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Abstract

Background: The genomes of bacteria and archaea evolve by extensive loss and gain of genes which, for any
group of related prokaryotic genomes, result in the formation of a pangenome with the universal, asymmetrical U-
shaped distribution of gene commonality. However, the evolutionary factors that define the specific shape of this
distribution are not thoroughly understood.

Results: We investigate the fit of simple models of genome evolution to the empirically observed gene
commonality distributions and genome intersections for 33 groups of closely related bacterial genomes. A model
with an infinite external gene pool available for gene acquisition and constant genome size (IGP-CGS model), and
two gene turnover rates, one for slow- and the other one for fast-evolving genes, allows two approaches to
estimate the parameters for gene content dynamics. One is by fitting the model prediction to the distribution of
the number of genes shared by precisely k genomes (gene commonality distribution) and another by analyzing the
distribution of the number of genes common for k genome sets (k-cores). Both approaches produce a comparable
overall quality of fit, although the former significantly overestimates the number of the universally conserved genes,
while the latter overestimates the number of singletons. We further explore the effect of dropping each of the
assumptions of the IGP-CGS model on the fit to the gene commonality distributions and show that models with
either a finite gene pool or unequal rates of gene loss and gain (greater gene loss rate) eliminate the overestimate
of the number of singletons or the core genome size.
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Conclusions: We examine the assumptions that are usually adopted for modeling the evolution of the U-shaped
gene commonality distributions in prokaryote genomes, namely, those of infinitely many genes and constant
genome size. The combined analysis of genome intersections and gene commonality suggests that at least one of
these assumptions is invalid. The violation of both these assumptions reflects the limited ability of prokaryotes to
gain new genes. This limitation seems to stem, at least partly, from the horizontal gene transfer barrier, i.e., the cost
of accommodation of foreign genes by prokaryotes. Further development of models taking into account the
complexity of microbial evolution is necessary for an improved understanding of the evolution of prokaryotes.

Keywords: Evolutionary genomics, Bacterial evolution, Pangenome, Quantitative biology

Background
With the accumulation of complete prokaryotic ge-
nomes, it has become evident that even closely related
prokaryotes can substantially differ in their gene reper-
toires [1, 2]. Accordingly, for a collection of genomes,
often, collectively construed as a species, it is natural to
consider the pangenome, which is defined as the entire
non-redundant gene repertoire spanned by the constitu-
ent genomes [3]. Reconstruction of the evolutionary dy-
namics of microbial pangenomes is essential for
understanding the evolution of the traits of microbes in-
cluding ecology, pathogenicity, and resistance.
The pangenome consists of genes of widely different

abundances. Roughly, the genes in a pangenome can be
divided into three classes according to their abundance:

(1) the core, which is the collection of genes that are
present in (nearly) all genomes; (2) the moderately con-
served “shell”; and (3) the “cloud” of rare and unique
genes [4]. To analyze gene abundances and their evolu-
tion quantitatively, it is convenient to analyze the distri-
bution of gene commonality (this quantity is often
referred to as gene frequency [5–9]; however, we prefer
the term “commonality” to emphasize gene sharing
among genomes). Gene commonality, gk, is defined for a
collection of N genomes as the number of genes that are
present in exactly k genomes, where k = 1, 2, …, N. The
distribution of gene commonality is typically U-shaped,
with different degrees of asymmetry (Fig. 1a), where the
right peak corresponds to the conserved core, the shal-
low region in the middle to the moderately conserved

Fig. 1 Gene commonality and genome intersection. The Venn diagrams illustrate the overlap of gene contents between genomes. The shaded
areas demonstrate the difference between gene commonality (a) and genome intersection (b). Note that whereas g2 (intersection between two
genomes) is a single number, for three genomes, there are three pairwise intersections, and only one of the three possibilities is indicated by the
shaded area. In a, the common gene core of the three genomes is shown by the white area in the middle
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shell, and the left peak to the cloud of rare genes [4]. In
this representation, the pangenome is given by the sum
of all points.
Prokaryotic genome evolution involves extensive gene

loss and horizontal gene transfer (HGT) [10–14], which
result in the formation of the characteristic structures of
the pangenome and the core genome [15, 16]. Accord-
ingly, the evolutionary models that account for the shap-
ing of the gene commonality U-shaped distribution
incorporate gene gain and loss rates. In a pioneering
work of Baumdicker et al. [5], gene commonality was
calculated under the assumption that genomes evolve
around the equilibrium point where gain and loss rates
are equal, such that the genome size is roughly constant.
Inspired by the infinitely many alleles model of Kimura
and Crow [17], the gene abundance was inferred under
the assumption of the infinitely many genes (IMG)
model. Under IMG, it is assumed that genes are ac-
quired exclusively from an external, infinite gene pool,
and every gene acquisition event introduces a new gene
into the genetic repertoire. The IMG assumption was
further implemented in different evolutionary models to
study the formation of the U-shaped distribution in clus-
ters of closely related bacterial genomes. It has been
shown that at least two turnover rates of genes are re-
quired to accurately account for both the size of the core
genome and the number of singleton genes [7]. Gene
commonality was also studied in a general context of
shared components in complex systems [8]. By consider-
ing complex systems of widely different nature and ori-
gins, including bacterial genomes, language texts, and
Lego kits, it has been shown that the distribution of
shared components has universal characteristics. In this
work, genomes were regarded as random samples of
genes, and the exact phyletic relations of the genomes
were not incorporated into the analysis. However, more
recently, it has been demonstrated that phyletic patterns
could be inferred from the gene commonality distribu-
tion [18].
In previous studies [5–7], model parameters, in par-

ticular, gene turnover rates, were inferred from the gene
commonality distribution. This approach requires expli-
cit assumptions regarding the gene gain and loss rates.
For example, the IMG model assumes that the gain rate
is constant whereas the loss rate is proportional to the
genome size [5, 6]. More importantly, fitting the model
directly to gene commonality distribution can result in
the inaccurate inference of turnover rates. Specifically, as
we show in this work, the inference of the turnover rates
from the gene commonality distribution will result in
underestimation of the turnover rates due to the break-
down of the model assumptions.
Alternatively, gene turnover rates can be extracted dir-

ectly from genome intersection Ik, which is defined as

the number of genes that are common to (at least) k ge-
nomes. Genome intersection is thus distinct from gene
commonality gk, which is given by the number of genes
that are present in exactly k genomes (Fig. 1). We have
recently shown that genome intersection decays expo-
nentially with the evolutionary distance [19, 20]. These
findings are consistent with multiple pairwise compari-
sons of genomes in archaea [21], bacteria [22], and bac-
teriophages [23].
Here, we analyze the divergence of prokaryotic ge-

nomes within the theoretical framework we developed
previously [19, 24] and extract gene commonality from
genome intersection using the inclusion-exclusion
principle [25]. This allows us to obtain the observed U-
shaped distribution without assuming any specific func-
tional form for the gain and loss rates. However, similar
to the IMG model, it is assumed that gain and loss rates
are equal and that genes are gained from an external in-
finite gene pool. Analysis of gene commonality and gen-
ome intersections in 33 groups of closely related
prokaryotes indicates a greater number of gene losses
compared to gene gain rates. This observation implies
the breakdown of one or both of the model assumptions:
either the actual gene gain rate is smaller than the loss
rate, such that genomes shrink with time, or genes that
are already present in the pangenome are often regained
from the external pool that, in such a case, cannot be
considered effectively infinite. Both these deviations
from the model assumptions appear to be manifestations
of the HGT barrier [26], that is, the cost of integrating
new genes into the functional networks that already exist
in the recipient organism.

Results
Extraction of gene commonality from genome
intersections
Prokaryotic genome evolution is dominated by gene loss
and HGT [10–14]. It is therefore natural to model gen-
ome evolution as a stochastic process where genes are
gained and lost at random, with rates P+ and P−, respect-
ively [24]. To understand better the role of selection in
the model, it is convenient to further assume the weak
mutation limit, where acquisition and deletion events
are rare and appear sequentially. In this limit, the gain
and loss rates can be written as [20, 24]:

Pþ ¼ α � F Sð Þ ð1Þ
P − ¼ β � F − Sð Þ ð2Þ

where α and β are the acquisition and deletion rates, re-
spectively, F is the fixation probability, and S is the se-
lective benefit which is associated with the acquisition of
one gene. The expressions of Eqs. 1 and 2 can be inter-
preted as the product of the contributions from
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mutation, selection, and drift. The mutations in this con-
text are either acquisition or deletion of a gene, and se-
lection is quantified by the fixation probability F. It
should be stressed that the analysis of genome intersec-
tions and gene commonality presented below does not
require the assumption of the weak mutation limit, but
to make the role of selection in the model transparent, it
is convenient to discuss it under this assumption.
Within this modeling framework, the intersection of k

genomes, Ik, decays exponentially with the total evolu-
tionary distance Dk (see the “Methods” section for de-
tails). The exponential decay constant, λ, is given by the
per-gene loss rate λ~P−/x, where x is the number of
genes [19]. The exponential decay of genome intersec-
tions is obtained under two assumptions. First, it is as-
sumed that gain and loss rates are closely similar, such
that the number of genes is roughly constant. Second, it
is assumed that genes are acquired from an infinite gene
pool, such that each gain expands the pangenome by
one new gene (hereafter infinite gene pool and constant
genome size, or IGP-CGS assumptions).
Next, we have to take into account the evolutionary

relationships among the intersecting genomes in a
given cluster and calculate the mean intersection

I k for each k. Evidently, in a cluster of N ge-
nomes, a subset of k genomes can be chosen in mul-
tiple ways (see the “Methods” section). The
evolutionary relationships among the genomes are de-
scribed by a phylogenetic tree, and for the calculation
of I k, the mean evolutionary distance for each k
is weighted according to the tree topology (see the
“Methods” section for explicit formulation). Using the
inclusion-exclusion principle [25], it is possible to ex-
tract the gene commonality gk from the mean genome
intersection I k:

gk ¼
XN

n¼k
− 1ð Þn − k ∙q kð Þ

n ∙In ð3Þ

where

q kð Þ
n ¼ n

k

� �
∙

N
n

� �

It should be noted that this relation is exact and does
not rely on any approximation or assumption involved
in the derivation of Ik. This relation is not only a formal
result but also provides an intuition with respect to the
formation of the U-shaped distribution.
Moreover, the combined analysis of genome inter-

sections and gene commonality, and in particular,
the relation encapsulated in Eq. 3, carries signatures
of the evolutionary dynamics. For the core genome
k = N, the sum of Eq. 3 contains only one term gN =

I N. The core is given by the intersection that is
associated with the longest evolutionary time, and its
size determines the number of gene losses. For k <
N, gene commonality is calculated backwards from
the core genome, in an alternating sign series of N −
k + 1 terms (see Eq. 3). The number of singletons g1
is given by a sum of N terms, with all intersections
for k > 1 subtracted or added to the term N ∙ I 1,
where I 1 is the mean genome size. The number
of singletons is therefore sensitive to the genome
size which, in the course of evolution, is maintained
by gene gain. Under the CGS assumption, the num-
ber of gain events is equal to the number of loss
events. Further assuming an infinite gene pool im-
plies that all gained genes are initially singletons and
contribute to g1. This means that the size of I 1

remains constant whereas all other I k with k > 1
are shrinking due to gene loss. As we show in the

Fig. 2 Venn diagrams illustrating how violation of either one of the IGP-CGS assumptions will reduce the number of singletons. The number of
singletons can be extracted from gene intersections using Eq. 3 (a). When the assumption of an infinite gene pool is violated, genes can be
regained into the intersection regions of the diagram, resulting in less singletons (b). Within the IGP-CGS model, the genome size is maintained
by a balance of gene gain and gene loss events. When there are more gene losses than gene gains, the genome size reduces, decreasing the
number of singletons (c)

Sela et al. BMC Biology           (2021) 19:27 Page 4 of 15



following section, extraction of gene commonality
from genome intersections using the IGP-CGS model
results in an overestimation of the number of single-
tons although the IGP-CGS model yields an excel-
lent fit to the mean genome intersections (R2 >
0.996). This discrepancy implies violation of the

IGP-CGS assumptions, as illustrated in Fig. 2. When
the IGP assumption does not hold, genes can be
regained from the finite external pool resulting in an
increase of I k with k > 1 and a smaller number
of singletons, as illustrated in Fig. 2b. Violation of
the CGS assumption results in a decrease of the

Fig. 3 Estimation of genome intersection and gene commonality for a simulated genome dataset. a The phylogenetic tree used for generating
the simulated dataset. b Genome intersections for a single turnover rate. Numbers of intersecting genomes are shown in different colors, as
indicated by the color bar. The parameters used for the simulations are x = 4500 and P+ = P− = 1.5 × 103. The model prediction is obtained by
substituting x and P− into Eq. 7. Model prediction is indicated by a red line. c The mean genome intersections are calculated for the tree using
Eq. 9. The simulated dataset is compared to model prediction (see legend). d Gene commonality for the simulated dataset and model prediction.
The model prediction for gene commonality is extracted from the mean genome intersections of b, using Eq. 3. e–g Simulations using two
turnover rates. Model parameters are identical to the values that were inferred for E. coli (see Additional file 1: Table S1). Panel content is analog
to b–d. Model prediction for Ik was obtained using Eq. 8
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genome size, i.e., a lower I 1 value, and a smaller
number of singletons as well (see Fig. 2c), even for
the large number of gene losses that is implied by
the size of the core genome.

Analysis of simulated genome datasets
To demonstrate the calculation stages, we perform
the analysis for a simulated dataset (Fig. 3). Specific-
ally, we aim to demonstrate the stages of gene com-
monality extraction from genome intersections. To
simulate the evolution of genome content, we repre-
sent a genome as a collection of genes. Starting from
the root and propagating along the tree branches,
genes are lost and gained stochastically, according to
the set gain and loss rates (for the complete descrip-
tion of the simulation scheme, see the “Methods” sec-
tion). The simulations were performed for 20
genomes using the tree of the Escherichia coli cluster
(Fig. 3a) and under the IGP-CGS assumptions.
Figure 3b–d shows the results of a single simulation

using one gene turnover rate. The genome intersec-
tions and gene commonality values are extracted dir-
ectly from the simulated dataset. For comparison, the
analytical results are shown as well. In Fig. 3b, inter-
sections are shown as a function of the evolutionary
distance, as computed from the tree that was used for
the simulation. For a single gene turnover rate, the
intersections decay exponentially and therefore appear
as straight lines in the semi-log plot of Fig. 3b. Next,
the mean intersections I k are shown for all k’s in
Fig. 3c. For the simulated dataset, I k is calculated
for each k by taking the mean of all intersections Ik.
The model prediction for 〈I〉k is obtained by averaging
the exponential decay expression for Ik, with weights
that correspond to the tree topology (see the
“Methods” section). Finally, the distribution of gene
commonality gk is shown in Fig. 3d, where model pre-
diction for gk is extracted from the mean genome in-
tersections 〈I〉k using Eq. 3.
To further explore the generality and validity of our

modeling scheme, we repeated the entire procedure
for a simulation with two gene turnover rates
(Figs. 3e–g). As shown in the next section, two turn-
over rates were required to fit the model prediction
for genome intersections, corresponding to two clas-
ses of genes, fast-evolving and slow-evolving ones. We
therefore simulated the evolution of a genome that
contains two classes of genes. In this case, the inter-
sections (Fig. 3e) are given by a sum of two expo-
nents (see the “Methods” section). The simulation
was performed using realistic model parameters that
were inferred from the analysis of the E. coli genome
cluster (see Additional file 1: Table S1).

Selection in the model
Although selection is not explicitly incorporated in the
model, this is not equal to the assumption that the gen-
ome evolution is neutral. Specifically, a model with a sin-
gle class of genes does not assume neutral evolution. A
single class of genes only implies that all genes are ex-
changed at the same rate, and accordingly, the selection
coefficient S that quantifies the benefit of a single gene
acquisition is the same for all genes. The interpretation
of the pangenome evolutionary trajectory, in this case, is
as follows. Initially, at the root of the tree, all genomes
are identical, and therefore, all genes belong to the core.
In the course of evolution, any gene loss event reduces
the size of the core. In other words, due to the loss
events, genes move from k = n to k < n occurrence, such
that the core can be regarded as a source that diffuses to
the left through gene loss. For short enough evolutionary
times, a substantial fraction of the original core genome
is retained, forming the observed right peak in Fig. 3d.
On average, every time a gene is lost, a gene is gained.
Due to the infinite gene pool assumption, each time a
gene is gained, it is initially a singleton and contributes
to k = 1 abundance. The gained genes form the left peak
that consists of singletons and can be regarded as a
source that diffuses from k = n to k > n occurrence
through strain divergence and speciation.
As shown in the following, to fit the genomic data,

two classes of genes are required. The different classes
evolve under different turnover rates, reflecting different
selective effects of acquisition or deletion of a gene be-
tween the two classes. In technical terms, the deletion
rate β of Eq. 2 is the same for all genes and therefore for
both classes, so that the different loss rates between the
two gene classes are due to the difference in selective ef-
fects. Specifically, fast-evolving genes are associated with
smaller selection coefficient compared to slow-evolving
genes and are exchanged more easily [20]. As shown in
Fig. 3e–g, the U-shaped core-shell-cloud structure of the
gene commonality distribution is obtained, where fast
and slow genes occupy different portions of the core,
shell, and cloud regions, as shown in the inset of Fig. 3g.

Fitting the model to the genomic data
After establishing the analysis strategy using simulated
datasets, we applied the same calculation scheme to the
genomic data. Specifically, we inferred gene turnover rates
from the mean intersections ‹I›k and compared the model
predictions with the empirical gene commonality distribu-
tions. The analysis was performed with an extensive data-
set that consisted of 33 clusters of closely related
prokaryotic genomes (see the “Methods” section).
In accord with the notion of core and accessory genes

[16, 27], analysis of the genomic data shows that at least
two turnover rates are required to fit the data (Fig. 4 and
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Additional file 1: Figs. S1-S6), indicating that genomes
can be roughly divided into slow- (core) and fast-
(accessory) evolving genes. Fitting the genomic data to a
model with three classes of genes did not yield a better
fit, as shown below.

The turnover rate of the fast genes is roughly 10 times
greater than that of the slow genes (see Fig. 5 and Add-
itional file 1: Table S1). In terms of genome evolution,
the fast or slow turnover rates reflect the different aver-
age selective effects associated with gene deletion: losing

Fig. 4 Empirical data and model fits of genome intersection and gene commonality for four genome clusters. The most common species in the
cluster is indicated for each cluster. The panels on the left show the genome intersections, the panels in the middle show the mean genome
intersections, and the panels on the right show the gene commonality (U-shaped distributions). The genomic data are shown by blue circles, and
the model fits are shown by red x’s (genome intersection fit) or purple squares (gene commonality fit). The goodness of fit (R2) is indicated
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a slow-turnover gene is associated with a substantially
greater fitness cost than losing a fast-turnover gene [20].
The fraction of fast-evolving genes varies from as low as
7% up to 40%, apparently reflecting substantial differ-
ences in the pangenome dynamics among prokaryotes
(Fig. 5).
The fits of the model for the E. coli cluster are shown

in Fig. 4. First, we fit the model directly to the gene
commonality distribution, as it is usually done in the
analyses of the U-shaped distributions [5–8]. Although a
good fit to the U-shaped distribution can be obtained
(Fig. 4), the inferred gene turnover rates are underesti-
mated, as indicated by the poor fit obtained for the gen-
ome intersections (Fig. 4). Accordingly, the core genome

size is overestimated by this fit. By contrast, when the
turnover rates are inferred directly from gene intersec-
tions (Fig. 4), the core genome size is estimated accur-
ately but the number of singletons is overestimated
(Fig. 4). This discrepancy is not unique to E. coli and
was observed across the entire analyzed set of genome
clusters (Fig. 6). Specifically, under the IGP-CGS model,
for all genome clusters, the goodness of fit of the model
to mean intersections 〈I〉k was greater than 0.995
(Fig. 6a), and the error in the core genome size was neg-
ligible (Fig. 6b), but the number of singletons was con-
sistently overestimated (Fig. 6c). The fact that the model
overestimates the number of singletons implies that
fewer new genes are gained by evolving prokaryotic

Fig. 5 Inferred model parameters for the 33 prokaryotic clusters, as obtained by fitting the IGP-CGS model to the mean genome intersections.
Fitted model parameters are listed in Additional file 1: Table S1. a Top x-axis: the number of fast-evolving and slow-evolving genes in each cluster
of genomes. The percentage of fast-evolving genes is indicated for each cluster. Bottom x-axis: the ratio between fast and slow gene turnover
rates. b Histogram of the percentage of fast-evolving genes across the 33 genomes clusters

Fig. 6 Comparison of the statistics of the IGP-CGS model fit to the 33 genomic clusters. a Histogram for the goodness of fit R2 to empirical mean
genome intersections 〈I〉k. b Histogram for the error in core genome sizes gN of model fit. The error is calculated as ðgmodel

N − gdataN Þ=gdataN . c
Histogram of the error in model prediction for the number of singletons, as computed from the model mean genome intersections using Eq. 1.
The error is calculated as in b
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genomes than expected from the number of gene losses
inferred directly from genome intersections. This con-
clusion is supported by the direct fit of the model to the
gene commonality distribution (Fig. 4): in this case, gene
loss rates are underestimated, and as a result, the error
shifts from the number of singletons to the core genome
size (Fig. 6). In addition to the mean intersections ‹I›k
and gene commonality gk, we fitted the model to the cu-
mulative gene commonality Jk. The cumulative gene
commonality Jk gives the number of genes that are com-
mon to at most k genomes and is defined as:

Jk ¼
Xk

n¼1
gn ð4Þ

Comparison of the fits using the three different statis-
tics (〈I〉k, gk, and Jk) is shown in Additional file 1: Figs.
S7-S12. Although the error in the number of singletons
is smaller for Jk compared to ‹I›k, the gene turnover rates
are not estimated correctly using this statistic, which is
reflected in a greater error in the estimation of the core
genome (see Additional file 1: Fig. S13).
Finally, we sought to determine the optimal number of

gene classes and to ascertain that the overestimation of
the number of singletons when fitting the IGP-CGS
model to the mean intersections 〈I〉k is not due to our
choice to fit two classes of genes. First, because the
intersection curve Ik as a function of the evolutionary
distance Dk deviates from a straight line in a semi-log
plot, it is evident that more than one class of genes is re-
quired to fit the genomic data. We therefore fitted the
genomic data with two classes of genes and obtained a
goodness of fit of 0.996 or greater. Next, we fitted the
genomic data with three classes of genes and compared
the 3-class fit to the 2-class fit. Although for some gen-
ome clusters the 3-class fit to the mean intersections

was better than the 2-class fit, in all genome clusters, the
error in the estimation of the number of singletons by
the 3-class model was not reduced (see Additional file 1:
Table S2). Specifically, in eight genome clusters, the 3-
class fit was better than the 2-class fit in terms of ad-
justed R2, but in all these cases, the error in the number
of singletons was greater in the three-class fit (see Add-
itional file 1: Table S2). For example, with the three-
class model, the largest improvement in the adjusted
goodness of fit of 0.005 was observed for Corynebacter-
ium glutamicum. The overestimation of the number of
singletons was increased from 962 for the two-class fit
to 1328 in the three-class fit. In three cases (Helicobacter
pylori, Sulfolobus islandicus, and Francisella tularensis)
the goodness of fit of the 3-class model was slightly
higher than that of the 2-class fit; however, the adjusted
goodness of fit was lower such that the additional pa-
rameters of the 3-class model are not justified by the im-
provement. In these three cases, the overestimation of
the number of singletons was greater in the 3-class
model fit (Additional file 1: Table S2). In the remaining
22 genome clusters, an attempt to fit three classes of
genes effectively led to a two-class model: within the fit-
ted parameters, either two out of the three decay con-
stants were identical, or the size of one of the classes
was close to zero.
Last, we used a simulated dataset to demonstrate that

fitting a two-class model to a three-class dataset will not
result in an overestimation of the number of singletons.
Similar to the simulations shown in Fig. 3, we simulated
a dataset using the tree of the E. coli cluster with three
classes of genes under the assumptions of an infinite
gene pool and equal gene gain and gene loss rates. As
shown in Fig. 7, fitting a two-class model to the mean
intersections did not result in overestimation of the
model prediction for the number of singletons.

Fig. 7 Fits of two-class model to three-class simulated dataset. a The mean genome intersections for a three-class simulated dataset and a two-
class model fit. The slow, intermediate, and fast classes in the simulation contained 2250, 1500, and 750 genes, with λ values of 0.005, 0.1, and 2,
respectively. The two-class fit goodness of fit is R2 = 0.99991 with 3730 slow genes and 749 fast genes, with respective λ values of 0.04 and 1.98. b
Gene commonality for the simulated dataset and model prediction. The model prediction for gene commonality is extracted from the mean
genome intersections of a, using Eq. 3
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The exponential decay of genome intersections was
obtained under the IGP-CGS assumptions whereby, on
average, any lost gene is replaced by another gene and
any gained gene is new to the given set of genomes.
Since we ruled out the possibility that fitting a model
with three classes will improve the fit, the overestimation
of the number of singletons implies the breakdown of ei-
ther of these assumptions or both. In other words, either
the genome size is not constant, so that genomes shrink
with time, or gene regain from the external gene pool is
common (the gene pool is, then, finite), or both. Incorp-
orating either a finite gene pool or a varying genome size
into the calculation of genome intersections dramatically
complicates the calculations and is beyond the scope of
this work. Instead, we used simulations to explore separ-
ately the effect of genome size variation (IGP-V(ariable)
GS assumption) and finite gene pool (F(inite)GP-CGS)

and demonstrate for E. coli that a good fit to the gen-
omic data can be achieved with either of these
modifications.
To simulate the evolution of the E. coli pangenome for

a finite gene pool (FGP-CGS) or a varying genome size
(IGP-VGS), we used the same simulation scheme as be-
fore (Fig. 3e–g). A finite gene pool is introduced by lim-
iting the number of genes that are available to the
evolving genomes (see the “Methods” section). The vio-
lations of either of the IGP-CGS assumptions are con-
sidered separately to reduce the dimensionality of the
parameter space and thus to allow realistic computation
times. Given that it is impractical to scan numerically
the entire 6-dimensional parameter spaces of the FGP-
CGS or IGP-VGS models, the model parameters that
were inferred for E. coli under the IGP-CGS assump-
tions were taken as the starting point (Fig. 3e–g,

Fig. 8 Analysis of simulated datasets for a finite gene pool (a, b) and a varying genome size (c, d). a The mean genome intersections for finite
gene pool simulation. The parameters that were used in the simulations are the model parameters inferred under the IGP-CGS assumptions (see
Additional file 1: Table S1). For slow-evolving genes, the pool size was 3 times the number of slow genes, and the fast-evolving gene pool was 9
times the number of fast genes. The IGP-CGS model fits and genomic data are also shown, as indicated in the legend. b Gene commonality
distribution for the finite gene pool simulation, for the same model parameters as in b. c The mean genome intersections for varying genome
size. For slow-evolving genes, the ratio of gain and loss rates is 1.26, whereas for the fast-evolving genes, this ratio is 0.16. d Gene commonality
distribution for varying genome size for the same model parameters as in c
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Additional file 1: Table S1), and only a two-dimensional
parameter space was scanned. For the FGP-CGS simula-
tion, the two parameters were the sizes of the external
gene pools, those for the slow- and fast-evolving genes.
For the IGP-VGS simulation, the two parameters were
the gain rate to loss rate ratios for the slow- and fast-
evolving genes. Two examples for simulated datasets
with genome intersection and gene commonality values
similar to those in E. coli are shown in Fig. 8. Fitting the
IGP-CGS model to the simulated datasets further dem-
onstrated similarities between the simulated and gen-
omic data. As with the genomic dataset, fitting the
model directly to the gene commonality distribution re-
sulted in the underestimation of the gene turnover rates
and the ensuing overestimation of the core genome size
(Fig. 8a, c). Conversely, direct inference of turnover rates
from the genome intersections resulted in the overesti-
mation of the number of singletons (Fig. 8b, d). The dis-
crepancy in the IGP-CGS model predictions, which was
observed both with the simulated and the genomic data-
sets, indicates that violation of either of the model as-
sumptions is a plausible explanation for the
overestimation of the number of singletons by the IGP-
CGS model.

Discussion
The analysis presented here provides a theoretical
framework to quantitatively analyze prokaryotic pangen-
ome evolution and divergence. The analysis highlights
the relation between the mean genome intersection ‹I›k
and the gene commonality gk (Eq. 3). The relation of
Eq. 3 is exact and does not involve any approximation or
assumption. However, the inference of genome intersec-
tion Ik (Eq. 8 below) is performed within several simpli-
fying assumptions. The assumptions of the model are
rooted in the empirical data of comparative genomics
and hence can be considered realistic. The four central
assumptions and the underlying justification can be
summarized as follows:

1) New genes can be acquired only via HGT, whereas
other mechanisms, such as duplication followed by
divergence and de novo gene birth, are disregarded.
Although each of these routes contributes to the
genome dynamics in prokaryotes, reconstructions of
genome evolution indicate the contribution of HGT
is by far the greatest [12, 13].

2) The unit of evolution is one gene, so that
acquisition and deletion of individual gene events
occur independently. This is a simplification
because genes are often transferred in groups, for
example, in integrative and conjugative elements
and other types of genomic islands [28, 29].
Nevertheless, the genomic synteny between related

prokaryotes decays much faster with the
evolutionary distance than gene composition [21,
30], suggesting that the assumption is valid as the
first approximation

3) Gain and loss rates are similar, such that the
genome size is approximately constant in the long
term, or in other words, evolving prokaryotic
genomes are close to equilibrium. The measured
rates of gene loss and gain vary widely [13].
Nevertheless, the equilibrium assumption yields a
good fit to the observed genome size distributions
in clusters of closely related prokaryote genomes
[24], indicating that this assumption is reasonable
when applied to long-term averages. On average,
the selection coefficient associated with gene gain is
positive, resulting in a gain to loss ratio greater than
unity (Fig. 8 and ref. [20]), but this does not violate
the equilibrium assumption because the effect of se-
lection for gene gain is offset by the intrinsic dele-
tion bias [20].

4) All prokaryotic populations have access to an
infinite gene pool, and gene exchange rates are
constant in the course of evolution. An infinite gene
pool can only be an idealization, but the
pangenomes of most bacteria are expansive, orders
of magnitude larger than the size of a typical
genome [1, 13, 31]. Nevertheless, this appears to be
the most shaky of the assumptions underlying the
IGP-CGS model.

In addition to the four central assumptions detailed
above, the model involves several other simplifying as-
sumptions. For example, it is assumed that selection co-
efficients are constant, such that adaptation to ecological
niches [32], fluctuating environments [33–35], and
frequency-dependent selection [36] are ignored. Here,
we examine only assumptions 3 and 4 above. Taking
into account the other assumptions in the further devel-
opment of evolutionary models should be informative
for an improved understanding of the evolution of pro-
karyotes. It should be emphasized that we do not claim
that only violation of assumptions 3 or 4 could explain
the overestimation of the number of singletons by the
IGP-CGS model, and alternative explanations for this
discrepancy are likely to exist.
Although our model produces good fits to genome

intersection and the gene commonality distributions
under the IGP-CGS assumptions, the number of single-
tons is systematically overestimated. It should be
stressed that this overestimation cannot be explained by
mis-annotations of genes, e.g., either underprediction or
over-prediction of poorly conserved, small genes that
comprise the majority of the singletons. Prediction of
more (or fewer) singletons will increase the genome size,
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which will affect the entire calculation, and will not im-
prove the fit. Thus, we hypothesized that the number of
singletons is overestimated due to the violation of one or
both of the IGP-CGS, namely, the infinite external gene
pool and/or the (statistical) equality of the gene gain and
loss rate, that is, the equilibrium state of the evolving
microbial genomes. To test this hypothesis, we generated
and analyzed simulated datasets for either finite gene
pool (FGP-CGS) or varying genome sizes (IGP-VGS),
obtaining results similar to those obtained in the gen-
omic data analysis. However, numerical scanning of the
two-dimensional parameter space for both FGP-CGS
and IGP-VGS models failed to identify a single set of pa-
rameters yielding the best fit (Additional file 1: Fig. S14).
Furthermore, to make the computation feasible, viola-
tions of the IPG-CGS assumptions were introduced one
at a time. Thus, the present analyses do not allow us to
differentiate between the violations of the infinite gene
pool and constant genome size assumptions. Further-
more, it appears likely that different factors are import-
ant in different groups of microbes and that, in some
cases, both assumptions are violated simultaneously. In-
deed, there is empirical evidence of deviations from each
of these assumptions in bacterial evolution. Our previous
analysis performed with the same ATGC dataset has
shown that the evolution of most groups of bacteria was
dominated by gene loss, the rate of which far exceeded
that of gene gain [13]. Given the much higher gene loss
rate in the fast gene class compared to the slow gene
class, due to the weak selection on the fast genes, as
shown here, it can be expected that the fast class is de-
pleted over time. Conceivably, some of the groups of
prokaryotes losing the fast genes are headed towards ex-
tinction, whereas in others, the steady gene loss is, most
likely, compensated by episodes of massive gene gain,
such that on a long enough time scale, the number of
genes is maintained. Thus, the constant genome size as-
sumption appears to be frequently violated. Further-
more, direct measurements of gene regain have shown
conspicuous differences among prokaryotes, such that,
for some bacteria, the pool available for gene acquisition
appeared to be effectively infinite, whereas for others, it
was found to be finite and comparatively small [13].
Comparative genomic analyses demonstrate multiple ac-
quisitions of similar genetic elements for example in Sal-
monella enterica plasmids [37] and Staphylococcus
aureus genetic elements [38]. Accordingly, the infinite
gene pool assumption is, in the least, not universally
valid either.
The breakdown of both assumptions of IGP-CGS

could be framed in terms of the cost of incorporation of
new genes by microbes. In both cases, the number of
gained new genes (as opposed to variants of genes
already represented in a genome) is smaller than that

predicted by the IGP-CGS model, suggesting that the
major factor that restricts the expansion of the pangen-
ome is the capacity to successfully incorporate new
genes, i.e., the HGT barrier [26]. The existence of a sub-
stantial HGT barrier is supported also by experimental
analysis of the assimilation of xenologs of orthologous
genes by bacteria [39]. In these experiments, replace-
ment of an essential E. coli gene by xenologs resulted in
a substantial drop in fitness that was partially alleviated
during the subsequent evolution of the recipient bacteria
in the laboratory. In the course of the long-term evolu-
tion of microbes, the HGT barrier is likely to be broken
episodically as a result of major changes in environmen-
tal conditions when extensive HGT favors survival [13,
40]. Different functional classes of microbial genes show
substantial differences in evolutionary plasticity or, in
other words, are differentially affected by the HGT bar-
rier [20]. Thus, analysis of pangenome dynamics separ-
ately for each class can be expected to reveal the
interplay between the key factors of genome evolution.

Conclusions
Here, we present a theoretical framework for quantita-
tive analysis of the evolutionary dynamics of the gene
frequencies in microbial pangenomes. Specifically, we
infer gene turnover rates from genome intersections and
reconstruct the U-shaped distribution that is observed
for gene commonality for a genomic dataset consisting
of 33 groups of closely related prokaryotic genomes. The
asymmetrical U shape of the gene commonality distribu-
tion is extremely general, effectively, a universal of gen-
ome evolution, being observed for genomes at all
phyletic depths, from a single species to the entirety of
bacteria and archaea [4, 7]. By contrast, the pangenome
size is not a well-defined characteristic, being sensitive
to the number of genomes in a cluster, genome sam-
pling, and the tree depth [27]. It is therefore unclear
what can be considered a “large” or a “small” pangen-
ome, and comparison of the pangenome sizes for differ-
ent organisms is not a straightforward task. Our analysis
implies that, to attain insights into the evolutionary dy-
namics of microbes, it is preferable to measure and com-
pare gene turnover rates that are more robust to the
number and sampling of the analyzed genomes than the
pangenome size. For 25 of the 33 genome clusters we
analyzed, a model with two classes of genes yields a bet-
ter fit of the observed gene commonality distribution
than a model with three classes of genes. Thus, the
genes in prokaryote genomes can be roughly divided
into two categories, fast-evolving and slow-evolving. Fi-
nally, the overestimation of the number of singletons by
the IGP-CGS model indicates that either infinite gene
pool is not a good approximation, or the gene gain lags
behind the loss, or both. In either case, genome
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evolution in prokaryotes is limited by the availability of
genes that can be acquired and retained.

Methods
Model for genome intersections evolution
The evolution of the genome size can be modeled as a
random process, where genes are gained and lost sto-
chastically, with rates P+ and P−, respectively. Accord-
ingly, the dynamics of the number of genes x is given by
the following equation [24]:

dx
dt

¼ Pþ − P − ð5Þ

In the weak mutation limit, the gain and loss rates of
Eq. 5 above, can be written as in Eqs. 1 and 2, where the
fixation probability F is given by the Kimura formula
[41]:

F Sð Þ ¼ S
1 − e − S

ð6Þ

and S is the selection coefficient associated with the ac-
quisition of one gene, wherein principle S can be either
positive or negative. It should be emphasized that here,
only the loss rate is evaluated and that the current ana-
lysis does not allow evaluation of the selection coeffi-
cient S. Disentangling the effects of deletion rate from
those of selection (see Eq. 2) is not trivial. This problem
is addressed in our previous work [42].
For the IGP-CGS model, genome intersection of k ge-

nomes is given by [19]

Ik Dkð Þ ¼ xe − λDk ð7Þ
where the decay constant is given by the per-gene loss
rate λ = P−/x, and Dk is the total evolutionary distance
spanned by those k genomes. Specifically, Dk is given by
the sum of all branch lengths in the phylogenetic tree
that describes the evolutionary relations of the k ge-
nomes. Analyses of the genomic data imply that ge-
nomes are composed of slow- and fast-evolving genes
[21]. Thus:

Ik Dkð Þ ¼ x1e
− λ1Dk þ x2e

− λ2Dk ð8Þ
with x1 and x2 being the average numbers of genes in
each class. Fitting the data to the model requires there-
fore inference of four parameters: x1, x2, λ1, and λ2.
For a cluster of N genomes, there are CN

k subsets of k
genomes, where CN

k denotes the binomial coefficient. To
extract gene commonality from genome intersections
using Eq. 3, we wish to evaluate the mean intersection
for each k, denoted 〈I〉k. The first stage is to obtain all
possible CN

k phylogenetic subtrees that include k ge-
nomes, by pruning the tree of the complete set of N ge-
nomes. Next, the sum of the branch lengths for each k

genomes subtree is evaluated to construct the probabil-
ity density function P(Dk) to observe the sum of branch
lengths between Dk and Dk + dDk. Finally, the mean
intersection 〈I〉k is given by a weighted average over
branch lengths:

Ik ¼
Z

Ik Dkð Þ P Dkð Þ dDk ð9Þ

where Ik(Dk) is given by either Eq. 7 or Eq. 8. Note that
P(Dk) reflects both, the phylogenetic tree topology and
the branch lengths.

Simulation scheme
A cluster of genomes is simulated along a tree, using the
Gillespie simulation scheme [43]. A genome is repre-
sented as a collection of genes, and possible mutations
are either gene gain or gene loss of rates P+ and P−, re-
spectively. The occurrence of mutations therefore fol-
lows a Poisson distribution with parameter a0, which is
given by:

a0 ¼ Pþ þ P − ð10Þ

The waiting time between mutation events τ follows
an exponential distribution with rate parameter a0. At
each simulation, step τ is picked from an exponential
distribution, using:

τ ¼ − ln rð Þ=a0 ð11Þ

where r is a random number drawn from a uniform dis-
tribution between 0 and 1. After determining the waiting
time, it is determined whether a gene is gained or lost at
random, according to P+ and P−. Under the IGP-CGS as-
sumptions, the simulation scheme takes as an input in
addition to the tree two parameters: initial genome size
x and gene loss rate P− (which is under the CGS as-
sumption also determines the gain rate P+).
Empirical genome intersections imply that two gene

turnover rates are required to fit the genomic data (see
Eq. 8). To generate more realistic datasets, genomes
containing two classes of genes, fast- and slow-evolving
genes, are simulated. In addition to the tree, this simula-
tion scheme includes four parameters: x1, x2, and loss
rates for slow- and fast-evolving genes, P −

1 and P −
2 . Ex-

tending the simulation scheme to account for the break-
down of either of the IGP-CGS assumptions will add
two parameters, to a total of six. For the FGP-CGS as-
sumption, the total number of genes that are available to
the evolving genomes is set to a finite number. Fast and
slow genes evolve independently and are assumed to be
drawn from two different pools, such that the two add-
itional parameters are the gene pool sizes, L1 and L2.
Under the IGP-VGS assumption, the gain and loss rates
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are not necessarily equal, which add two additional pa-
rameters, Pþ

1 and Pþ
2 .

Genomic dataset
We used the Alignable Tight Genomic Clusters (ATGC)
database [44] to compile 33 groups of closely related
prokaryotic genome. The dataset includes 32 groups (or
ATGCs) of bacteria and one group of archaea (see Add-
itional file 1: Table S1 for the list of ATGCs analyzed in
this study). The selected ATGCs meet the following cri-
teria: (i) maximum pairwise tree distance is at least 0.1
substitutions per site and (ii) the phylogenetic tree con-
tains more than two clades, such that pairwise tree dis-
tances are centered around more than two typical
values. To allow reasonable computational times,
ATGCs with more than 20 genomes were sampled such
that each ATGC contains at most 20 representative ge-
nomes. Throughout the analysis, phylogenetic trees were
rescaled to compensate for the systematic underestima-
tion of branch lengths that is apparently due to homolo-
gous recombination [19].
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Additional file 1: Table S1. Genome clusters (ATGCs) in the analyzed
dataset and model parameters that were inferred under the IGP-CGS as-
sumptions. Table S2. Comparison of 2-class and 3-class model fits. Good-
ness of fit R2, adjusted goodness of fit Radj2, and the difference between
model prediction for the number of singletons and the actual value Δg1
are listed. Eight cases where the 3-class fit is better than the 2-class fit in
terms of Radj2 are highlighted. In all cases, the error in the 3-class model
prediction for the number of singletons is greater or equal to the error of
the 2-class model prediction. Figure S1. Genome intersections and gene
commonality distribution for the analyzed genomic dataset. The IGP-CGS
model fits are also indicated, see legend of Fig. 4 in the main text. Each
row shows a different cluster, which is indicated in the row heading. Fig-
ures S2-S6. Same as Fig. S1. Figure S7. Genome intersections, gene cu-
mulative commonality and gene commonality distribution for the
analyzed genomic dataset. The IGP-CGS model fits are indicated, as
shown in the upper left panel legend. Figures S8-S12. Same as Fig. S1.
Figure S13. Comparison of the statistics of the IGP-CGS model fit to the
33 genomic clusters, when fitted to mean intersections 〈I〉k, gene com-
monality gk, and gene cumulative commonality Jk. a) Histogram for the
error in core genome sizes gN of model fit. The error is calculated as
gNmodel−gNdata=gNdata. b) Histogram of the error in model prediction
for the number of singletons, as computed from model mean genomes
intersections using Eq. 3. The error is calculated as in panel a. Figure
S14. The similarity of simulated datasets to the genomic data of
ATGC001. Simulations for different pool sizes under the FGP-CGS assump-
tion are shown in panels a-d. Simulations for different gain to loss ratios
under the IGP-VGS assumption are shown in panels e-h. The similarity be-
tween the simulated data is quantified by the error in the number of sin-
gletons (panels a and e), the error in the pangenome size (panels b and
f), a combined measure of the number of singletons and the pangenome
size (panels c and g), and the goodness of fit for the mean intersections
(panels d and h). the error dX is calculated as (Xmodel − Xdata)/Xdata. Con-
tour lines of the optimal combined measure are indicated in panels c
and g. For comparison, the optimal region in terms of the combined
measure is also shown in panels d and h. The parameters that were used
in the simulations that are shown in Fig. 8 of the main text are indicated
by a vertical and a horizontal black lines in all panels.
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