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Representation learning in intraoperative
vital signs for heart failure risk prediction
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Abstract

Background: The probability of heart failure during the perioperative period is 2% on average and it is as high as
17% when accompanied by cardiovascular diseases in China. It has been the most significant cause of
postoperative death of patients. However, the patient is managed by the flow of information during the operation,
but a lot of clinical information can make it difficult for medical staff to identify the information relevant to patient
care. There are major practical and technical barriers to understand perioperative complications.

Methods: In this work, we present three machine learning methods to estimate risks of heart failure, which
extract intraoperative vital signs monitoring data into different modal representations (statistical learning
representation, text learning representation, image learning representation). Firstly, we extracted features of
vital signs monitoring data of surgical patients by statistical analysis. Secondly, the vital signs data is
converted into text information by Piecewise Approximate Aggregation (PAA) and Symbolic Aggregate
Approximation (SAX), then Latent Dirichlet Allocation (LDA) model is used to extract text topics of patients
for heart failure prediction. Thirdly, the vital sign monitoring time series data of the surgical patient is
converted into a grid image by using the grid representation, and then the convolutional neural network is
directly used to identify the grid image for heart failure prediction. We evaluated the proposed methods in
the monitoring data of real patients during the perioperative period.

Results: In this paper, the results of our experiment demonstrate the Gradient Boosting Decision Tree (GBDT) classifier
achieves the best results in the prediction of heart failure by statistical feature representation. The sensitivity, specificity
and the area under the curve (AUC) of the best method can reach 83, 85 and 84% respectively.

Conclusions: The experimental results demonstrate that representation learning model of vital signs monitoring data
of intraoperative patients can effectively capture the physiological characteristics of postoperative heart failure.

Keywords: Heart failure, Perioperative period, Machine learning

Background
Heart failure occurs when the heart is unable to pump
sufficiently to maintain blood flow to meet the body’s
needs. Signs and symptoms commonly include shortness
of breath, excessive tiredness and leg swelling. It has
been considered as one of the deadliest human diseases
worldwide, and the accurate prediction of this risk would

be vital for heart failure prevention and treatment. It is esti-
mated in the “Report on Cardiovascular Disease in China,
2018” by China Cardiovascular Center that more than 290
million people suffer from heart failure. Cardiovascular dis-
ease has become the leading cause of death for residents,
accounting for more than 40% of total. Data from China
Health Yearbook 2018 indicated that there are over 50 mil-
lion operations each year in China, in which the periopera-
tive adverse cardiac events have reached 2%. The incidence
of adverse events in heart failure patients during surgery is
2–17%, which has become the most important reason for
perioperative complications and mortalities, significantly
higher than other patients (0.1–0.2%). At present, there is a
lack of early intraoperative prediction techniques for
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perioperative adverse cardiac events. In addition to
the basic Electrocardiograph (ECG), ST segment, ABP
monitoring methods, researchers also utilized experimen-
tal indicators such as BMP9, neutrophil-lymphocyte ratio,
creatine kinase isoenzyme stratification, having a certain
evaluation effect on postoperative adverse cardiac events.
However, it is difficult to predict early diagnosis and pre-
diction because of obvious hysteresis, so it is often used in
the postoperative diagnosis of adverse events. Therefore,
the early clinical diagnosis of adverse events of heart fail-
ure still relies on the clinical experience of anesthesiolo-
gists and physicians.
Currently, the research on heart failure is mainly based

on the data from patients’ medical records, physical char-
acteristics, auxiliary examination, the treatment plan, and
the algorithm is used to build the model for studying, ana-
lyzing and classifying of diagnosis and prediction. In
addition, most studies mainly analyzed the characteristics
of electrocardiogram data and built the diagnostic model
of heart failure [1–6]. Choi et al. [7] used the recurrent
neural network algorithm to analyze the diagnostic data of
patients with heart failure, including time series of doctor’s
orders, spatial density and other characteristics, to build a
diagnostic model of heart failure, and verified by experi-
ment that the area under the curve (AUC) of the diagnosis
of this model was 0.883. Koulaouzidis [8] used Naive
Bayes algorithm to analyze the patients with heart failure
in the last hospitalization and remote monitoring data,
including patient’s condition, cause of heart failure, com-
plications, the examination, the New York Heart Associ-
ation (NYHA) Functional Classification, treatment, and
remote monitoring data (e.g., vital signs, body weight,
treatment, alcohol consumption and general situation),
and built the prediction model of the readmission of
patients with heart failure, the predicted AUC reached
0.82 after followed-up of (286 + 281) d. Shameer et al. [9]
also utilized Naive Bayes algorithm to analyze about data
variables of patients with heart failure, including diagnosis
data, treatment data, examination data, records of doctor’s
orders, and vital signs data, and built a model for predict-
ing readmission of patients with heart failure, with a pre-
dicted AUC of 0.78. Zheng et al. [10] presented a method
used support vector machine algorithm to analyze the
data of patients with heart failure, including age, type of
medical insurance, sensitivity assessment (audio-visual
and thinking), complications, emergency treatment, the
drug-induced risks, the period of last hospitalization, and
built a prediction model for the readmission of patients
with heart failure, with a prediction accuracy of 78.4%.
Chen et al. [11] analyzed 24 h dynamic electrocardiogram
of heart failure patients and healthy controls by using
support vector machine (SVM) algorithm based on
non-equilibrium decision tree. The paper first cut electro-
cardiogram into segments of more than 5min, then

analyzed the heart rate variability with RR interval series
and built a model of heart failure severity classification,
which achieved the classification accuracy of 96.61%.
As far as we know that there is no research on the pre-

diction of perioperative heart failure risk of patients by
directly using intraoperative vital signs monitoring data.
However, previous studies have shown that the intraop-
erative direct monitoring data has the significant value
of early diagnosis and early warning after preprocessing
and analyzing the time series data. Matthew et al. [12]
presented that 30% of critical cardiovascular events have
abnormal monitoring signs in 24 h before the cardio-
vascular critical event. In another study, the paper
[13] analyzed 5 vital signs data of patients, and the
deterioration of its indicators could warn the doctor
of respiratory failure. Petersen provided a model to
predict further treatment in the ICU of the patient
with monitoring data, and its early warning sensitivity
was 0.42 [14]. Therefore, we used intraoperative vital
signs monitoring data to predict the risk of periopera-
tive heart failure. However, the clinical information is
far beyond the processing capacity of human brains
because of its high rate of production and large
amount, and the rapid change of the patient’s condi-
tion. A lot of clinical information can make it difficult
for medical staff to identify the information relevant to
patient care. Since machine learning is a kind of algorithm
that automatically analyzes and obtains rules from data
and uses rules to predict unknown data, we used machine
learning to build the model for heart failure risk predic-
tion. Thus, in this paper, we mainly used five indicators,
including the intraoperative monitoring heart rate, dia-
stolic blood pressure, systolic blood pressure, blood oxy-
gen saturation, pulse pressure difference to learn statistical
feature representation, text feature representation and
image feature representation of vital sign monitoring data,
and then these features were then input into the classifier
to predict perioperative heart failure.
Our main contributions are in two areas: 1) To our

knowledge, ours is the first study to predict perioperative
heart failure using only intraoperative vital signs moni-
toring data, unlike other studies that used ECG data and
bio-marker as input to a classifier. 2) Our methods cre-
ate meaningful representations of vital signs monitoring
data, we present three examples of representation learn-
ing, with a focus on representations that work for heart
failure prediction.
The rest of this paper is organized as follows: The

preliminary and related technology, and methodology of
this paper is discussed in Section 2. The Section 3
reports the experimental results, and the Section 4 dis-
cusses the implications and highlights limitations of the
study. Finally, the Section 5 discusses the conclusion of
this paper.
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Methods
In order to provide a common understanding through-
out the text, this section describes the concept of PAA,
SAX, LDA, GRTS and CNN algorithms utilized as fea-
ture extraction techniques and time series classification
algorithms, which is implemented in the proposed
approach.

Time series classification (TSC)
Classification of unlabeled time series into existing classes
is a traditional data mining task. All classification methods
start by establishing a classification model based on la-
beled time series. In this case, “labeled time series” means
that we build the model using a training dataset with the
correct classification of observations or time series. The
model is then used to predict a new, unlabeled observa-
tions or time series. Prediction of heart failure risk is sum-
marized as a multidimensional time series classification
problem. TSC is an important and challenging problem in
data mining. With the increase of time series data avail-
ability, hundreds of TSC algorithms have been proposed
[15, 16]. The time series classification problem is generally
composed of extracting time series feature representation
and machine learning classification algorithm. The
methods used in this paper are the decision tree algorithm
[17, 18], gradient boosting machine algorithm [19, 20], lo-
gistic regression algorithm [21], Bayesian algorithm [22],
SVM [23], random forest [24] and popular deep learning
methods [25, 26].

Piecewise approximate aggregation (PAA)
Piecewise Approximate Aggregation was originally a
time series data representation method proposed by Lin

et al. [27]. It can significantly reduce the dimensionality
of the data while maintaining the lower bound of dis-
tance measurement in Euclidean space. Assume that the
original time series is C = {x1,x2,…xN}, the sequence de-
fines that the PAA is C ¼ fx1; x2…:xwg. Figure 1 shows
the PAA of patient heart rate time series in this article.
The Formula as Eq. 1.

xi ¼ ω
N
∙

XNωi
j¼N

ω i−1ð Þþ1

x j 1ð Þ

Symbolic aggregate approximation (SAX)
Symbolic Aggregate Approximation [27] was a time-series
data representation method that Lin et al. extended the
PAA-based method to obtain the symbol and time series
features in the discretized symbol representation of the
PAA feature representation of a time series. Figure 2
shows the sax representation of the patient’s heart rate.
The red line shows the data that has been aggregated with
the PAA. For each coefficient, we assign the literal associ-
ated with the area.

Latent Dirichlet allocation (LDA)
Latent Dirichlet Allocation [28] was proposed by Blei
David in 2003 to estimate the subject distribution of the
document. It gives a probability distribution to the topics
of each document in the document set, so that by ana-
lyzing some documents to extract their topic distribu-
tion, you can cluster topics or classify text based on the
topic distribution. See Formula 2 and Fig. 3. Here k is
the number of topics (fixed on initialization of the LDA

Fig. 1 The PAA representation of time series data
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model), M is the number of documents, N is the number
of words in the document, which itself is represented by
the vector w as a bag-of-words. The βk is the multinomial
distribution words that represent the topics and is drawn
from the prior Dirichlet distribution with the parameter η.
Similarly, the topic distribution θd is drawn from a Dirich-
let prior with the parameter α. The zij is the topic which is
most likely to have generated wij, which is the j-th word in
the i-th document. In this paper, the topic model is used
to extract the text features of patient’s sign monitoring
data. Specifically, the time series of vital signs is converted
into symbols by SAX, these symbols are then transformed
into human-readable text using high-level semantic
abstraction. Finally, LDA model is used to extract text
topics of patients for heart failure prediction. See below
for details in section 3.

p θ; zjw; α; βð Þ ¼ p θ; z;wjα; βð Þ
p wjα; βð Þ ð2Þ

Grid representation for time series (GRTS)
The time series grid representation is an algorithm for
converting time series data into images, which intro-
duces a m × n grid structure to partition time series.
According to the characteristics of time and value, the
points in time series are assigned to their corresponding
rectangles. The grid is then compiled into a matrix where
each element is the number of points in the corresponding
rectangle. The matrix form not only can reflect the point
distribution characteristic of the sequence, but also im-
prove the computational efficiency by using the sparse
matrix operation method. See the algorithm for details
[29]. Figure 4 demonstrates the schematic diagram of
converting patient’s heart rate, diastolic blood pressure,
systolic pressure, and pulse pressure difference time series
data into a grid representation.

Convolutional neural network (CNN)
In recent year, deep learning (DL) models have achieved
a high recognition rate for computer vision [30, 31] and
speech recognition [32]. A Convolutional Neural Net-
work is one of the most popular DL models. Unlike the
traditional feature-based classification framework, CNN
does not require hand-crafted features. Both feature
learning and classification parts are integrated in a
model and are learned together. Therefore, their perfor-
mances are mutually enhanced. Related CNN algorithms
can be found in [33]. The two most essential compo-
nents of CNN are the convolution (Conv) layer and
pooling (Pool) layer. Figure 5: a shows that the convolu-
tion layer realizes the convolution operation, and extracts
the image features by calculating the inner product of the

Fig. 2 The SAX representation of time series data

Fig. 3 The plate model representation of LDA
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input image matrix and the kernel matrix. The other
essential component is the pooling layer, also known as
the sub-sampling layer, which is primarily responsible for
simpler tasks. Figure 5: b shows that the pooling layer only
retains part of the data after the convolution layer. It
reduces the number of significant features extracted by
the convolution layer and refines the retained features. In
this paper, CNN is used to extract the image features of
the vital signs monitoring data from surgical patients.

Representation learning for heart failure risk prediction
This section mainly demonstrates how to use the
different time series feature representation of vital
signs during surgery to predict the risk of postopera-
tive heart failure using the relevant techniques de-
scribed above. First a general overview over the
workflow is given and shown in Fig. 6. Then each of
the components are described in more detail in indi-
vidual subsections.

The overall workflow of our presented method con-
sists of three representation techniques towards heart
failure which are described in more detail in the follow-
ing Sections. They are:
Statistical representation of vital signs data: Statis-

tical analysis of vital signs monitoring data of
surgical patients to extract features for heart failure
prediction.
Text representation of vital signs data: Firstly, the

time series of vital signs is converted into symbols
by the SAX, these symbols are then transformed into
human-readable text using high-level semantic ab-
straction. Finally, the LDA model is used to extract
text topics of patients for heart failure prediction.
Image representation of vital signs data: The vital sign

monitoring time series data of the surgical patient is
converted into a grid image by using the grid representa-
tion, and then the convolutional neural network is dir-
ectly used to identify the grid image for heart failure
prediction.

Fig. 4 Grid representation for time series

Fig. 5 a The convolution operation of Convolutional Neural Networks. b The pooling operation of Convolutional Neural Networks
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Perioperative heart failure prediction is based only on
vital signs monitoring data of intraoperative patients. Indi-
cators include heart rate (HR/hr), systolic blood pressure
(NISYSBP/nisysbp), diastolic blood pressure (NIDIASBP/
nidiasbpe), SpO2 (spo2), and pulse pressure difference (PP/
pp). Learning window: defined as the duration of continu-
ous monitoring during surgery, predictive window: defined
as the patient’s perioperative period. As shown in Fig. 7.

Statistical representation of vital signs data
In order to capture the various statistical feature of
patient monitoring data trends, and mine intraoperative
patient monitoring data from multiple dimensions in
this paper, the mean (mean), variance (std), minimum
(min), maximum (max), 25% (perc25), 50% (perc50),
75% (perc75) quantile, skewness (skew), kurtosis (kurt)
and derivative variables of the first order difference (diff)
of each monitoring index were calculated. That is, a total
of 90 statistical parameters are obtained as derivative
variables. The individual characteristic derivative variables
are shown in Table 1, and the calculation is shown in Eq.
3. Finally, the classifier is used to predict heart failure.
Specifically, the meaning of Feature variables in Table 1
are connected the abbreviation use “_” to add abbreviation

together. For example: “mean_hr” means the mean of
heart rate (hr), “min_diff_hr” means the minimum of the
first order difference of heart rate, and “perc25_nisysbp”
means that 25% of systolic blood pressure.

μ ¼ 1
T

XT
i¼1

xi

σ2 ¼
XT
i¼1

1
T

xi−μð Þ2

skewness Xð Þ ¼ E
X−μ
σ

� �3
" #

¼ 1
T

XT
i¼1

xi−μð Þ3
σ3

kurtosis Xð Þ ¼ E
X−μ
σ

� �4
" #

¼ 1
T

XT

i¼1

xi−μð Þ4
σ4

ð3Þ

Q25% ¼ nþ 1
4

Q50% ¼ 2 nþ 1ð Þ
4

¼ nþ 1
2

Q75% ¼ 3 nþ 1ð Þ
4

Text representation of vital signs data
The second method in this paper is based on the textual
features of patient monitoring data for heart failure pre-
diction. The specific process is shown in Fig. 8. These
include the following steps:

1. Normalization: Normalize the sign data to the
mean 0 and variance 1.

2. Segmentation: Use the PAA to segmentation
patient vital sign data.

Fig. 7 Learning and prediction diagram

Fig. 6 The overall workflow of the proposed method
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3. Alphabetization of Symbols: Use the SAX to
Symbolize patient vital sign data.

4. Textualization: Use the rules engine to textual
Symbolic alphabetized data.

5. Topic clustering: Use the LDA to cluster all patient
text data topics.

6. Prediction: Predicting heart failure based on
probability distribution of each patient’s topic.

The advantage of textualization is that the results of
the analysis are easier for humans to understand.
Though the alphabetization of Symbols obtained from
the SAX pattern extraction give a representation of the
shape of the data within the time frame, the SAX strings
are not intuitively understood and still have to be inter-
preted. Furthermore, by considering the statistics of the
time frame in the abstract process, we are able to repre-
sent more information in the text than just the shape.
Therefore, we use a rule-based engine that uses the SAX
patterns and the statistical information of the time frame
to produce text that is understandable to humans. The
general form of the rules is given in Eq. 4 where < pat-
tern > is the SAX pattern, < l > is the level, < f > is the
feature, < mod > is a modifier for the pattern movement
and < pm > is the pattern movement. Eq. 5 shows the

possible values that the individual output variables can
take.

< pattern >f g ¼ < l >< f >< mod >< pm >f g
ð4Þ

<l > = [‘low’,‘medium’,‘high’].
<f > = The values are shown in Table 1.

< mod >
¼ ‘slowly’; ‘rapidly’; ‘upward’; ‘downward’½ �

ð5Þ

<pm> = [‘decreasing’,‘increasing’,‘steady’,‘peak’,‘varying’].
The heart rate, diastolic blood pressure, systolic blood

pressure, spo2 and pulse pressure difference of the surgi-
cal patients are converted into text semantics. See Fig. 9.
The patient text topic is extracted through the LDA, and
finally the risk of heart failure is predicted by the
classifier.

Image representation of vital signs data
Although deep learning is now well developed in com-
puter vision and speech recognition, it is difficult to
build predictive models when it comes to time series.

Table 1 Overview about non-invasive physiological parameters and related feature variables

NIPP Feature variables

HR mean_hr, std_hr, min_hr, perc25_hr, perc50_hr, perc75_hr, max_hr, mean_diff_hr, std_diff_hr, min_diff_hr, perc25_diff_hr,
perc50_diff_hr, perc75_diff_hr, max_diff_hr, skew_hr, kurt_hr, diff-skew_diff_hr, diff-kurt_diff_hr

NISYSBP mean_nisysbp, std_nisysbp, min_nisysbp, perc25_nisysbp, perc50_nisysbp, perc75_nisysbp, max_nisysbp, mean_diff_nisysbp,
std_diff_nisysbp, min_diff_nisysbp, perc25_diff_nisysbp, perc50_diff_nisysbp, perc75_diff_nisysbp, max_diff_nisysbp,
skew_nisysbp, kurt_nisysbp, diff-skew_diff_nisysbp, diff-kurt_diff_nisysbp

NIDIASBP mean_nidiasbpe, std_nidiasbpe,min_nidiasbpe, perc25_nidiasbpe, perc50_nidiasbpe, perc75_nidiasbpe, max_nidiasbpe,
mean_diff_nidiasbpe, std_diff_nidiasbpe, min_diff_nidiasbpe, perc25_diff_nidiasbpe, perc50_diff_nidiasbpe, perc75_diff_nidiasbpe,
max_diff_nidiasbpe, skew_nidiasbpe, kurt_nidiasbpe, diff-skew_diff_nidiasbpe, diff-kurt_diff_nidiasbpe

SPO2 mean_spo2, std_spo2,min_spo2, perc25_spo2, perc50_spo2, perc75_spo2, max_spo2, mean_diff_spo2, std_diff_spo2,
min_diff_spo2, perc25_diff_spo2, perc50_diff_spo2, perc75_diff_spo2, max_diff_spo2, skew_spo2, kurt_spo2,
diff-skew_diff_spo2, diff-kurt_diff_spo2

PP mean_pp, std_pp, min_pp, perc25_pp, perc50_pp, perc75_pp, max_pp, mean_diff_pp, std_diff_pp, min_diff_pp,
perc25_diff_pp, perc50_diff_pp, perc75_diff_pp, max_diff_pp, skew_pp, kurt_pp, diff-skew_diff_pp

Fig. 8 Prediction of heart failure risk based on text features

Chen and Qi BMC Medical Informatics and Decision Making          (2019) 19:260 Page 7 of 15



Reasons include that Recurrent neural networks are
difficult to train and there are no existing trained net-
works for time series. But if we turn the time series into
pictures and then we can take advantage of the current
machine vision for time series. Therefore, we convert
the vital sign data of the patient into grid image by using
the grid representation, and then the convolutional
neural network is directly used to identify the grid image
for heart failure prediction in this paper. See Fig. 10.

The grid representation is a compression technique
that we convert a time series to a matrix format. Given a
time series X = { xt, t = 1, 2,..., T}, the length of which is T,
and a grid structure, which is equally partitioned into m ×
n rectangles and the number of row and column are m
and n, respectively, we are able to produce a grid repre-
sentation as where aij is the number of data points located
in the i-th row and the j-th column so it should be an inte-
ger and satisfies aij ≥ 0. See the algorithm for details [29].

Fig. 9 The text representation of vital signs data

Fig. 10 Prediction of heart failure risk based on image features
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A good representation method should retain as much
information as possible of the initial time series when
compressing it. Time series contain not only time and
value information but also point distribution information.
The m × n grid structure can meet these requirements, so
a method of representing time series is introduced. In this
paper, the values of m and n that we used for the similar-
ity measure are dependent on the structure of CNN. We
designed a small network structure because of the small
dataset, and all samples used the same m and n.
The converted time-series grid image (see Fig. 4) is

fused at the channel level as input to the convolutional
neural network for heart failure prediction.

Data description
The data used in this paper is from the Department of
Anesthesiology, Southwest Hospital. All data were gath-
ered from the surgical patients from June 2018 to Octo-
ber 2018. A total of 14,449 operations include 99 cases
of postoperative heart failure, 46 cases of liver failure, 61
cases of death, renal failure 54,49 cases of respiratory
failure and 31 cases of sepsis. The remaining is uncom-
plicated patients. 15 out of 99 patients with heart failure
had incomplete monitoring data. These patients were
removed from the experiment and the remaining 84
patients were positive. 168 cases of negative data were
randomly selected from the normal data set for the
experiment. The training set is 80% and testing set is
20%, we used 10-fold cross validation in the experiment.
Particularly, we divided the training set into training set

(9 sets) and validation set (1 set), then used the test set
to evaluate our model. The data screening diagram is
as Fig. 11.

Results
Experiments based on statistical representation
The statistical features have a total of 90 variables, and
the data has to be selected before prediction. In order to
reduce calculation complexity, features with lower import-
ance should be removed. In this paper, the correlation was
analyzed that calculating the Pearson CorrelationCoeffi-
cient of each feature, then the features with importance of
0 were removed. Figure 12 shows the correlation of each
feature, in which the regions with dark color tend to have
a strong correlation and vice versa.
Models were built from these statistical features using

8 different classifiers: Adaboost, Decision Tree (DT), Sup-
port Vector Machine (SVM), Logistic regression (LR),
naive Bayes (NB), Random forest (RF), Multiple percep-
tion machine (MLP), Gradient Boosting Decision Tree
(GBDT). Because the sklearn library of python includes
these machine learning methods, we used the sklearn
library to build these models. The core principle of Ada-
Boost is to fit a sequence of weak learners (i.e., small deci-
sion trees) on repeatedly modified versions of the data. All
the predictions are then combined by weighted majority
voting (or summation) to produce the final prediction.
The data modification for each so-called boosting iteration
involves applying weights to each of the training sample.
The parameter of Adaboost was: n_estimators is 100.

Fig. 11 The data screening diagram
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Decision Tree is to create a model that predicts the value
of a target variable by learning simple decision rules in-
ferred from the data features, where “DecisionTreeClassi-
fier” of scikit-learn is a class capable of performing multi-
class classification on a dataset. The parameters of DT
were: criterion is “gini”, min_samples_split is 2, min_sam-
ples_leaf is 1, min_weight_fraction_leaf is 0.0. SVM is a
set of supervised learning methods used for classification,
regression and outliers detection. SVM in scikit-learn sup-
ports both dense (“numpy.ndarray” and convertible to that
by “numpy.asarray”) and sparse (any “scipy.sparse”) sam-
ple vectors as input. The parameter of SVM was: kernel is
“rbf”. In the model of Logistic regression, the probabilities
describing the possible outcomes of a single trial are mod-
eled using a logistic function. Logistic regression is imple-
mented in LogisticRegression. This implementation can fit
binary, One-vs-Rest, or multinomial logistic regression
with l2. Naive Bayes methods are a set of supervised learn-
ing algorithms based on Bayes theorem, whose “naive”
assumption is the conditional independence between each
pair of features of a given class variable value. Random

forests achieve a reduced variance by combining diverse
trees, sometimes at the cost of a slight increase in bias. In
practice the variance reduction is often significant hence
yielding an overall better model. In RF, each tree in the
ensemble is built from a sample drawn with replacement
(i.e., a bootstrap sample) from the training set. Further-
more, when splitting each node during the construction of
a tree, the best split is found either from all input features
or a random subset of size max_features. The parameter
of RF was: n_estimators is 100. The MLP is a supervised
learning algorithm that learns a function f(·) : Rm→ Ro by
training on a dataset, where m is the number of dimen-
sions for input and o is the number of dimensions for out-
put. Given a set of features X= x1, x2, x1, …xm and a target
y, it can learn a non-linear function approximator for ei-
ther classification or regression. It is different from logistic
regression, in that between the input and the output layer,
there can be one or more non-linear layers, called hidden
layers. The parameter of MLP was: hidden_layer_sizes is
(5, 2). The GBDT is a generalization of boosting to arbi-
trary differentiable loss functions. GBDT is an accurate

Fig. 12 The correlation of each feature
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and effective off-the-shelf procedure that can be used for
both regression and classification problems. The module
“sklearn.ensemble” provides methods for both classifica-
tion and regression via gradient boosted regression trees.
The parameter of the GBDT was: n_estimators is 200.
The other parameters of these models were the default
parameters, see the Appendix for details. The results are
shown in Table 2, and the Receiver Operating Character-
istic (ROC) is shown in Fig. 13.

Experiments based on text representation
Figure 9 provides a general overview of our experimental
process. First, we convert the patient’s vital signs moni-
toring data for 3 min into alphabetic symbols and con-
vert consecutive 3 alphabetic symbols to text based on
the rule engine. The LDA was used to unsupervised
cluster all patient’s text representation into 5 topics. We
chose 5 topics after varying the number from 2 to 10,
because it was noted that validation set accuracy did not
improve after 5, so that each patient’s vital signs moni-
toring data is represented by a 5-dimensional vector,
summing to 1. Finally, we performed heart failure predic-
tion based on the representation of the topic probability
distribution using the same classifier and parameters as
the Statistical Representation. The experimental results
are shown in Table 2, and the ROC curve of the experi-
ment is shown in Fig. 14.

Experiments based on image representation
In this experiment, we first convert the patient’s heart rate,
diastolic blood pressure, systolic blood pressure, spo2, and

pulse pressure difference into the grid image, and fuse the
five images in the channel layer as input to the convolu-
tional neural network (see the network structure designed

Fig. 13 The ROC curve of 8 classifiers based on
Statistical Representation

Table 2 Sensitivity (TPR), specificity (TNR), F1 score, accuracy (ACC) of various classifiers

Feature Methods TPR TNR F1score ACC

Statistical Feature Adaboost 0.83 0.83 0.83 0.83

DT 0.76 0.78 0.77 0.77

GBDT 0.83 0.85 0.84 0.84

LR 0.76 0.7 0.73 0.73

NB 0.72 0.78 0.75 0.76

RF 0.69 0.96 0.81 0.81

SVM 0.66 0.96 0.79 0.81

Text Feature Adaboost 0.68 0.78 0.74 0.74

DT 0.61 0.78 0.71 0.71

GBDT 0.68 0.78 0.74 0.74

LR 0.61 0.93 0.79 0.81

NB 0.84 0.73 0.78 0.79

RF 0.65 0.84 0.76 0.76

Image Feature GRCNN 0.74 0.89 0.83 0.83

The entries in boldface indicate the best results for classifiers in three learning methods. Specifically, these results demonstrate the GBDT classifier achieves the
best results in the prediction of heart failure by statistical feature representation. The sensitivity, specificity and accuracy are 83, 85, 84% respectively; the NB
classifier achieves the best results in the prediction of heart failure by text feature representation. The sensitivity, specificity and accuracy are 84, 73, 79%
respectively; The sensitivity, specificity and accuracy of classification prediction based on convolutional neural network in image feature representation also
reaches 89, 78 and 89%, respectively
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in the previous section. See Fig. 11) to extract image
features. Finally, heart failure is classified by softmax.

5; L; 1ð Þ ¼> 5;m; nð Þ ð6Þ
See Formula 6, where L is the length of the monitoring

time series data, and (m, n) is the width and length of
the grid image. The converted image has an associated
length and width. Five grid maps of each patient simul-
taneously input into a convolutional neural network for
heart failure recognition. The experimental results are

shown in Table 2, and the ROC curve of the experiment
is shown in Fig. 15. Figures 16 and 17 show the loss and
accuracy of training and validation of convolutional
neural networks.
Predictive results of various feature representations are

presented in Table 2. These results demonstrate the
GBDT classifier achieves the best results in the predic-
tion of heart failure by statistical feature representation.
The sensitivity, specificity and accuracy are 83, 85, 84%
respectively; the NB classifier achieves the best results in
the prediction of heart failure by text feature repre-
sentation. The sensitivity, specificity and accuracy are
84, 73, 79% respectively; The sensitivity, specificity
and accuracy of classification prediction based on
convolutional neural network in image feature repre-
sentation experiments also reached 89, 78 and 89%,
respectively. It can be seen from Figs. 14, 15 and 16

Fig. 16 The loss of training and validation of convolutional
neural networks

Fig. 17 The accuracy of training and validation of convolutional
neural networksFig. 15 The ROC curve of CNN based on image representation

Fig. 14 The ROC curve of 8 classifiers based on Text Representation
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that the AUC values based on the three feature repre-
sentation algorithms are 0.92, 0.82, 083 respectively.
Therefore, from the overall results, the patient’s intra-
operative vital signs monitoring data has the ability to
capture the precursory information of heart failure
during the perioperative period.
Among the three feature representations, the method

based on statistical representations achieves the best re-
sults. Because we did a lot of feature engineering before
the model prediction, we removed the low-importance
features and only retained the relevant features. In
addition, the total sample size of the experiment is only
252 cases (positive: 84, negative: 168). Small sample size
based on traditional feature engineering can achieve bet-
ter results in classification. However, the method of text
and image feature representation based on LDA and
convolution neural network is likely to have the problem
of under-fitting in the small sample training data set.
Therefore, there should be a lot of room to improve the
experimental results.

Discussion
Heart failure in the perioperative period is one of the
most significant causes of postoperative death of pa-
tients. At present, because the valuable diagnostic indi-
ces of heart failure have lagged effect, which are often
used only for differential diagnosis after adverse events
have occurred, and are difficult to be used for early
diagnosis and prediction, the early clinical diagnosis
of adverse events of heart failure still relies on the
clinical experience of anesthesiologists and physicians.
Therefore, there is a lack of early intraoperative pre-
diction techniques for perioperative adverse cardiac
events. Previous studies have shown that the direct
monitoring data in operation has the value of early
diagnosis and early warning after preprocessing and
analysis of time series data. However, as far as we
know that there is no direct use of intraoperative
monitoring signs data on patients with perioperative
risk prediction of heart failure. Thus, our method is
the first study to predict perioperative heart failure
using only intraoperative monitoring of vital signs.
At present, much literature in heart failure prediction

and diagnosis has focused on using ECG data and bio-
marker as input to a classifier. Because the heart failure
prediction is more difficult than diagnosis, the methods
of heart failure diagnosis usually achieved a better per-
formance, such as: AUC of 0.883 (Choi et al. [7]), the
classification accuracy of 96.61% (Chen et al. [11]). How-
ever, the methods of heart failure prediction usually
achieved a poor performance, such as: the sensitivity of
0.42 (Petersen et al. [14]), the predicted AUC reached
0.82 (Koulaouzidis [8]), the predicted AUC of 0.78
(Shameer et al. [9]), the prediction accuracy of 78.4%

(Zheng et al. [10]). Our work differs in that we only con-
sider intraoperative monitoring of vital signs to predict
the risk of heart failure, and the sensitivity, specificity
and accuracy of the best method can reach 83, 85
and 84% respectively. It demonstrates that using only
intraoperative monitoring of vital signs data can
largely predict the risk of heart failure, and reach high
accuracy. It shows a valuable potential to save the life
for heart failure patients using intraoperative monitor-
ing of vital signs.
There are several limitations of this body of work.

Firstly, prediction method based on text and image fea-
tures is ineffective because of too few experimental sam-
ples. The model proposed in this paper can’t clearly
determine the specific correlation between intraoperative
vital signs monitoring data and heart failure. Future
directions for this work should include new model to
clarify the correlation between the two and we could
also improve the prediction quality of our model with
additional features, such as relevant preoperative examin-
ation indicators, etc. In the future, we hope that such
methods will be used to provide medical staff with
the support to improve decision making for surgical
surgeon.

Conclusion
In this work, we proposed three machine learning
methods including statistical learning representation,
text learning representation and image learning repre-
sentation to process vital signs monitoring data (heart
rate, systolic pressure, diastolic pressure, blood oxygen
saturation and pulse pressure) for estimating the risk
of heart failure. The method was evaluated by moni-
toring data of perioperative patients in anesthesiology
Department of Southwest Hospital. The results of our
experiment demonstrated that the representation learning
model of vital signs monitoring data in intraoperative
patients can capture the physiological characteristics of
heart failure in the perioperative period. Additionally,
these results showed that the GBDT classifier has achieved
the best results in predicting heart failure by statistical
characteristics. The sensitivity, specificity and accuracy of
the best method can reach 83, 85 and 84% respectively.
Therefore, we can draw a conclusion that the patient’s
intraoperative vital signs monitoring data has the ability to
capture the precursor information of heart failure in the
perioperative period, which is important for reducing the
risk of heart failure and improving the safety of the
patient. Furthermore, this paper shows a valuable poten-
tial to develop modern medical diagnosis and treatment
by using vital signs monitoring data in intraoperative
patients for risk prediction of the perioperative adverse
cardiac events.
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