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Abstract

Background: Traditional laboratory model organisms represent a small fraction of the diversity of multicellular life, and
findings in any given experimental model often do not translate to other species. Immunology research in non-
traditional model organisms can be advantageous or even necessary, such as when studying host-pathogen
interactions. However, such research presents multiple challenges, many stemming from an incomplete understanding
of potentially species-specific immune cell types, frequencies, and phenotypes. Identifying and characterizing immune
cells in such organisms is frequently limited by the availability of species-reactive immunophenotyping reagents for
flow cytometry, and insufficient prior knowledge of cell type-defining markers.

Results: Here, we demonstrate the utility of single-cell RNA sequencing (scRNA-Seq) to characterize immune cells for
which traditional experimental tools are limited. Specifically, we used scRNA-Seq to comprehensively define the cellular
diversity of equine peripheral blood mononuclear cells (PBMC) from healthy horses across different breeds, ages, and
sexes. We identified 30 cell type clusters partitioned into five major populations: monocytes/dendritic cells, B cells,
CD3"PRF1* lymphocytes, CD3*PRF1™ lymphocytes, and basophils. Comparative analyses revealed many cell
populations analogous to human PBMC, including transcriptionally heterogeneous monocytes and distinct dendritic
cell subsets (cDC1, cDC2, plasmacytoid DC). Remarkably, we found that a majority of the equine peripheral B cell
compartment is comprised of T-bet™ B cells, an immune cell subpopulation typically associated with chronic infection

and inflammation in human and mouse.

Conclusions: Taken together, our results demonstrate the potential of scRNA-Seq for cellular analyses in non-
traditional model organisms and form the basis for an immune cell atlas of horse peripheral blood.
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Background

Traditional model organisms have been invaluable in
uncovering fundamental biological principles but they
are not without limitations. For example, findings do not
always translate between species, as has been particularly
well described for mouse-human translational studies
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[1]. Additionally, many biological phenomena relevant to
human health and society involve specific animal spe-
cies, such as the circulation of emerging zoonotic patho-
gens in animal reservoirs [2], and the health of
domesticated livestock. As such, a holistic approach to
biology is essential and has been increasingly recognized
by the research community and public health associa-
tions, including the World Health Organization [3-6].
Studying diverse species can prove challenging due to
a dearth of experimental tools available for more
commonly investigated laboratory organisms. In
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immunology, flow cytometry is the traditional technique
for defining cell subpopulations [7, 8]. However, it relies
on a priori knowledge of cell type-defining markers and
highly specific antibodies against those markers [7].
Relative to human and mouse, this knowledge and the
availability of these reagents is limited for many other
species.

Single-cell RNA sequencing (scRNA-Seq) offers an al-
ternative to flow cytometry for defining cell types (and
their functional states) by RNA, rather than protein, ex-
pression patterns. Recent advances in scRNA-Seq tech-
nology have enabled increased throughput and
decreased cost per cell, allowing researchers to process
tens of thousands of cells in a single experiment [9-11].
scRNA-Seq offers many potential advantages for work in
non-traditional model organisms, including (i) it is com-
patible across diverse species without specialized re-
agents, (ii) it does not rely on a priori marker selection
or reagent availability, and (iii) it can be used to identify
novel markers for focused experimentation [12].

In this study, we demonstrate the potential of scRNA-
Seq for discerning and discovering cell types in a non-
traditional model organism, the horse. Equids are agri-
culturally and economically important worldwide and
are animal models for non-infectious immune conditions
such as arthritis, asthma, the immunology of pregnancy,
allergy, and immune-mediated or autoimmune disease
[13-15]. They also host multiple zoonotic diseases in-
cluding Eastern equine encephalitis virus, Hendra virus,
methicillin-resistant Staphylococcus aureus (MRSA), and
Salmonella spp. [16], and serve as models for other in-
fectious diseases including influenza [3] and hepacivirus
[17]. The study of immunologic conditions and infec-
tious diseases in natural hosts is essential to (i) develop
tools to prevent infection of animals with zoonotic dis-
eases, (ii) break the chain of animal-to-human transmis-
sion, (iii) understand immunologic determinants of
protection, clearance, and disease that could translate to
improved understanding of human correlates, and (iv)
improve the health of ecologically and economically im-
portant species.

Current state-of-the-art flow cytometry protocols for
immunophenotyping equine PBMC [18] are unable to
resolve many immune cell subtypes at high resolution.
Here, we applied scRNA-Seq to characterize equine
PBMC at unprecedented cellular resolution, and gener-
ate an immune cell atlas for horse peripheral blood. We
identified 30 cell type clusters comprising major CD3"
lymphocyte, B cell, monocyte/dendritic cell (DC), and
basophil cell populations. Clusters were annotated based
on gene expression signatures, revealing several immune
cell subtypes not previously described in horses. Inter-
species comparisons with human PBMC scRNA-Seq
datasets uncovered conserved blood DC subpopulations
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and identified a spectrum of monocyte cell states similar
to humans. Remarkably, we found that a large portion of
the horse peripheral B cell compartment is comprised of
T-bet™ B cells. Cellular analogs of this population in hu-
man and mouse are associated with chronic infections
[19, 20].

Results

Single-cell RNA-Seq of equine PBMC resolves a diversity
of immune cell types

We performed scRNA-Seq on fresh PBMC collected
from 7 healthy adult horses of different breeds, ages, and
sexes (Table 1). In quality assessments of scRNA-Seq
data processed with standard workflows (10X Genomics
Cell Ranger pipeline, EquCab3.0 reference genome with
Ensembl v95 transcript annotations), we observed unex-
pectedly low numbers of genes detected per cell (Add-
itional file 1: Fig. S1A). Upon inspection of sequence
alignments for select genes, we frequently observed
reads mapped immediately downstream of annotated
transcript regions (Additional file 1: Fig. S1B). This pat-
tern is consistent with incomplete annotation of tran-
script 3" untranslated regions (UTRs; the most frequent
transcript region captured by 10X Chromium 3’ scRNA-
Seq [21]), which is common in non-traditional model or-
ganisms relative to mouse or human reference transcrip-
tomes [22]. We therefore implemented an optimized
data processing workflow that included the End Se-
quence Analysis Toolkit (ESAT) [23], along with add-
itional modifications (Additional file 1: Fig. S2; manually
annotated immunoglobulin genes, quantification strategy
for genes with multiple annotations, details in
“Methods”). This approach significantly increased the
number of genes detected per cell (Additional file 1: Fig.
S1A).

Unsupervised graph-based clustering of 34,677 cells
integrated from the 7 horses resolved 31 clusters
(Fig. 1la). Based on PCA hierarchical clustering and
marker gene expression patterns (Fig. 1b, c), we grouped
all clusters into 5 “major cell groups” CD3"PRF1™ lym-
phocytes, CD3"PRF1* lymphocytes, B cells, monocytes/
dendritic cells (DCs), and basophils (marker gene lists in

Table 1 Characteristics of horse study subjects

Horse Sex Age Breed Cell analyzed
Subject 1 M 6 Warmblood 4614
Subject 2 F 8 Thoroughbred 5639
Subject 3 M 7 Warmblood 5870
Subject 4 M 8 Thoroughbred 4750
Subject 5 M 8 Thoroughbred 4382
Subject 6 F 9 Quarter horse 5199
Subject 7 F 10 Warmblood 4223
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Fig. 1 scRNA-Seq analysis of equine PBMC from 7 horses identifies five major cell groups. a UMAP of equine PBMC (n = 34,677 total cells passing
filter). Points (cells) are colored by cluster membership. Dashed outlines indicate 5 major cell groups. b Gene expression patterns informing major
cell group assignments. Expression values are scaled independently for each plot, ranging from 2.5 to 97.5 percentile of gene expression across
all cells. Gene ID ENSECAG00000000419 is labeled as T Cell Receptor Alpha Chain C Region based on Ensembl/NCBI annotations. ¢ Heatmap of

differentially expressed genes (adjusted p value < 0.05, log, fold-change > 1

Frequency of each major cell group in total PBMC per horse

expressed > 25% of cluster). For each major cell group, 30 cells (columns) were randomly selected from each horse for plotting purposes. d

for each major cell group versus all other major cell groups,

Additional file 2). All major cell groups were represented
at similar proportions across all 7 horses (Fig. 1d). To
characterize equine PBMC at high resolution and estab-
lish a corresponding peripheral blood immune cell atlas,
we independently analyzed scRNA-Seq data for the con-
stituent clusters of each major cell group except baso-
phils (due to low cell counts).

Peripheral equine myeloid cells include heterogeneous
monocytes and distinct dendritic cell subsets with
analogous counterparts in humans

We began with a detailed characterization of the mono-
cyte/dendritic cell clusters (Fig. 2a; clusters 11, 12, 18,
19, 24, 26, 28, and 29; cluster 29 was excluded due to

low transcript (UMI) counts), which were present in
similar frequencies across all horses (Fig. 2b). Hierarch-
ical clustering on integrated PCA data suggested two
distinct subpopulations (Fig. 2c). Supported by differen-
tial gene expression analysis (Additional file 3, Fig. 2d),
we designated clusters 18, 11, 12, and 28 as monocytes
based on expression of the canonical marker gene CD14
[24] (Fig. 2d, e). Similarly, we designated clusters 24, 19,
and 26 as presumptive DCs based on high expression of
MHC 1I antigen presentation genes (DRA, DQA, with
notably elevated relative expression in clusters 19 and
24), and significantly lower CDI14 expression (Fig. 2d, f).
Monocytes were composed of 3 abundant clusters (>
94% of total monocytes, clusters 18, 11, and 12) and 1
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Fig. 2 Equine monocyte/DC major cell group is comprised of diverse cell types including a range of monocyte transcriptional states and distinct
dendritic cell subtypes. a UMAP of monocyte/DC clusters with putative cluster annotations. Cluster 29 (annotated as neutrophils) was excluded
from analysis due to low transcript (UMI) counts. b Frequency of each cell cluster within the monocyte/DC group per horse. ¢ Hierarchical
clustering (integrated PCA dimensions) indicates two subpopulations, putatively annotated as monocytes (clusters 18, 11, 12, 28) and DCs (19, 24,
26). d Heatmap of differentially expressed genes (adjusted p value < 0.05, log, fold-change > 1 for each cluster versus all other clusters, expressed
> 25% of cluster) by cluster. e Dot plot of select differentially expressed genes across monocyte clusters. Dot size is proportional to number of
cells with detectable expression of indicated gene. Dot color intensity indicates average gene expression values scaled across plotted clusters.
*Gene ID ENSECAG00000006663 is labeled FCGR3A/B based on Ensembl/NCBI annotations. f Dot plot of select differentially expressed genes
across DC clusters. *Gene ID ENSECAG00000035431 is labeled SIRPA based on Ensembl/NCBI annotations. Additional details as in e. g Hierarchical
clustering of equine PBMC scRNA-Seq data (monocyte/DC clusters) and human PBMC scRNA-Seq data (monocyte/DC clusters). Median-
normalized average expression values for highly variable human/horse one-to-one orthologs were calculated for each cluster, and clustering was

@ classical mono,
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relatively rare cluster (< 6% of total monocytes, cluster
28). Hierarchical clustering (Fig. 2c) and heat map
(Fig. 2d) visualizations suggest that clusters 18, 11, and
12 exhibit somewhat similar and/or overlapping gene ex-
pression patterns, while cluster 28 is notably transcrip-
tionally distinct. We identified genes with significantly
elevated expression in each cluster (Dataset S3). Of note,
the top ranked (adjusted p value and log, fold-change)
differentially expressed gene in cluster 28 is ENSE
CAGO00000006663, annotated as FCGR3A/B or CDI6, a
canonical marker for non-classical ~monocytes
(CD14'°CD16" by flow cytometry) in human PBMC
[25]. Clusters 18, 11, and 12 demonstrate varying expres-
sion of genes associated with classical monocytes
(CD14"CD16™ in humans, Ly6C™CD44" in mice) and/

or intermediate monocytes (CD14""CD16" in humans),
including CD14, CD44, SELL, and the MHC II compo-
nents DRA and DQA (Fig. 2e). Additional genes with sig-
nificantly elevated expression levels in cluster 28 include
NR4A1 (transcription factor necessary for differentiation
of non-classical monocytes in mice) [26], CX3CRI (che-
mokine receptor characteristic of non-classical mono-
cytes in humans and mice) [27, 28], and HES4 (target of
NOTCH signaling implicated in non-classical monocyte
generation) [29] (Fig. 2e).

Presumptive DC clusters (24, 19, 26) were also ana-
lyzed by differential gene expression analysis (Add-
itional file 5). Differentially expressed genes in cluster 24
included CLEC9A, CADM1I, and BTLA (Fig. 2f, Add-
itional file 5), all of which are immunophenotyping



Patel et al. BMC Biology (2021) 19:13

markers for ¢cDC1 in humans and mice [30] (in mice,
CLEC9A is also expressed on plasmacytoid DC [31]).
Genes with significantly enriched expression in cluster
19 included FCERIA and SIRPA (Fig. 2f, Additional file 5),
which are flow cytometric markers of cDC2 in humans
and mice (Reviewed in [30]). DC subsets are also defined
by the transcription factors that regulate their develop-
ment and function, particularly by relative levels of IRF4
and IRF8 [30]. Although IRF4 transcripts were sparsely
detected across all DC clusters (likely due to the incom-
plete sampling depth characteristic of droplet scRNA-
Seq), IRF8 was expressed at high levels in cluster 24
(cDC1) and significantly lower levels in cluster 19
(cDC2). Cluster 24 also exhibited high expression of
BATF3, another characteristic transcription factor of
c¢DC1 [32]. In addition, top ranked differentially
expressed genes in cluster 26 included IRF7 and TCF4
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(E2-2) (Fig. 2f, Additional file 5), both of which are fun-
damental to plasmacytoid DC (pDC) development and
function [33, 34].

To further support our cell type annotations and as-
sess potential differences in monocyte/DC subsets be-
tween horses and humans, we performed cross-species
hierarchical clustering with a human PBMC public refer-
ence scRNA-Seq data set (Additional file 1: Fig. S3A-B,
Fig. 2g). Equine clusters annotated as classical mono-
cytes clustered first with each other and next with hu-
man classical monocytes (defined by scRNA-Seq gene
expression and confirmed with corresponding CD14/
CD16 immunophenotyping feature barcoding data).
Equine non-classical monocytes clustered with human
intermediate and non-classical monocytes. Interestingly,
each DC subgroup clustered by cell type rather than spe-
cies, indicating strong similarities of gene expression
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patterns between horse and human. Taken together,
these results suggest that equine monocyte populations
are analogous to those described in humans and mice.
Furthermore, they support three distinct DC subpopula-
tions in horse peripheral blood that correspond with
c¢DC1 (cluster 24), cDC2 (cluster 19), and pDC (cluster
26) in these species.

The equine peripheral B cell compartment includes a
large proportion of T-bet™ B cells

We next performed an in-depth analysis of B cell clus-
ters, as defined by their expression of MS4A1 (CD20),
CD79A, MHC 1I components (i.e, DRA), and/or im-
munoglobulin transcripts (Figs. 1a and 3a; clusters 9, 15,
0, 22, 25, 27, and 30; cluster 25 was excluded due to low
transcript (UMI) counts, Additional file 1: Fig. S4A). We
observed six B cell clusters across all seven horses
(Fig. 3b); this heterogeneity was somewhat surprising
given our observation of only three B cell clusters (naive,
memory, and antibody secreting) in human PBMC
scRNA-Seq data (Additional file 1: Fig. S3A-B and add-
itional datasets, data not shown). Hierarchical clustering
on integrated PCA data suggested that clusters 27 and
30 were notably dissimilar from other B cell clusters
(Fig. 3c). We annotated cluster 27 as antibody-secreting
cells (ASCs; expressing PRDM1/BLIMP-1, XBPI1, IRF4,
high levels of immunoglobulin transcripts), and cluster
30 as proliferating B cells (numerous G2/M associated
genes including PCNA, TOP2A, and UBE2C) (Fig. 3c-e,
Additional file 6). Of note, ASCs, which consistently ex-
hibited high expression of a single immunoglobulin
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isotype per cell, demonstrated different isotype frequen-
cies in different horses, perhaps indicative of distinct
subclinical immune challenges (Additional file 1: Fig.
S4B).

For the remaining B cell clusters, we noted the re-
stricted expression of several transcription factors associ-
ated with immune function (Fig. 3e). Consistent with
hierarchical clustering (Fig. 3c), these results further sug-
gest that B cells in clusters 9 and 15 (expressing tran-
scription factors ID3, HIFIA and MEF2C) employ a
different gene regulatory program than B cells in clusters
0 and 22 (defined by specific expression of TBX21/T-
bet, as well as elevated expression of POU2F2/0OCT-2)
(Fig. 3e). Based on specific expression of IGHD tran-
scripts and expression of IGHM transcripts, we anno-
tated cluster 9 as naive B cells (Fig. 3f). Relatedly, we
annotated cluster 15 as likely memory B cells based on a
similar gene expression signature to naive B cells (cluster
9), but with the expression of class-switched isotype
transcripts (IGHG1, IGHG3, IGHGS, IGHA), and the ab-
sence of IGHD transcripts (Fig. 3f). These cells are also
defined by expression of ZBTB20, a transcription factor
associated with antigen-experienced B cells (isotype-
switched memory, germinal center, plasma cells) in mice
[35], but they lack appreciable expression of plasma cell
transcription factors such as PRDMI/BLIMP-1 and
XBPI (Fig. 3e). The TBX21/T-bet" B cells in clusters 0
and 22 exhibited diverse isotype transcript expression
patterns, which included both IGHM and class-switched
isotypes (IGHG1, IGHG3, and IGHG6, most pronounced
in cluster 22). With sequence data restricted to 3’
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transcript regions (i.e., without coverage of variable re-
gion/constant region exon-exon junction), it was not
possible to infer how these RNA expression patterns re-
late to functional/productive immunoglobulin protein
expression.

In cross-species hierarchical clustering for equine and
human B cells, naive, memory, and ASCs clustered by
cell type before species (Fig. 3g, Additional file 1: Fig.
S3A-B). However, the equine T-bet" B cells (clusters 0O
and 22) appeared on a distinct branch of the clustering
dendrogram. These results support our annotation of
equine naive and memory B cell populations and suggest
that the T-bet” B cell clusters, which include the most
abundant B cell cluster in horse peripheral blood, do not
have a corresponding B cell population in PBMC from
healthy humans (N = 2).
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Equine T-bet* B cells share gene expression features with
human T-bet™ B cells and can be identified in equine
PBMC by flow cytometry

In humans, T-bet” B cells have been described as “atyp-
ical memory B cells,” appearing in the peripheral blood
during chronic infection and/or inflammation [20, 36].
Although specific markers and/or gene expression pat-
terns vary in different datasets, these cells are often
found to express ITGAM (CD11b) and ITGAX (CD11c),
genes that modulate BCR signaling (including FCRL4,
FGR, and HCK) [37-41], and genes associated with ger-
minal center B cells such as AICDA (encoding
activation-induced cytidine deaminase) and APEXI [19,
42]. We assessed expression of several of these charac-
teristic genes, and observed patterns consistent with
multiple reports in humans (Fig. 4a). Among B cells,
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Fig. 5 The CD3"PRF1™" clusters contain various cell types with different gene expression patterns characteristic of cytotoxic lymphocyte function.
Clusters within the CD3*PRF1* lymphocyte major cell group was further analyzed and annotated by differential gene expression. a UMAP subset
of CD3"PRF1* lymphocyte clusters (left) and of re-clustering analysis with putative cluster annotations (right). Selected axis ranges excluded < 5
cells in CD3"PRF1* group from UMAP subset plot. b Frequency of each cell cluster within the CD3"PRF1* lymphocyte group per horse. ¢
Hierarchical clustering (integrated PCA dimensions) of CD3"PRF1" lymphocyte major cell group. d Heatmap of differentially expressed genes
(adjusted p value < 0.05, log, fold-change > 0.58 for each cluster versus all other clusters, expressed > 25% of cluster). e Dot plot of select genes
associated with cytotoxic lymphocyte populations differentially expressed across CD3*PRF1* lymphocyte clusters. Dot size is proportional to
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ITGAM (CD11b) expression was restricted to clusters 0
and 22. Although sampling for ITGAX (CD1lc) and
ENSECAG00000031055 (annotated as CR2/CD21) was
insufficient for differential expression testing, we de-
tected ITGAX (CD11c)-positive cells in T-bet" clusters 0
and 22 (Fig. 4a). Moreover, we detected significantly ele-
vated expression of FCLR4, FGR, and HCK in these clus-
ters (Fig. 4a, Additional file 6).

We next confirmed T-bet protein expression in these
cells by flow cytometry. Within CD3"CD14 Panlg® B
cells (Additional file 1: Fig. S5), we detected an abundant
CD11b" T-bet" population (Fig. 4b) that did not express
surface CD21 (CR2) or CD23 (FCER2) (Fig. 4c). T-bet
and CD11b expression were not detected in other B cell
gates. We also assessed surface isotype usage of T-bet" B
cells by flow cytometry; 51+ 18% T-bet™ B cells were
IgM™, 23 + 12% were IgG1*, and 24 + 8% expressed nei-
ther IgG1 nor IgM (Fig. 4d, e). It is unclear whether
IgM™ T-bet* B cells reflect an antigen-inexperienced
naive subset, a recently activated subset, or an IgM"
memory cell subset. By flow cytometry, T-bet” B cells
comprised 44 +17% of total B cells; these frequencies
were correlated with, but were consistently lower than
frequencies from scRNA-Seq data (Fig. 4f). These results
validate the existence of a novel population of T-bet” B
cells initially identified by scRNA-Seq analysis, which
shares similarities with human T-bet” “atypical memory
B cells.”

CD3*PRF1™ clusters include lymphocytes with diverse
cytotoxic gene expression patterns

Initial examination of CD3"PRF1" major cell group sug-
gested heterogeneous and overlapping cell populations.
Transcriptional profiling studies of human and mouse
cells often describe challenges in distinguishing cytotoxic
lymphocyte subpopulations, with memory af CD8" T
cells, NK cells, NKT cells, and y§ T cells exhibiting con-
siderable overlap in gene expression patterns [43-47].
Our data suggest similar overlap exists among equine
cytotoxic lymphocyte subpopulations. To improve reso-
lution of potentially distinct cell types, we extracted and
re-clustered data from the CD3"PRF1" group independ-
ently of the other major cell groups. While clustering as-
signments were generally consistent with the initial
analysis (Additional file 1: Fig. S6A), independent re-
clustering resulted in a total of 9 high-resolution clusters
(Fig. 5a, designated with a PRF1 positive, “pp” prefix),
which were represented at similar frequencies across all
horses examined (Fig. 5b). All clusters were character-
ized by expression of the cytotoxic effector PRFI and
CTSW, a cathepsin whose expression is associated with
cytotoxic capacity [48] (Fig. 1b). Although overlap in
gene expression across clusters remained apparent, hier-
archical clustering partitioned the major cell group into
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at least three distinct transcriptional programs (Fig. 5c,
d). Although all clusters expressed high levels of CD3
transcripts (CD3D, CD3E, CD3G, Additional file 1: Fig.
S6B), based on differential gene expression (Add-
itional file 8), CD3"PRFI" cells likely include both cyto-
toxic T cells and NK cells.

We annotated clusters ppl, pp2, pp4, and pp7 as “anti-
gen-experienced” or “non-naive” T cells. Of note, we ob-
served both CD8A* (ppl, pp7) and CD4" (pp2, pp4)
clusters (Additional file 1: Fig. S6C), which appear to
share common cytotoxic gene expression patterns. Clus-
ters ppl, pp2, and pp4 exhibited features more consist-
ent with CD8" T central memory cells in humans
(GZMK/GZMM protein expression, absence of GZMA
protein), whereas cluster pp7 exhibited features more
consistent with CD8" T effector memory cells (GZMK/
GZMM/GZMA protein expression) [49].

We annotated cluster pp5 as cytotoxic y§ T cells
(Fig. 5a, d, e), based on significantly elevated expression
of TRDC (TCR delta chain), and lower levels of TRAC,
TRBCI, and TRBC?2 relative to other cytotoxic lympho-
cyte clusters (Additional file 1: Fig. S6D). Interestingly,
this cluster demonstrated high and rather specific ex-
pression of several genes associated with cytotoxicity, in-
cluding GNLY and KLRFI. These results support the
existence of equine yd T cells, which have not been de-
finitively characterized. Moreover, these cells might em-
ploy unique cytolytic mechanisms compared to other
equine cytotoxic lymphocytes.

The remaining CD3"PRFI* clusters (clusters pp0, pp3,
pp6, and pp8) exhibited gene expression patterns con-
sistent with both cytotoxic T cells and NK cells. All clus-
ters demonstrated high expression of TCR complex
components, including CD3D, CD3E, CD3G, TCR alpha
chain (TRAC, ENSECAG00000000419), and TCR beta
chain (TRBCI, ENSECAG00000033316; TRBC2, ENSE
CAG00000030258) (Additional file 1: Fig. S6B, D). How-
ever, all clusters also displayed expression of genes asso-
ciated with NK cell function, including FCGR3A/B
(CD16, employed by NK cells for antibody-dependent
cellular cytotoxicity), and ZNF683 (HOBIT) (Fig. 5e).
ZNF683 is a transcription factor highly expressed by hu-
man NK cells [50], used as a marker for equine NK cells
by RT-PCR [51], and described in human cytotoxic T
cell subsets [52]. We annotated cluster pp8 as NK cells
based on expression of ENSECAG00000031528 (anno-
tated as KLRD1/CD94), which encodes the cell surface
lectin central to NKG2 functions (Fig. 5e). This cluster
also exhibited specific expression (within CD3"PRFI*
clusters) of FCERIG and CD247, both of which are im-
portant for NK cell activation signal transduction [53].
Additionally, this putative NK cell cluster exhibited di-
minished or absent expression of CD2 and CDS35, genes
frequently used as T cell markers in humans [54]
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(Fig. 5e). Of note, multiple descriptions of equine NK
cells by flow cytometry or immunohistochemistry have
purposefully excluded CD3" cells [55-57]. However,
consistent with scRNA-Seq, our flow cytometric analysis
identified a well-defined CD3*CD16" lymphocyte popu-
lation (Additional file 1: Fig. S7), which could corres-
pond to cluster pp8. Given their expression of TCR
transcripts, it remains unclear whether these cells have
the capacity to respond to specific antigen presented by
traditional MHC I or MHC 1L

Although clusters pp0, pp3, and pp6 share gene ex-
pression patterns consistent with both cytotoxic T cells
and NK cells, the absence of definitive marker genes
and/or genes associated with NK cell-restricted func-
tions made it challenging to annotate these similar clus-
ters. Based on the overlapping gene expression programs
described in cytotoxic lymphocytes in better character-
ized species, we suspect these clusters could include an
additional type of CD8" cytotoxic T cells, semi-invariant
TCR cytotoxic T cells (e.g., mucosal-associated invariant
T cells, NKT cells), and/or an additional type of NK cell.
The latter possibility is further supported by cross-
species comparison to human cytotoxic lymphocytes

(Fig. 5f). Alternatively, these clusters may represent a
novel type of cytotoxic lymphocyte unique to horses.

CD3"PRF1~ clusters include naive T cells and
heterogeneous CD4* T cell populations

As for the CD3"PRF1" major cell group, we performed
independent re-clustering on cells in the CD3"PRF1~
group. While generally consistent with initial cluster as-
signments (Additional file 1: Fig. S8A), re-clustering re-
sulted in the resolution of several previously
unrecognized populations, including a relatively rare
group of T cells with high levels of interferon-stimulated
gene (ISG) expression (Fig. 6a, Fig. S8B-C). In sum, inde-
pendent re-clustering resulted in 16 clusters (Fig. 6a,
designated with a PRF1 negative, “pn” prefix), which
were represented at similar frequencies across all horses
examined (Fig. 6b). These subpopulations were the most
challenging to effectively annotate, due to the relatively
subtle transcriptional differences detected between most
clusters. In our experience, resting T cell populations
can be difficult to distinguish by droplet microfluidics
scRNA-Seq data. Despite these limitations, we were able
to make several observations regarding the constituent T
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cell clusters. First, we distinguished naive T cells (clus-
ters pn0, pn3, pn5, and pnll) based on elevated expres-
sion of CCR7, SELL (L-selectin), and the LEFI
transcription factor (Fig. 6¢). Naive T cells could be fur-
ther partitioned into CD4" (clusters pn0, pn3, pnll, not
significant by differential gene expression) and CD8*
(cluster pn5) subpopulations (Fig. 6¢). We also observed
two clusters (clusters pn7, pnl2) with minimal detect-
able CD4, CD8A, or CD8B expression. Of note, cluster
pnl2 exhibited specific expression of CD200, as well as a
distinct transcriptional program that includes genes as-
sociated with cytotoxicity (NKG7, CTSW, Add-
itional file 9); it is unclear if this cluster may represent a
previously undescribed CD4 CD8™ non-naive T cell sub-
set in horses. We annotated cluster pnl4 as proliferating
T cells based on significantly elevated expression of nu-
merous cell cycle genes (Additional file 9). Cluster pnl5

(“T ISG"”) showed a transcriptional program consistent
with a type I and/or type II interferon response (Add-
itional file 1: Fig. S8B-C). Despite no clinical or labora-
tory indications of active infection, this T ISGM
population was detected in all horses (Fig. 6b).

Although most of the remaining clusters (many of
which are likely antigen experienced or “non-naive”) ex-
hibited significant gene expression differences, we were
not able to confidently assign clusters to T cell subsets
traditionally defined by flow cytometry (e.g., memory
Thl, memory Th2, memory Thl7, regulatory T,
Additional file 9).

High-resolution landscape of equine peripheral blood
mononuclear cells

Given the improved resolution and novel cell popula-
tions identified by scRNA-Seq, we grouped annotated
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cell clusters into summary populations and calculated
“reference ranges” for their frequency in healthy horses
(Fig. 7a). Furthermore, populations that can be defined
by flow cytometry gating [18] (Additional file 1: Fig. S7)
were compared to corresponding scRNA-Seq clusters
(grouped as indicated, Fig. 7b). Cell frequencies deter-
mined by scRNA-Seq were strongly correlated with fre-
quencies determined by flow cytometry (r=0.92 for
indicated populations examined; Fig. 7b). We consist-
ently measured higher frequencies of B cells by scRNA-
Seq, which suggests that current flow cytometry defini-
tions (i.e, Panlg’) based on available equine-reactive
antibodies might not capture these cell populations
comprehensively. These results demonstrate that our
scRNA-Seq cell cluster annotations are consistent with
state-of-the-art flow cytometry methods, but can resolve
cell populations at much higher resolution and
sensitivity.

Discussion

Here, we used scRNA-Seq to define the cellular land-
scape of equine peripheral blood immune cells at unpre-
cedented resolution. Combining supervised annotation
based on prior knowledge and comparative cross-species
clustering, we identified multiple cell types with im-
munologically relevant gene expression patterns. Many
of these cell types have not been previously described in
horse peripheral blood. Cross-species analyses demon-
strated that many equine immune cell subpopulations
have corresponding populations identifiable in humans.
However, we also identified immune cell populations
(e.g, T-bet" B cells, discussed below) absent from
healthy, steady-state human peripheral blood.

Our analysis of the monocyte/DC major cell group re-
vealed cellular heterogeneity and subpopulations consist-
ent with other species. Monocyte subsets, which are
often categorized as classical, intermediate, and non-
classical (based on surface expression of CDI14 and
CD16 in humans [25]), have been described as generally
conserved across mammalian species [58]. Indeed, our
results support the existence of similar monocyte subsets
in horse and human peripheral blood. These data also
include potential novel surface markers (e.g., CD8A for
non-classical monocytes) for improved immunopheno-
typing by flow cytometry, though RNA transcript levels
may not necessarily correspond with surface protein ex-
pression. We also identified three dendritic cell clusters,
with gene expression consistent with the ¢cDC1, ¢DC2,
and pDC subsets described in humans [30] and mice
[59]. Previous studies of equine DCs relied on
monocyte-derived DCs in vitro [60—62]. Recently, Zieg-
ler et al. identified DCs in equine peripheral blood based
on FLT3L binding as detected by flow cytometry [63].
Guided by marker expression in other species, they
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proposed defining three putative DC subsets as ¢DCl1
(FIt3*CD4 CD13*CD14°¥CD172a CADM-1*"MHC  I1"&h),
cDC2 (Flt3*CD4 CD13 CD14°*CD172a* CADM-1"*MHC
11", and pDC (FIt3*CD4 CD13 CD14 CD172aCADM-
1"MHC II'¥). With the exception of CD13 (ANPEP, not de-
tected in our scRNA-Seq data), RNA transcript expression
for these surface markers in DC clusters was entirely consist-
ent with these definitions. Additional experimental character-
izations are necessary to definitively assign functions to these
different subsets, each of which is likely to play a critical role
in equine immunity.

Our analysis also revealed previously undescribed and
unexpected cell populations. Within the B cell compart-
ment, in addition to naive, memory, and ASC clusters,
we detected two B cell clusters characterized by T-bet
(TBX21) expression. These were the most abundant B
cell clusters across all seven horses under investigation.
In contrast, corresponding T-bet" B cells were not ob-
served in healthy human PBMC scRNA-Seq data. In
mice, T-bet" B cells have been shown to be important
for antiviral humoral immunity [36, 64, 65]. In humans,
T-bet™ B cells have been detected in peripheral blood in
a variety of chronic inflammatory contexts including sys-
temic lupus erythematosus [66, 67], chronic malaria ex-
posure [68, 69], and chronic viral infection [19, 42, 70].
Although a universal definition and function for these
cells remains elusive, T-bet™ B cells are often classified
as atypical memory B cells and, at least in some con-
texts, are thought to arise from repetitive BCR stimula-
tion [20]. Equine T-bet" B cells share many features
with the atypical memory B cell populations described in
humans, including enriched expression of genes which
modulate BCR signaling [40], and genes characteristic of
germinal center B cells [19]. If these cells are elicited by
chronic antigenic stimulation, it is plausible that chronic
exposure to numerous pathogens common in standard
boarding conditions (e.g., equine alpha and gamma her-
pesviruses, influenza, rhinitis viruses, hepacivirus, parvo-
virus, coronavirus) could expand this population. Horses
in the northeastern USA are also frequently exposed to
Borrelia burgdorferi (agent of Lyme disease) [71] and
Sarcocystis neurona (agent of equine protozoal myeloen-
cephalitis) [72] and are continuously infested with or re-
exposed to gastrointestinal nematodes [73]. The horses
in this study did not show signs of active infection or in-
flammation, as they all had normal complete blood
count, serum amyloid A, iron indices, and globulins.
Moreover, the surprisingly high frequency of these T-
bet” B cells suggests that they might provide important
functions in the sustained immune responses to such
pathogens. The impact of pathogen exposure on the
genesis of this B cell population might be further ex-
plored by experiments in foals and/or in pathogen-free
facilities. Additionally, horses could represent a useful
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model organism in which to study this unique B cell
population further, given their abundant frequency and
ready accessibility of large amounts of blood and other
tissues, such as lymph nodes.

scRNA-Seq is molecularly compatible with presumably
any animal species, as most droplet microfluidics
scRNA-Seq platforms select mRNAs for barcoding and
downstream sequencing based on polyA tails, a feature
common across metazoans. Additional requirements for
scRNA-Seq analysis include a genome (or at minimum,
transcriptome) sequence to which reads are mapped,
and gene/transcript annotations against which mapped
reads can be quantified. Should transcriptome annota-
tions be insufficient for robust scRNA-Seq analysis, as
may be the case for less commonly studied organisms,
read assignment/quantification strategies can be modi-
fied with specialized software tools (e.g., ESAT [23], as
implemented here) and/or annotations can be supple-
mented/replaced with custom annotations derived from
bulk RNA-Seq data. Interpretation of scRNA-Seq results
can be greatly facilitated by gene/transcript annotations
with comprehensive ortholog annotations for multiple
species, but this is not a requirement. Without the need
for species-specific reagents, and with a constantly grow-
ing catalog of species with sequenced and annotated ge-
nomes, we anticipate that scRNA-Seq will be an
increasingly useful research tool for non-traditional
model organisms.

Despite the many insights gained from our PBMC ana-
lyses, scRNA-Seq is not without limitations, particularly
for characterizing cell mixtures from diverse animals. In
the present study, defining subpopulations with unsuper-
vised clustering methods was reasonably straightforward,
although assigning putative cell types to each cluster
presented challenges. Ideally, automated cell type classi-
fication based on external datasets and/or prior know-
ledge could minimize biases introduced by supervised
annotation [74, 75]. Recently developed scRNA-Seq data
integration and cluster annotation tools have begun to
implement this functionality [76—78]. We made attempts
to apply several of these strategies in comparing equine
PBMC to human PBMC, but observed generally poor
performance, which we attributed to insufficient inter-
species ortholog annotations (data not shown). Instead,
we adopted a supervised approach based on prior know-
ledge of human and mouse immune cells to assign likely
cell types. We therefore emphasize that our presumptive
cell type annotations are not definitive and ultimately re-
quire experimental validation by complementary
methods, as we pursued with flow cytometry for T-bet"
B cells (Fig. 4). Furthermore, for many clusters, most
notably in the CD3'PRF1™ lymphocytes major cell
group, we were unable to confidently assign cell types
due to limited detection of informative differentially
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expressed genes. This could be a result of relatively low
transcript sampling depth, and/or discrepancies in
mRNA and corresponding protein expression by which
T cell subsets have been previously defined. Many of
these issues are likely to be mitigated in the future by
perennially improving genome and ortholog annotations,
scRNA-Seq methodologies with increased per cell sam-
pling depth, and novel software tools for intra- and in-
terspecies data analyses.

Conclusions

Our study establishes a cellular atlas of equine PBMC in
healthy horses across different breeds, ages, and sexes.
Many of the cell populations identified have analogous
counterparts in human PBMC, including monocyte and
dendritic cell subsets. A majority of the equine periph-
eral B cell compartment is comprised of T-bet" B cells, a
subpopulation that has been associated with inflamma-
tion and infection in other species. Taken together, these
results demonstrate proof-of-concept for characterizing
complex cell populations in non-traditional model or-
ganisms by scRNA-Seq.

Methods

Research subjects and cells

Horses were 3 mares and 4 geldings, 6 to 10 (mean 7.9)
years old, comprised of 3 Warmbloods, 3 Thorough-
breds, and one Quarter Horse. Horses were healthy by
physical examination, serum biochemistry (including
globulins and iron indices), complete blood count, fi-
brinogen (by heat precipitation method), and serum
amyloid A. Samples were processed at the New York
State Animal Health Diagnostic Center on automated
analyzers ADVIA 2120i (Siemens Healthcare Diagnostics
Inc., Tarrytown, NJ, USA) for hematology and Cobas
C501 (Roche Diagnostics, Indianapolis, IN, USA) for
biochemistry. Subjects 6 and 7 had mildly elevated fi-
brinogen (400 mg/dL, reference interval <200 mg/dL)
with all other parameters within normal limits, including
serum amyloid A <5 pg/ml (reference interval 0-8 pg/
ml). Horses were maintained in stalls with partial days
spent in pasture (7 =4) or on pasture alone (# =3) and
had free access to grass or grass hay. All horses received
annual core vaccinations (Eastern and Western Equine
Encephalitis, West Nile Virus, Tetanus and Rabies) and
at least biannual deworming (products varied). Blood
samples were obtained in the morning (8—9 am), at least
16 h after the last grain meal. Subject 1 was sampled in
August, Subject 3 in September, and the remaining sub-
jects in November, all in 2018.

Approximately 50 mL of blood was collected from
each horse by standard jugular venipuncture. Immedi-
ately following collection, PBMC were isolated by Ficoll
gradient centrifugation, as previously described [18].
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Residual erythrocytes were removed by ammonium
chloride lysis. All studies were conducted under approval
of Cornell University Institutional Animal Care and Use
Committee (#2014-0024).

Single-cell RNA-Seq

Within 1 h of isolation, fresh PBMC were processed for
scRNA-Seq on the 10X Genomics Chromium platform
(10X Genomics). PBMC collection and scRNA-Seq were
performed in three independent batches (Batch 1: Sub-
ject 1, Batch 2: Subject 3, Batch 3: Subjects 2, 4, 5, 6, 7).
For each PBMC sample, 9000 cells were loaded to a sin-
gle lane on the 10X Genomics Chromium instrument.
scRNA-Seq libraries were prepared with the 10X Gen-
omics Chromium Single Cell 3" Reagent Kit (v2), ac-
cording to the manufacturer’s instructions. Libraries
were pooled and sequenced on the Illumina NextSeq
500 in paired-end configuration (Read 1, cell barcode:
26 nt; Read 2, transcript: 98 nt) to a target read depth of
approximately 35,000 paired-end reads per cell.

scRNA-Seq data processing

scRNA-Seq data are available in the NCBI GEO reposi-
tory, accession number GSE148416 [79]. Analysis R code
is available on GitHub, BradRosenbergLab/equinepbmc
[80].

Reference genome and transcript annotations

The EquCab3.0 reference genome [81] was used in all
analyses. Reference transcript annotations (Ensembl v95)
were supplemented by manual annotation of the im-
munoglobulin heavy-chain and light-chain loci as de-
scribed by Wagner, et al. (Additional file 7, [82]).

Read mapping and quantification

Reads were assigned to cell barcodes, mapped, and
quantified per gene using the Cell Ranger workflow (v
3.0.1, 10X Genomics) with default parameters (“standard
workflow”). In our optimized workflow, BAM files gen-
erated by Cell Ranger were reformatted (appending cel-
lular barcode and UMI sequence to alignment read
names) and were input to the End Sequence Analysis
Toolkit (ESAT [23];). Briefly, ESAT evaluates reads
mapped immediately downstream of annotated genes for
potential quantification with the adjacent gene, an ap-
proach particularly relevant to 3" scRNA-Seq data with
reference transcriptomes with incomplete 3'UTR anno-
tations. To eliminate ambiguous read assignments due
to “overlapping genes” (i.e., exons from two different
genes on + and — strands sharing the same genomic co-
ordinates), the immunoglobulin-supplemented reference
transcriptome (Ensembl v95) was additionally modified
to remove overlapping exon intervals on opposite
strands. Reformatted Cell Ranger BAM files were
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processed through ESAT in two rounds. First, ESAT was
run (-wExt 2500) with the modified transcriptome refer-
ence and set to ignore any duplicated genes. Next, to re-
cover quantification of genes duplicated in the Ensembl
v95 reference (1 =185 duplicated genes), ESAT was run
(-wExt 2500) a second time with a filtered reference con-
taining only duplicated genes; resulting read counts were
divided across gene duplications and appended to the
initial gene x cell count matrix.

Doublet removal
Putative “doublet” cell barcodes were identified and re-
moved from downstream analyses with the DoubletDe-
tection tool [83].

scRNA-Seq data analysis—equine PBMC
Gene-cell count matrices processed in the above work-
flow were analyzed in Seurat (v3.1.0, [76, 77]) as follows.

Filtering, normalization, and data integration

Data were filtered to exclude genes detected in less than
3 cells (per subject), to exclude cells with less than 750
UMIs, and to exclude cells with greater than 5% UMIs
assigned to mitochondrial genes (e.g., dead or dying
cells). Gene-cell count matrices were independently nor-
malized with SCTransform [84], and the top 5500 most
variable genes (variance-stabilizing transformation) were
selected for each subject. To minimize subject- and/or
batch-specific effects, datasets from all subjects were in-
tegrated on the first 40 canonical correlation compo-
nents identified on the union of highly variable genes
identified per subject. Immunoglobulin heavy-chain and
light-chain genes were excluded from integration and
clustering analysis.

Unsupervised graph-based clustering

Dimensionality reduction of the integrated dataset was
performed by principal component analysis (PCA). Un-
supervised graph-based clustering (smart local moving
algorithm [85], resolution 1.2) was performed on the
first 25 principal components (selected by Scree plot
visualization). Data annotated with corresponding clus-
ters were visualized by Uniform manifold approximation
and projection (UMAP; n.dims: 25, n.neighbors: 75, co-
sine metric, min.dist: 0.6) [86].

To better resolve putative subpopulations in the CD3"
lymphocyte compartments (CD3"PRF1* and CD3"PRF1~
major cell groups), cells from these groups were inde-
pendently re-clustered with a similar workflow. Per sub-
ject data from each major cell group (i.e., CD3"PRF1" or
CD3"PRF1") were extracted and independently normal-
ized with SCTransform [84] to define sets of highly vari-
able genes within each group. The top 5500 most
variable genes across all subjects were selected (union
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method) and used for integration with Seurat’s Pre-
pSCTIntegration, FindIntegrationAnchors and Integrate-
Data functions (developer’s defaults). Immunoglobulin
heavy-chain and light-chain genes were excluded from
integration and clustering analysis. Dimensionality re-
duction using PCA, unsupervised graph-based cluster-
ing, and UMAP visualization were conducted using the
developer’s defaults. Clustering resolution (resolution:
0.8) was chosen by evaluation of cluster stability using
the clustree package [87].

Differential gene expression analysis

Differential gene expression analyses were conducted
using edgeR v3.26.8 [88, 89], with additional modifica-
tions for scRNA-Seq data [90]. Gene expression linear
models included factors for cellular gene detection rate,
subject, and cluster (as identified in Seurat analysis
above). Specific contrasts are detailed in relevant “Re-
sults” sections and/or figures. For analyses other than
comparisons among CD3"PRF1" and CD3'PRF1™ cell
clusters, differential gene expression was defined as ad-
justed p value <0.05 (Benjamini-Hochberg correction)
and moderated log, fold-change >1 (as determined in
edgeR model). Differential gene expression for
CD3"PRF1" and CD3*PRF1” cell comparisons used a
less stringent fold-change cutoff (moderated log, fold-
change > 0.58) to account for reduced dynamic range of
gene expression observed in these clusters. For all ana-
lyses, genes expressed (i.e., greater than or equal to 1
UMI) in less than 25% of cells for at least one group
within a contrast were excluded from differential expres-
sion results. Resulting differential gene expression lists
were further annotated for putative surface protein ex-
pression by intersecting one-to-one gene orthologs with
the Human Surface Protein Atlas [91].

scRNA-Seq data analysis—human PBMC

Human PBMC scRNA-Seq datasets (pbmc_10k_v3;
pbmc_10k_protein_v3) were obtained from 10X Genom-
ics  (https://support.10xgenomics.com/single-cell-gene-
expression/datasets). Sample pbmc_10k_v3 included
gene expression data from 7255 human PBMC proc-
essed by 10X Chromium 3" scRNA-Seq v3 chemistry.
Sample pbmc_10k_protein_v3, 10,000 cells, also proc-
essed by 10X Chromium 3’ scRNA-Seq v3 chemistry,
included gene expression data and immunophenotyping
feature barcoding data for the following cell surface
markers: CD3, CD4, CD8a, CD14, CD15, CD16, CD56,
CD19, CD25, CD45RA, CD45RO, PD-1, TIGIT, CD127,
IgG2a isotype control, IgGlisotype control, IgG2b iso-
type control. Gene-cell count matrices (and correspond-
ing antibody count-cell matrix for sample pbmc_10k_
protein_v3) were analyzed in Seurat v3.1.0 [76, 77].
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Human PBMC scRNA-Seq data were filtered using the
same workflow and parameters as above for equine
PBMC. Data were normalized by SCTransform [84]. The
two human PBMC datasets were integrated on the first
30 components identified by CCA. Clustering (smart
local moving algorithm [85], resolution 1.2) was per-
formed on the first 35 principal components (selected by
Scree plot visualization), and results were visualized by
UMAP. Resulting clusters were annotated based on sur-
face marker antibody labeling from sample pbmc_10k_
protein_v3, as described in the text and associated figure
legends.

Horse-human PBMC scRNA-Seq cross-species correlation
analysis

Cross-species sScCRNA-Seq correlation analyses were con-
ducted using an approach based on Zilionis et al. [92].
Human and horse gene-cell count matrices were filtered
to keep only those genes with high confidence 1-to-1
orthologs across species (as defined by Ensembl v95).
For each species and each major cell group (monocyte/
dendritic cells, B cells, CD3"PRF1" lymphocytes,
CD3"PRF1” lymphocytes), following normalization with
SCTransform [84], genes were ranked by Pearson re-
sidual, and genes above the 1.5*inflection point were se-
lected as highly variable genes. Lists of highly variable
genes in human and horse datasets were intersected, and
the resulting list of orthologs present in both species was
used for clustering analysis. Clustering was performed
on natural log-normalized gene x cluster count matrices
and clustered on Pearson correlation distance by Ward’s
method [93]. Results were visualized by dendrogram
with the dend function in R.

Immunophenotyping of equine PBMC by flow cytometry
All flow cytometry data is available on Flow Repository,
accession number FR-FCM-Z2JN.

The flow cytometric phenotyping protocol was
adapted from [18]. A list of primary antibodies is in-
cluded in Additional file 10: Table S1 [94—100]. Uncon-
jugated primary antibodies CD23 and IgM were
conjugated with Mix-n-Stain fluorescent protein tandem
dyes antibody labeling kit for APC-CF750T (Biotium,
Fremont, CA, USA) and Mix-n-Stain cf. dye antibody la-
beling kit for CF405M (Biotium, Fremont, CA, USA), re-
spectively, according to the manufacturer’s instructions.
All wash steps were 2 ml PBS, and all labeling was per-
formed at 4 °C for live cells and room temperature (RT)
for fixed cells. Panel M included antibodies against CD3-
AF647, CD14-biotin, CD16-unconjugated, and Panlg-PE.
Cells were blocked with 2% fetal bovine serum for 15
min and incubated with anti-CD16 for 30 min. Cells
were washed, blocked with 10% goat serum for 15 min,
and incubated with secondary antibody for 30 min. Cells
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were washed, incubated with the remaining monoclonal
antibodies to surface antigens for 30 min, and washed.
Streptavidin-pacific orange was applied for 30 min to
label CD14-biotin. Cells were washed and resuspended
in PBS with 7AAD viability stain.

Panel T included antibodies against CD3-AF647,
CD14-biotin, CD21-BV421, CD4-FITC, CD8-RPE, and
Ki67-PECy7. Cells were labeled with a fixable viability
marker live/dead near IR for 30 min and washed, and
the surface cocktail followed by streptavidin was applied
as for Panel M. Cells were then fixed (eBioscience™
Intracellular fixation and permeabilization buffer set,
Thermo Fisher Scientific, Waltham, MA, USA) at RT for
30 min, washed in permeabilization buffer, incubated
with antibody for the intracellular marker Ki67 for 30
min, washed, and resuspended in PBS.

Panel Bl included antibodies against Panlg-PE,
CD3-AF647, CD14-AF647, T-bet-PECy7, CD21-
BV421, CD23-APC-CF750, and CD11b-PerCP-Vio700.
Panel B2 included antibodies against Panlg-PE, CD3-
AF647, CD14-AF647, T-bet-PECy7, IgM-CF405M, and
IgG1-AF488. Cells were labeled with fixable viability
marker live/dead aqua for 30 min and washed, and
the surface cocktail was applied. Cells were then fixed
(TrueNuclear™ TF fixation and permeabilization buffer
set, BioLegend, San Diego, CA, USA) at RT for 60
min, washed in permeabilization buffer, incubated
with the intranuclear marker T-bet for 30 min,
washed, and resuspended in PBS.

Fluorescence was measured on a Gallios flow cyt-
ometer (Beckman Coulter, Indianapolis, IN, USA) with a
minimum 100,000 events collected per sample. Analysis
was performed with FlowJo version 10.6.1 (FlowJo LLC,
Ashland, OR, USA). Single-color controls were used to
set the compensation matrix. Gating strategies are
shown in Additional file 1: Fig. S7. The researcher per-
forming gating analyses (J.E.T) was blinded to scRNA-
Seq results.

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/512915-020-00947-5.

Additional file 1: Figure S1. Optimized scRNA-seq data processing
workflow improves per cell gene detection. Figure S2. scRNA-seq data
processing workflow. Figure $3. Human reference scRNA-seq clustering
results and annotation. Figure S4. B cell quality control metrics and anti-
body secreting cell immunoglobulin isotype usage. Figure S5. T-bet” B
cells identified by scRNA-Seq are detectable by flow cytometry in all sub-
jects examined. Figure S6. Select gene expression patterns in
CD3"PRF1* lymphocyte major cell group. Figure S7. Representative flow
cytometry gating schemes for immunophenotyping of equine PBMC.
Figure S8. CD3"PRF1~ lymphocyte major cell group includes lympho-
cytes with high expression of 1SGs.

Additional file 2. Differentially expressed genes for major cell groups.
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Additional file 3. Differentially expressed genes for monocyte and
dendritic cell clusters.

Additional file 4. Differentially expressed genes within monocyte
clusters only.

additional file 5. Differentially expressed genes within dendritic cell
clusters only.

Additional file 6. Differentially expressed genes for B cell clusters
(excluded cluster 25).

Additional file 7. Immunoglobulin reference gene annotation file,
adapted from Wagner et al. [75].

Additional file 8. Differentially expressed genes for CD3*PRF1* cell clusters.
Additional file 9. Differentially expressed genes for CD3*PRF1™ cell clusters.
Additional file 10: Table S1. Antibody reagents used in this study.
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