

A worldwide view – Comparative perspective
Figure 1 presents a comparative view of the Israeli and
the worldwide nt230(del4) MDR1 mutation allelic fre-
quencies. In most cases, the frequencies in Israel seem

to be similar to those in other countries, whereas in
other cases the range of frequencies is wide [also see 6].
These values might also be biased by the sample size,
which varied greatly in different studies, and/or by the
collection method. The frequencies observed for
Australian Shepherd dogs living in Israel, US, Europe
and Japan are similar, ranging from 25% to 33%, while
higher frequencies were observed in the UK and
Australia (~45%). Allelic frequencies for Border Collie
are below 1% across the world, except 2.3% in the UK,
compared to a much higher frequency in Israel (4.8%).
This might be an indication for over inbreeding of car-
rier dogs in Israel. In contradistinction, the worldwide
frequencies for Rough Collies are very high (55% or
higher) compared to an almost 2-fold lower rate in Israel
(28%, however the sample size was small). This study
provides evidence for the existence of the mutation in
the popular German Shepherd, for the first time outside
the US, with frequencies ranging from ~2.5% to ~4%.
Similarly the nt230(del4) MDR1 mutation allele is re-
ported in White Swiss Shepherd outside Europe, for the
first time, with a similar frequency in Israel (~15%).
These two latter pure breeds, the German Shepherd and
the White Swiss Shepherd, arise from the same lineage,
as older breed standards of the German Shepherd
allowed all color varieties, including white [38]. The dif-
ferences in allelic frequencies between these breeds

Table 1 Observed frequencies of nt230(del4) MDR1 mutation in related (affected known breeds, pure and crossed ones), and non-related
(un-affected known breeds and mongrels) breeds in Israel

nt230(del4) MDR1
mutation allele
breed genealogy

Breed Frequency of nt230(del4) MDR1 mutation allele status [%]

Name Status Sample size Homozygote
(−/−)

Heterozygote
(+/−)

Normal
(+/+)

Frequency of nt230(del4)
MDR1 mutation allele

Related Australian Shepherd Pure 145 9.0% 44.8% 46.2% 31.4%

Australian Shepherd Crosses 32 0.0% 15.6% 84.4% 7.8%

Border Collie Pure 261 2.3% 5.0% 92.7% 4.8%

Border Collie Crosses 183 0.0% 6.0% 94.0% 3.0%

Border Collie X Australian Shepherd Pure 5 0.0% 20.0% 80.0% 10.0%

Rough Collie Pure 20 5.0% 45.0% 50.0% 27.5%

Rough Collie Crosses 49 2.0% 4.1% 93.9% 4.1%

German Shepherd Pure 21 0.0% 4.8% 95.2% 2.4%

German Shepherd Crosses 11 0.0% 0.0% 90.9% 0.0%

White Swiss Shepherd Pure 12 8.3% 16.7% 75.0% 16.7%

White Swiss Shepherd Crosses 4 0.0% 0.0% 75.0% 0.0%

Shetland Sheepdog Pure 13 0.0% 53.8% 46.2% 26.9%

Shetland Sheepdog Crosses 1 0.0% 0.0% 100.0% 0.0%

Old English Sheepdog Pure 4 0.0% 75.0% 25.0% 37.5%

Old English Sheepdog Crosses 0 0% 0.0% 0.0% 0%

Non-Related Others Pure 61 0.0% 0.0% 100.0% 0.0%

Others (mongrels) Crosses 594 0.0% 1.9% 98.1% 0.9%

‘+’ stands for WT allele; ‘-’ stands for nt230(del4) MDR1 mutation allele
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Fig. 1 (See legend on next page.)
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might indicate over inbreeding in the case of the White
Swiss Shepherd or for a founder effect in the breeds
founding stock, back in the 1960s and 1970s [38]. The
allelic frequency observed for Shetland Sheepdogs in
Israel is very similar to that in Europe (27% and 30%,
respectively), close to that in Australia (21%) and the UK
(36%), while the frequencies in the US (7.1%) and Japan
(1.2%) are much lower.
It is pertinent to state that the relative proportion of

affected (predominantly pure) breeds, in the overall
tested dogs in this study, might be higher than their ac-
tual proportion in Israel. The bias is related to samples
collection by professional veterinarians for clinical pur-
poses, as these are mainly limited to certain affected
breeds, or dogs that resemble these breeds, from specific
areas of the country where spirocercosis is more wide-
spread [41]. Nevertheless, the allelic frequency of
nt230(del4) MDR1 mutation within each affected breed
is probably not significantly (if at all) affected by this
bias, while it can be affected in the non-related breeds.

Conclusions
Here, we report for the first time on the allelic frequen-
cies of the nt230(del4) MDR1 mutation in affected
breeds, as well as in their crosses and even in mongrels,
in Israel. The Israeli data was compared to a worldwide
literature survey which summarizes the corresponding
allele status in the USA, Europe, UK, Australia and
Japan. The main findings are:

� nt230(del4) MDR1 mutation allele frequencies in
Israel resemble, per breed, the status in the world.
Exceptions to this finding are the Israeli Border
Collies and Rough Collies which have the highest
(4.8%) and lowest (28%) frequency rates in the
world.

� The first report on the existence of the nt230(del4)
MDR1 mutated allele outside the USA and Europe on
German Shepherd Dogs and White Swiss Shepherds,
respectively.

� High prevalence rate of the nt230(del4) MDR1
mutated allele in mixes of prone breeds.

� The nt230(del4) MDR1 mutation frequency in dogs
which were described as unrelated mongrels is 1%.

Noteworthy, due to inherent bias in the sample collec-
tion by veterinarians for clinical purposes, the relative

proportion of affected breeds, in the overall tested dogs,
might be higher than their actual proportion in Israel.
Nevertheless, the allelic frequency of nt230(del4) MDR1
mutation within each affected breed is probably not sig-
nificantly affected by this bias, while it can be affected in
the non-related breeds.
The allelic frequencies of the nt230(del4) MDR1 muta-

tion in affected breeds seems to vary slightly across the
world. This notion is in agreement with the strict regis-
try breeding procedures in breeding clubs that do not
permit “new genes” to enter the breeding stock. The
breeding aims at meeting the breed standard, which is a
combination of phenotypic and characteristic traits with
less emphasis on genetic predisposition for ailments.
This work, that for the first time presents the

nt230(del4) MDR1 mutation frequency status in Israel,
along with a worldwide survey, has implications for cli-
nicians, owners and breeders of sheepdogs and their
crosses and supports the need for extra care in treat-
ment and in future breeding.

Additional file

Additional file 1: List of all tested dogs, stratified by breed. For each
sample ID, the breed and MDR1 genotyping status is indicated. (XLSX 60 kb)
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