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Abstract

Background: Accurate predictive modeling in clinical research enables effective early intervention that patients are
most likely to benefit from. However, due to the complex biological nature of disease progression, capturing the
highly non-linear information from low-level input features is quite challenging. This requires predictive models with
high-capacity. In practice, clinical datasets are often of limited size, bringing danger of overfitting for high-capacity
models. To address these two challenges, we propose a deep multi-task neural network for predictive modeling.

Methods: The proposed network leverages clinical measures as auxiliary targets that are related to the primary
target. The predictions for the primary and auxiliary targets are made simultaneously by the neural network. Network
structure is specifically designed to capture the clinical relevance by learning a shared feature representation between
the primary and auxiliary targets. We apply the proposed model in a hypertension dataset and a breast cancer dataset,
where the primary tasks are to predict the left ventricular mass indexed to body surface area and the time of
recurrence of breast cancer. Moreover, we analyze the weights of the proposed neural network to rank input features
for model interpretability .

Results: The experimental results indicate that the proposed model outperforms other different models, achieving
the best predictive accuracy (mean squared error 199.76 for hypertension data, 860.62 for Wisconsin prognostic breast
cancer data) with the ability to rank features according to their contributions to the targets. The ranking is supported
by previous related research.

Conclusion: We propose a novel effective method for clinical predictive modeling by combing the deep neural
network and multi-task learning. By leveraging auxiliary measures clinically related to the primary target, our method
improves the predictive accuracy. Based on featue ranking, our model is interpreted and shows consistency with
previous studies on cardiovascular diseases and cancers.
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Background
Accurate prediction for disease phenotypes is one of
the most important tasks in clinical research, as it can
enable effective early interventions that patients are most
likely to benefit. Due to the intrinsic complex biological
mechanism of disease progression, successful predictive
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models should be capable of learning high-level informa-
tion from low-level input features. However, traditional
methods, such as linear regression, simplify the dis-
ease progression as additive effects of input features (i.e.
age, blood pressure, renal function). Consequently, non-
additive relations are not captured, potentially leading to
less satisfactory predictive performances.

Deep neural networks (DNNs) have achieved great
improvements for difficult predictive tasks in speech
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recognition, computer vision and healthcare informat-
ics [1–4]. Compared with linear regression, DNNs have
the capability of learning high-level feature representa-
tions, rendering better predictions based on those abstract
features. This enables DNN to capture the non-linear
relations of low-level features, making itself promising in
clinical research.

Successful deep neural networks require abundant
labeled data for effectively learning useful feature repre-
sentations. However in clinical practice, collecting labeled
data is expensive and time-consuming. As a result, only a
limited amount of labeled data are available. Fitting a high-
capacity model could potentially overfit the small amount
of labeled data.

To avoid overfitting of DNNs, various regulariza-
tion methods, such as dropout, early stopping and
L2 regularization [5] have been developed. In the
domain of clinic research, with defining primary tar-
gets, we can further mitigate overfitting by leveraging
other clinical measures that are generated by the label-
ing process. As these measures are clinically related
to the primary targets, we can integrate them into
multi-task framework as regularization that can benefit
our model.

For instance, some demographic subpopulations with
hypertension are more likely to develop left ventricular
hypertrophy (LVH), a form of structural heart damage that
results from poor blood pressure control. Left ventricular
mass indexed to body surface area (LVMI) is a commonly
used method of determining when LVH is present. How-
ever, measuring LVMI requires advanced imaging but it
is difficult to know which patients should undergo test-
ing, it is challenging to predict as there is no single input
features having enough explanation power for LVH. Accu-
rately predicting LVH status for hypertension patients is
critical as definitive testing to diagnose LVH, including
cardiac magnetic resonance imaging (CMR), is expensive
and testing every patient with hypertension would be cost
prohibitive.

In this paper, we propose generalized auxiliary-task aug-
mented network (GATAN), extending [6] from regression
to general supervised learning tasks. GATAN is a multi-
task predictive neural network that predicts the primary
target and auxiliary targets simultaneously (See Fig. 1).
Under the multi-task learning framework, the auxiliary
tasks can be viewed as a regularization method as well as
implicit data augmentation [5, 7–10]. GATAN hence can
reduce the risk of overfitting. Without a universal defini-
tion of inter-task relatedness, GATAN learns task-specific
feature representations, as well as a shared representa-
tion for all tasks to conceptually capture the relation. The
learned representations are then combined together using
a weighting mechanism; GATAN makes predictions based
on the combined high-level features. Finally, to interpret

GATAN, we adopt a heuristic method that analyze the
learned weights to rank the contribution of input features.

Methods
Generalzied auxiliary-task augmented network
Taking the motivating example in Fig. 1, with LVMI being
the primary target, the labeling process would produce
additional CMR measures that are also characteristics of
heart morphology including septal, posterior and ante-
rior heart wall thickness. These measures are clinically
related to LVMI and predictive models can exploit them
as auxiliary predictive tasks.

However,the clinical “relevance” is not clearly defined.
To circumvent this issue, GATAN models learns a feature
representation that can be decomposed into a weighted
sum of the shared and task-specific feature representation.
The shared representation conceptually models the rele-
vance between tasks. Figure 2 displays GATAN structure.
We use feed-forward deep neural network (FDNN) [5] as
the building block for GATAN.

Assume that
(
x, yc, ya) is a sample with input features

x, primary target yc and auxiliary target ya. The shared
and task-specific feature representations are learned as
follows:

hs = f s(x),
hc = f c(x),
ha = f a(x),

(1)

where f (·) is modeled by FDNN with multiple stacked
hidden layers and non-linear activation (element-wise sig-
moid action in our case). These feature representations
are then combined to form the final representations hfc

and hfa:

hfc = a1hc + a2hs, (2)

hfa = b1ha + b2hs, (3)

where {a1, a2} and {b1, b2} are the weights that quantify
the contributions of hs, hc and ha. Note that in this formu-
lation, hs, hc and ha are of the same dimension. As a side
note, another strategy to combine the task-specific and
shared feature representations is through vector concate-
nation hfc = [hc, hs]. But this approach could introduce
more parameters for each h having enough representation
power. We hence prefer the weighted sum approach when
only limited amount of data is available.

To compute {a1, a2} and {b1, b2}, the cosine-distance
“cosd” is used:

a1 = 1
2

cosd
(
hc, hs) ,

a2 = 1 − a1,
(4)
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Fig. 1 Motivating Example for GATAN. Left ventricular mass index to body surface area (LVMI) is the primary target. The labeling process also
produces other measures that are clinically related to LVMI. We predict these measures as auxiliary tasks in our model

for the primary task, and

b1 = 1
2

cosd
(
ha, hs) ,

b2 = 1 − b1,
(5)

for the auxiliary task, where cosd(v1, v2) = v1 ·
v2/(||v1||2||v2||2) , || · ||2 is the euclidean norm of a vector.
Since we use sigmoid as the activation function, {a1, a2}
and {b1, b2} are positive and hence proper weights. Note
that this strategy biases toward the shared feature repre-
sentation and forces it to makes at least half contribution
(i.e. a2, b2 ≥ 0.5) to the final feature representation for
GATAN, displaying the benefits of multi-task learning.

Based on the final feature representation, the prediction
ŷc and ŷa are calculated:

ŷc = lc
(

Wc · hfc + hc
)

,

ŷa = la
(

Wa · hfa + ha
)

,
(6)

where Wc and Wa are dimension-compatible vectors, hc

and ha are bias terms, and l(·) is the link function depend-
ing on the specific prediction tasks. When targets are
continuous, l(·) is the identity function; for classification
tasks, l(·) is the sigmoid or softmax function:

Fig. 2 Sturcture of GATAN with one auxiliary task
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σ(x) = 1
1 + exp(−x)

σ (x) =
(

exp(xj)
∑K

k=1 exp(xk)

)

j
(j = 1, · · · , k)

The joint objective function is a sum of the loss function
for each task:

minimize�

n∑

i=1
Lc (

yc
i , ŷc

i
) + ωLa (

ya
i , ŷa

i
)

, (7)

where for notational brevity, we use � to represent the
set of parameters in the neural network, ω is a hyper-
parameter balancing different tasks during training. We
use ω = 1 in our experiments.

For regression, the loss function is the squared loss:

Lreg
(
yc, ŷc) = (

yc − ŷc)2 .

For classification, it is cross-entropy:

Lcla
(
yc, ŷc) = yc · log

(
1 − ŷc) ,

where we have encoded yc as one-hot vector.
Note that GATAN also allows multiple auxiliary tar-

gets which can be incorporated into GATAN straightfor-
wardly, and different types of loss functions for different
tasks such as one regression task and one classification
task.

Feature ranking
Model interpretability is another important aspect in clin-
ical practice. While there are no systematic ways to inter-
pret deep networks, we can extend from linear regression
to calculate the contribution of each input feature by
back propagating each neuron’s contribution through its
connections to previous layer of neurons [11].

To see the back-propagation of each neuron’s contribu-
tion to the target, let us take an example shown in Fig. 3.
Let W1 =

(
w1

ij

)

3×2
and W2 =

(
w2

ij

)

1×3
be the two weight

matrices associated with the last two hidden layers.
hj’s contribution can be computed as in linear regression

for {j : 1, 2, 3}:

Cjy =
∣∣
∣w2

1j

∣∣
∣

∣∣w2
11

∣∣ + ∣∣w2
12

∣∣ + ∣∣w2
13

∣∣ .

Similarly, gk ’s (k = 1, 2) contribution Ckj to hj is

Ckj =
∣
∣
∣w1

jk

∣
∣
∣

∣
∣
∣w1

j1

∣
∣
∣ +

∣
∣
∣w1

j2

∣
∣
∣
.

Then the contribution Ckjy from gk through hj to y is

Ckjy = CkjCjy.

Since there are three paths from gk to y through h1, h2
and h3, the total contribution Cky of gk is

Cky =
3∑

j=1
Ckjy.

We can keep propagating the contribution of neurons
to input features to calculate their contributions to the
target.

In GATAN, each input features can contribute to the
target through the task-specific and the shared network. If
Cc

kyc and Cs
kyc are the contributions of feature xk through

task-specific and shared network to yc respectively, the
overall contribution Ckyc for xk is just the weighted sum
given by

Ckyc = a1Cc
kyc + a2Cs

kyc ,

which provides us a heuristic approach for interpreting
GATAN, a1 and a2 are given by (4).

Datasets and preprocessing
Hypertension dataset The cohort was derived from an
NIH-funded study of African American patients with
hypertension and elevated systolic blood pressure (>160
mm Hg) at the emergency department of Detroit Receiv-
ing Hospital. Previous studies have shown that there are
disparities among hypertension patients with some who
are at greater risk of LVH. This makes a DNN model
that is capable of capturing complex feature interactions
promising for predicting LVMI.

In the labeling process of LVMI, other measures that
characterize heart morphology such as left ventricular
stroke volume to body surface area (LVSVI), left ventric-
ular end-diastolic volume indexed to body surface area
(LVEDVI) and septal, posterior and anterior wall thick-
ness, are also produced. These measures are closely rele-
vant with LVMI and provides additional information that
can be utilized in GATAN as auxiliary tasks.

The original dataset contains 155 samples and 65 mea-
sures. These measures consists of LVMI, 59 input features
(demographics, lab results, heart functioning et al.) and
5 other CMR measures as candidates of auxiliary targets.
Table 1 and Fig. 4 left panel present basic statistics of
targets.

From the perspective of predictive modeling, a model
only using lab results and demographics as features (34 in
total) is more preferable, as they are more widely acces-
sible and informative for disease progression, compared
with the full set of features that contains heart functioning
measures. Hence, we also conduct experiments with this
set of features.

Wisconsin prognostic breast cancer dataset (WPBC) is
a publicly available dataset in UCI repository [12]. The
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Fig. 3 An example of calculating the contribution of hidden neurons using weight back-propagation

dataset contains 194 records of “time to recur” for breast
cancer patients (after removing 4 cases of missing tar-
get values) and 32 features including tumor size, lymph
node status and 30 measures computed from a digitized
image of a fine needle aspirate (FNA) of a breast mass.
These derived features include the mean value, standard
error and largest/worst value for 10 features: radius, tex-
ture, perimeter, area, smoothness, compactness, concav-
ity, concave points, symmetry and fractal dimension. The
primary target is the “time to recurrence of breast cancer”;
the auxiliary target is the recurrence state of being “recur”
or “non-recur”.

Implementations and evaluation metrics
First, various models in scikit-learn [13] are implemented
for comparison, including non-parametric models (k-
nearest neighbors (KNN), random forest (RF)), support
vector regression (SVR), regularized linear regression
based models (Ridge, Lasso and the multi-task Lasso
(MTLasso)). A 4-layer perceptron (MLP-4) is also imple-
mented whose hidden layer size is matched with GATAN.

We use Pytorch [14] for building GATAN. In our exper-
iments, each time only one CMR measure is selected as

Table 1 Descriptive statistics of LVMI and other CMR measures

Min 1st Qtl Median 3rd Qtl Max Mean

LVMI 51.06 80.06 89.72 100.83 155.66 90.81

LVSVI 9.93 22.23 28.37 33.88 53.38 28.10

LVEDVI 18.39 33.29 41.42 50.63 106.73 42.81

Septal 4.8 9.7 11.60 13.60 26.5 11.96

Posterior 2.23 9.60 11.90 14.20 22.50 12.02

Anterior 5.70 10.60 12.40 14.50 20.40 12.66

the auxiliary target. LVEDVI is for GATAN-1 and poste-
rior wall thickness for GATAN-2. GATAN consists of 4
layers with the dimension of hidden layers being 80 and
40. Standard gradient descent is used to train our model.

The hypertension dataset is split into training, testing
and training sets by 95/35/30. For WPBC dataset, we split
the data by 134/30/30. For non neural network models,
3-fold cross-validation on the training set is performed
for best hyper-parameter settings. Model performances
are finally reported on the testing set. We repeat this
procedure 5 times.

To evaluate performance, the following three metrics
are used:

• Mean squared error (MSE) measures the predictive
error without considering the magnitude of target:

MSE = 1
n

∣∣∣∣yc − ŷc∣∣∣∣2 .

• Explained variance score (EVS):

EVS = 1 − Var(yc − ŷc)

Var (yc)
,

where Var(·) is the variance.
• Median absolute error (MAE) is a more robust error

than MSE that compute the median of absolute
predictive errors:

MAE = Median
(∣∣yc − ŷc∣∣) .

Smaller MSE and MAE are better while for EVS, larger
is better.

Results and discussions
Hypertension data
Using entire feature set We first experiment with the full
feature set. The predictive performance on the test data
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Fig. 4 Histogram of LVMI in hypertension data (left) and time to recur for WPBC (right)

is shown in Table 2. In the table, GATAN-1 and MTLasso
use LVMI and LVEDVI; GATAN-2 uses posterior wall
thickness as the auxiliary target.

From the table, GATAN with LVEDVI as the auxiliary
target (i.e. GATAN-1) achieves the best predictive
performance. For example, GATAN-1 improves MSE
approximately 3% compared with Lasso; compared with
MTLasso, they also performs better with margins 5%
(MSE), 13% (EVS), 2% (MAE). We can also see from the
table that GATAN provides performance improvements
over MLP-4, due to the introduction of auxiliary tasks.
This confirms that GATAN benefits from the auxiliary
task in multi-task learning as a regularization .

MTLasso also introduces auxiliary tasks. However,
MTLasso does not improve over Lasso. MTLasso assumes
all tasks share the same subset of effective features.
This is too restrictive for LVMI and LVEDVI having the
same feature structure. On the contrary, GATAN has less
restrictive assumption on defining the clinical “relevance”;

GATAN captures the relevance by learning a shared fea-
ture representation. This implies that a proper assumption
on the task relatedness is crucial for multi-task learning.

Finally, the explained variance score (EVS) is not sat-
isfactory for all models on the testing data. From the
definition, EVS is very sensitive to poor predictions. This
means that all models fail for some test samples. From the
histogram of LVMI (Fig. 4), we see that data might be gen-
erated from a multi-modal distribution and all models fail
to capture the local data structure.

We further explored the predictive behavior of GATAN
and find that models often make poor predictions at
the tails of sample distribution (results no shown). For
the used hypertension dataset, we find that the Pear-
son correlation between LVMI and calcium level is 0.79
at the right tail (LVMI >120). A two-tail correlation
test shows the Pearson correlation is statistically sig-
nificant (p-value <0.001). However, the Pearson cor-
relation between LVMI and calcium is 0.00 for the

Table 2 Predictive performance on hypertension dataset

Dataset Model KNN RF SVR Ridge Lasso MTLasso MLP-4 GATAN-1 GATAN-2

Full feature set MSE 248.06 214.68 299.03 261.52 205.67 217.34 209.43 199.76 203.50

(60.73) (25.18) (82.16) (23.26) (36.07) (39.35) (28.36) (33.48) (29.98)

EVS 0.26 0.29 0.08 0.10 0.33 0.30 0.32 0.36 0.34

(0.18) (0.12) (0.02) (0.37) (0.11) (0.14) (0.14) (0.10) (0.14)

MAE 10.91 11.29 11.66 12.41 11.40 11.65 10.43 10.20 10.77

(2.05) (1.97) (1.93) (1.65) (2.58) (2.53) (2.02) (1.71) (2.10)

Lab and demo MSE 282.06 261.27 284.05 278.80 250.754 253.59 243.41 237.97 237.66

(39.58) (20.56) (58.15) (18.88) (26.01) (33.79) (31.87) (33.59) (34.09)

EVS 0.06 0.08 0.06 0.03 0.15 0.14 0.17 0.19 0.19

(0.17) (0.25) (0.01) (0.22) (0.11) (0.11) (0.10) (0.09) (0.10)

MAE 10.54 10.42 9.90 10.24 9.59 9.43 8.84 8.67 8.54

(2.38) (0.95) (1.24) (1.78) (1.26) (0.94) (1.96) (2.05) (2.01)

The first section uses a full set of features; the second only uses lab results and demographic information
The best performance is bolded
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a b

Fig. 5 Top-20 for the complete set of features. Auxiliary target: (a) LVEDVI (b) posterior wall thickness

entire dataset, -0.10 for LVMI <120. In previous studies
[15, 16], it was shown that patients with LVH have
strong positive correlation with serum calcium level com-
pared to those without LVH. Our observations are con-
sistent with these findings. This disparity of correlation
between LVMI and calcium among the hypertension
patients implies LVH prevalence differs among patient
subgroups.

Using demographics and lab results only We use the
same experiment setup as in the experiment with a full
set of features. Table 2 shows the predictive performance
with a more limited dataset. Our multi-task neural net-
work (GATAN-1 and GATAN-2) performs better than
other models, implying that our strategy of learning
high-level feature representations would benefit predic-
tive modeling. However, comparing with the setup of
a full feature set, excluding heart functioning measures
from the input features degrades model performances, as

functional measures are expected to be more informative
for predicting LVMI.

Interpreting GATAN Figure 5a and b show the top-20
features from the full set of features with respect to two
different auxiliary tasks. Comparing these two figures,
we see that the feature ranking in a is approximately
matched with that in a. Sex is the most important fea-
ture. In the hypertension dataset, the sample mean of male
versus female is 95.78 v.s 85.21; the difference between
female and male is statistically significant with p-value
<0.0001 for a two-sample t-test. From the figure, we
also see that other features with significant contributions
are functional measures, such as ejection duration, LV
ejection fraction and Cornell product (an electrocardio-
graphic predictor of LVH). This is sensible since heart
structure and function are inherently related.

Figure 6 displays the top-15 features from demograph-
ics and lab results. Panel a and b are also approximately

a b

Fig. 6 Top-15 for only lab results as features. Auxiliary target: (a) LVEDVI (b) posterior wall thickness
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Table 3 Predictive performance on WPBC dataset

Dataset Model KNN RF SVR Ridge Lasso MTLasso MLP-4 GATAN

WPBC MSE 1139.06 1189.69 1007.50 1184.38 1000.94 990.63 941.88 860.63

(200.05) (273.34) (153.95) (253.02) (144.57) (163.17) (145.68) (65.49)

EVS -0.22 -0.17 0.00 -0.21 -0.01 0.01 0.00 -0.01

(0.15) (0.17) (0.01) (0.28) (0.15) (0.14) (0.01) (0.02)

MAE 25.48 28.00 27.16 27.78 24.58 24.16 27.09 23.86

(4.94) (3.31) (6.08) (4.27) (1.32) (3.30) (4.88) (0.79)

The best performance is bolded

matched as those in Fig. 5. From the figure, both sys-
tolic and diastolic blood pressure are the most important
features for predicting LVMI. The relationship between
hypertension and LVH was the basic premise of our study.
This is not surprising according to [17] that elevated blood
pressure corresponds with high LVMI. Moreover, GATAN
identifies more subtle relations between lab results and
LVMI, including potassium, vitamin D, calcium, diabetes
status, bun, renin et al. These top-ranked features accord
with previous researches ([15, 18, 19]), demonstrating that
feature ranking by analyzing the learned weights is a rea-
sonable heuristic for interpreting deep neural networks.

WPBC data
Table 3 shows the performance of different models on
the WPBC testing data. In terms of MSE and MAE,
GATAN achieves the smallest predictive error 860.625
and 23.860 respectively. For the explained variance score

Fig. 7 Feature contribution for WPBC dataset

(EVS), all models perform poorly. One reason accountable
for this phenomenon is that the distribution of primary
target “time to recur” is highly right-skewed, making it
difficult for models fitting data with a long tail well.
Figure 7 presents the top-10 important features for pre-
dicting “time to recur”, including FNA area, radius and
texture et al. This is intuitive as morphological measures
are informative about the breast cancer.

Conclusions
In this paper, we propose a deep multi-task neural
network, GATAN, for predictive modeling in clinical
research. GATAN leverages additional information in the
modeling process by introducing clinical measures as aux-
iliary targets. As a DNN model, GATAN is capable of
high-level feature learning, as well as flexibly captures
the clinical relevance between the primary and auxiliary
targets. As our experiments using two different datasets
show, with one auxiliary task demonstrate GATAN can
achieve superior performance compared with traditional
models when we only have access to a limited amount of
labeled data.
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