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Abstract

Background: Standards, methods, and tools supporting the integration of clinical data and genomic information
are an area of significant need and rapid growth in biomedical informatics. Integration of cancer clinical data and
cancer genomic information poses unique challenges, because of the high volume and complexity of clinical data,
as well as the heterogeneity and instability of cancer genome data when compared with germline data. Current
information models of clinical and genomic data are not sufficiently expressive to represent individual observations
and to aggregate those observations into longitudinal summaries over the course of cancer care. These models are
acutely needed to support the development of systems and tools for generating the so called clinical “deep
phenotype” of individual cancer patients, a process which remains almost entirely manual in cancer research and
precision medicine.

Methods: Reviews of existing ontologies and interviews with cancer researchers were used to inform iterative
development of a cancer phenotype information model. We translated a subset of the Fast Healthcare
Interoperability Resources (FHIR) models into the OWL 2 Description Logic (DL) representation, and added
extensions as needed for modeling cancer phenotypes with terms derived from the NCI Thesaurus. Models were
validated with domain experts and evaluated against competency questions.

Results: The DeepPhe Information model represents cancer phenotype data at increasing levels of abstraction from
mention level in clinical documents to summaries of key events and findings. We describe the model using breast
cancer as an example, depicting methods to represent phenotypic features of cancers, tumors, treatment regimens,
and specific biologic behaviors that span the entire course of a patient’s disease.

Conclusions: We present a multi-scale information model for representing individual document mentions,
document level classifications, episodes along a disease course, and phenotype summarization, linking individual
observations to high-level summaries in support of subsequent integration and analysis.
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Background
Our ability to deeply investigate the cancer genome is
outpacing our ability to correlate genetic changes with
the phenotypes that they produce. Advances in tumor
genomic profiling allow for the possibility of detailed
molecular classification of cancers, potentially including
whole exome or whole genome sequences derived from
multiple tumor locations and peripheral blood, collected
at multiple time points during tumor progression.

However, methods and tools for linking these rich gen-
omic data to relevant clinical information remain quite
limited. Many key phenotypic variables in cancer includ-
ing tumor morphology (e.g. histopathologic features), la-
boratory findings (e.g. gene amplification status), specific
tumor behaviors (e.g. metastasis), and response to treat-
ment (e.g. effect of a chemotherapeutic agent on tumor
volume) are available only in clinical notes, or are frag-
mented across multiple data sources.
To better serve translational researchers, new techniques

are needed to extract and represent these phenotypes from
electronic health record (EHR) data. The set of features
representing the clinical expression of the disease over time
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can be defined as the deep phenotype - “the precise and
comprehensive analysis of phenotypic abnormalities in
which the individual components of the phenotype are ob-
served and described for the purposes of scientific examin-
ation of human disease” [1]. Cancer deep phenotypes will
integrate data from both structured and unstructured clin-
ical records, as well as patient reported measures, to form
longitudinal models of each patient’s course.
The long-term goal of our research is to develop a

generalizable computational infrastructure that will fa-
cilitate the extraction, manipulation, and use of these
deep phenotypes, combining them with genomic data to
drive discovery and precision medicine. As a first step
towards this goal, we present an information model for
cancer phenotypes, derived from translational cancer re-
search programs and validated by cancer researchers
working in three domains: breast cancer, ovarian cancer,
and melanoma. We extend and complement evolving
FHIR models [2], defining cancer-specific extensions for
describing tumors, treatments, metastases, recurrences,
and other key factors, at levels of abstraction varying
from specific mentions in clinical notes to distinct epi-
sodes of care (e.g. staging, treatment, and follow-up) to
summative descriptions of patients.
The information model will play a key role in a Na-

tional Cancer Institute (NCI)-funded collaboration to
develop new methods for extracting, representing, and
visualizing cancer deep phenotypes. In the future, we ex-
pect to use these models to provide the foundation for
expressive and interactive phenotype exploration tools
[3] supporting cohort identification and analysis for can-
cer research.

Cancer deep phenotype extraction
Extraction and representation of cancer phenotypes is
typically a manual curation process. For specific cancer
diagnoses, hospital and state cancer registries provide
retrospective manual abstraction of clinical observations
including outcomes and some phenotypic attributes.
However, cancer registries often lack treatment and re-
currence information critical for addressing retrospective
research questions [4]. Consequently, a major effort of
many NCI designated Cancer Centers, NCI Specialized
Programs of Research Excellence (SPOREs), and Cancer
Cooperative Groups has been to obtain detailed, struc-
tured phenotypic data [5, 6]. The collection of TCGA
clinical data is a well-known example of a cancer data
requiring manual abstraction for phenotype representa-
tion [7]. The TCGA dataset includes data from more
than 100 institutions contributing structured phenotype
data along with biomaterials for high throughput mo-
lecular classification on over ten thousand cancer cases.
Previous work in a number of NIH-funded transla-

tional science initiatives, such as eMERGE, has

demonstrated the benefits of natural language process-
ing (NLP) methods for cohort identification in both
genome-wide [8–10] and phenome-wide [11] associ-
ation studies. However, these initiatives have focused
almost exclusively on non-cancer phenotypes, and have
had the goal of dichotomizing patients for a particular
phenotype of interest (for example, Type II Diabetes).
Less focus has been given to identifying specific key
variables such as response to treatment and extent of
disease, or to extracting and representing the temporal
aspects of disease progression and treatment.
Our ongoing work on natural language processing

(NLP) systems provides important experience relevant
to computable cancer phenotypes. The TIES project ap-
plies NLP techniques to the extraction of cancer pheno-
type data from clinical notes [12, 13], but the resulting
models lack necessary granular phenotype detail and
summarization over time. The cTAKES system has also
been used for annotation of a variety of cancer specific
variables and has the advantage of annotating temporal
expressions and relations [14–20], but similarly focuses
on the extraction of mentions within documents, lacking
a phenotype level representation.

DeepPhe cancer information model
Our goal was to build a cancer information model to pro-
vide a series of progressively more abstract representations
suitable for aggregating individual observations from
clinical text or structured data into summarizations of
Documents, Episodes, and eventually individual patient
Phenotypes [21]. For example, multiple mentions of a
chemo-therapeutic agent in a single clinical note (and cor-
responding medication administration record) might be
combined to form a Document summary indicating the
specific drugs and dosages. Several documents with simi-
lar records occurring over several weeks might be further
summarized as a treatment Episode, with still further
summarization listing the set of agents as a Treatment
Regimen, associated with adjuvant therapy for the primary
tumor, and producing radiographic evidence of response
as part of the Tumor Phenotype. Mention, Document and
Episode represent fundamentally different levels of ab-
straction, all of which must be considered to accurately as-
sess the Phenotype, when inferring from clinical data.
The DeepPhe information model includes these mul-

tiple levels of representation, along with provenance in-
formation linking the higher-level abstractions to their
underlying individual statements [22], as necessary for
verifying the accuracy of summarized information. Our
initial implementation operates on entities extracted via
the cTAKES NLP system, providing both a functional
implementation and a demonstration of how this ap-
proach might be adapted to work with other NLP tools.
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Because the sequence of events can influence the
resulting phenotype, information models must provide
informative representations of the temporal relationships
between events. Previous efforts have proposed temporal
models for clinical events [18, 23–26]. Recent projects,
including SemEval clinical TempEval [27] and THYME
provide insights into the automated annotation of tem-
poral events, expression and relations [14, 28], which
can support more sophisticated temporal reasoning.
Ideally, temporal cancer phenotype models will facilitate
the aggregation of such detail from individual healthcare
encounters into abstractions corresponding to key
epochs in cancer care such as diagnosis, surgery, treat-
ment, and progression [29].
In the spirit of community efforts such as the OBO-

Foundry [30], information models should build upon
existing community standards and models wherever pos-
sible. Relevant efforts specific to cancer include the NCI
Metathesaurus and NCI Thesaurus [31] as well as the
Cancer Data Standards Repository (caDSR) [32]. Onto-
logical efforts such as the Human-Phenotype ontology
[33] and the Disease Ontology [34] provide well-orga-
nized terms and relationships for individual phenotypes,
however, they do not provide the structure necessary for
creating detailed descriptions of individual patients. Clin-
ical element models (CEMS) [35–38] and the emerging
Fast Healthcare Interoperability Resources (FHIR) [39–41]
provide the necessary structure for representations but
have thus far been focused on low-level elements and have
not been used to develop summarizing abstractions for
phenotypes. In this manuscript, we present a cancer deep
phenotype information model that builds on underlying
standards and terminologies to meet these and related re-
quirements (Table 1).

Methods
The development of the cancer phenotype models in-
volved sequential steps consistent with recently pub-
lished process models for clinical information model
development [42], including (1) review of prior sche-
mata, (2) development of guiding requirements (Table 1),
(3) interviews with domain experts, (4) selection of an
appropriate standard and/or formal method framework,
and (5) iterative model development, validation, and re-
view (Fig. 1). We also used descriptions of user personae
to inform model development. Additional methodo-
logical details can be found at https://github.com/
deepphe/models/wiki.

Selection of modeling framework
We reviewed existing models of clinical and biomedical
data to identify formalisms for representing cancer deep
phenotypes, modeling languages with appropriately
expressive semantics, and vocabularies sufficient for

communicating details of cancer diagnosis and treat-
ment. We used this review to develop a list of require-
ments for our information model, including use of
appropriate terminology providing required coverage of
cancer concepts (Requirement R1); flexibility and exten-
sibility (R2); availability of tooling including validators
and application programming interfaces (APIs) (R3); the
possibility of using community input to drive the devel-
opment and evolution of our models (R4); easy integra-
tion with existing NLP tools (R5); the need to support
both structured and unstructured data (R6); modeling at
multiple levels of granularity (ranging from text spans in
documents to patient-level summaries) (R7); and inclu-
sion of provenance linkages between individual data items
and higher-level summaries (R8). We evaluated four pos-
sible formalisms against these requirements, including
clinical element models [35–38], caDSR information
models [32, 43], OBO-Foundry biomedical ontology
models [30] including the entity + quality framework [44],
and FHIR [39–41].
FHIR offers significant strengths which include de-

tailed schemata suitable for validation, reference imple-
mentations (R3), an extensive collection of software
designs and tools, including proposed extensions to han-
dle the inclusion of genomic information in EMRs [39],
and an active community of developers (R4). The FHIR
XML definitions are also easily convertible to a format
compatible with the type system used by the cTAKES
NLP Suite [45] (R5), which we plan to use to extract
deep phenotypes from clinical notes. FHIR’s models of
observations, diagnostic reports and medications are
well suited for representing available structured informa-
tion (R6). For these reasons, we selected FHIR as the
underlying modeling formalism for our cancer pheno-
type models. Our model development included the ex-
tension of FHIR resources to model cancer concepts
such as tumors (R1, R2), as necessary for the required
multi-level representation of cancer phenotypes (R7).
Provenance relations between levels in the model enu-
merate the linkages between lower-level details and
more abstract summaries (R8).
We considered the NCI-Thesaurus [31] and OBO-

Foundry [30] ontologies as candidate cancer vocabularies.
Although there is some coverage of cancer-related pheno-
types, both in broader ontologies such as the disease ontol-
ogy [34] and the human-phenotype ontology [33] and in
some domain-specific cancer ontologies [46, 47], we were
not able to identify OBO ontologies that provided the de-
tailed phenotype entities and attributes needed to represent
the subtleties inherent in cancer progression and treatment.
The NCI Thesaurus [31] was therefore chosen as the rich-
est available set of curated cancer terms and concepts.
Our models are based on a translation of FHIR struc-

ture to an OWL 2 Description Logic (DL) representation
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[48]. OWL offers several advantages aligned with the
goals of the DeepPhe project, including a semantic infra-
structure suitable for representing both structured and
unstructured data (R6); constraints appropriate for many
of the domain-specific requirements of cancer modeling
(R1, R2); the availability of reasoners and rule systems
needed for managing summarization (R3); and the
potential for compatibility with community ontology
processes (R4, R5), especially those linking phenotypic
and genomic information [25, 37, 49]. OWL also pro-
vides for the possibility of incorporating data provenance
references (R6) [22].
Our next steps include expanding our model to in-

clude additional details necessary for the representation
of cancer phenotypes for ovarian cancer, and malignant
melanoma using data from interviews already collected,
and then to add additional models for other solid tumors
using the same basic methods. We also plan to align our
OWL representations with ongoing community efforts
to develop a FHIR representation. Although these efforts
began in the fall of 2014 [50], community proposals were
not complete at the time of this writing. We will align
with HL7/W3C models for FHIR in RDF as they pro-
gress toward community consensus.

Construction of draft models
Development of initial draft models was based on an
exploration of existing models from prior efforts, and

discussion with collaborators. Cancer specific attributes
and corresponding terminologies and value sets were
developed based on existing data models provided to us
by multiple groups of collaborating cancer researchers.
In a parallel process, we reviewed the emerging FHIR
model definitions [2] to identify resources appropriate
for modeling basic clinical content (medications, proce-
dures, observations, etc.). As compatibility with existing
NLP systems was a key goal, we also examined FHIR
models in the context of existing elements in the
cTAKES model [45, 51], developing prelimimary map-
pings sufficient for using cTAKES to populate FHIR
models. The cTAKES model is based on the SHARP sec-
ondary use Clinical Element Models [38]. Published
models of care trajectories [29] informed the develop-
ment of models for episodes. Abstract classes summariz-
ing phenotypes, tumors, and cancers were developed
through graphical concept maps and refined through a
series of design discussions.
Input from domain experts informed the selection of

candidate models and model attributes including infor-
mation related to diagnosis, staging, biomarker status,
adequacy of surgical resection, therapy, outcome, and
other cancer-specific factors. Initial drafts were produced
by manual merging and mapping of multiple informa-
tion models, data dictionaries, and spreadsheets obtained
from each domain group. Outcomes of this process were
collected in a spreadsheet grouped by content area (e.g.

Table 1 Modeling requirements

Requirement Description

R1 Appropriate
terminology

Use accepted terminologies and vocabularies whenever possible

R2 Cancer-specific content Provide expressivity necessary to develop appropriately detailed descriptions
of cancer treatment and progression

R3 Available tooling Align with existing APIs, schemata, validators, etc.

R4 Community-driven modeling Use community contributions and critiques to improve models

R5 Compatibility with existing NLP
infrastructure

Facilitate interaction with existing NLP tools and type systems.

R6 Combinations of structured and unstructured data Support the combination of structured data represented in EMRs with unstructured
details extracted from clinical texts.

R7 Multi-level
modeling

Support summarization of data across multiple levels of abstraction, ranging from
instances/mentions to documents, episodes (collections of records indicating a
distinct phase in disease progression such as diagnosis or treatment), and
high-level summaries of cancers and tumors.

R8 Provenance Preserve and expose linkages between abstracted models and source data

Fig. 1 A schematic representation of the workflow used by the authors to generate the FHIR cancer models
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demographics, clinical exam, family history, pathology,
radiology, treatment, clinical genomic features, out-
come), in which each row represented a single data
element, along with a definition (where available) and
example values. Each data element (each row) in the
draft model was then transferred to an individual index
card along with example values, to be used in the infor-
mation modeling interviews (described below). To pro-
vide modularity and encourage reuse, general concepts
were modeled in a shared file (cancer.owl) augmented
with specialized extensions for breast cancer (breastCan-
cer.owl) with further extensions under development for
other cancers.
OWL definitions were created through a manual

translation process. XML FHIR definitions for a subset
of the FHIR Resource models (e.g. Condition, Procedure,
MedicationStatement, Observation, BodySite, Patient
and CarePlan) and datatypes (e.g. Quantity, Range, Ratio,
Period) were reviewed and translated into OWL using
the Protégé ontology editor.

Domain expert interviews
We conducted two different types of interviews to separ-
ately capture the process and content constraints for the
models. For process, we conducted open-ended inter-
views using a modification of the Beyer and Holtzblatt
Contextual Inquiry method [52]. For content, we con-
ducted information modeling interviews that included
card sorts of potential data elements. Information
modeling interviews were conducted with funded collab-
orators; contextual inquiry interviews were classified as
exempt by the University of Pittsburgh Human Research
Protection Office (PRO13120154).
Contextual Inquiry Interviews with cancer researchers

facilitated understanding of information needs, work-
flows, and practices to identify cohorts and related phe-
notypes to molecular characteristics. In interviews
conducted by author HH, all participants were asked to
describe their research goals and questions, and to either
directly illustrate (when possible) or describe their use of
informatics tools to meet those goals. Interviews were
audio-coded and reviewed to extract descriptions of in-
formation needs, processes, and challenges [53]. Infor-
mation needs identified through these discussions were
used as input to the model development processes and
to the development of competency questions; discus-
sions of processes and challenges contributed to the
development of work models that will inform the de-
sign of planned analytic tools (to be reported in a fu-
ture publication).
Information Modeling Interviews with project collab-

orators involved in cancer research provided insights
into the necessary content, relative importance and
need for information extraction methods. For each of

three cancer types (breast, ovarian, and melanoma),
we separately interviewed one or more translational
researchers actively engaged in using clinical data. For
each domain, we also interviewed one or more data
managers or abstractors, who were primarily respon-
sible for obtaining clinical data from various sources
including EMRs. In interviews conducted by author
RJ, each participant was provided with the complete
set of index cards representing all data elements in
the draft model and asked to prioritize them on two
axes.
For the first axis, they were asked to sort the cards

based on whether they considered any given data
element to be important information for (a) their
own research, (b) for the research of colleagues, or
(c) not important. They subsequently prioritized
group (a) into those that were very important and
somewhat important. For the second axis, they were
asked to resort cards in group (a) and (b) based on
whether they typically obtained such data from (a)
structured electronic sources, (b) unstructured elec-
tronically available sources, or (c) unstructured
sources not amenable to automated processing (e.g.
paper charts, PDF documents).
Individuals completed either both card sorts or only

one card sort based on their roles on the research
team. We also asked each participant to add data ele-
ments that were important to the research team, but
were not represented in the card set, and to include
these additional data elements in both sorts.
Throughout the interview process, the interviewer
and participant engaged in an ongoing refinement of
the meaning and importance of various data elements.
Cards were marked during the interviews to capture
prioritization on both axes. Interviews were captured
on audio recorder, and transcribed verbatim. Tran-
scriptions and prioritizations were analyzed to further
identify, refine and categorize data elements, value
domains, valid values (for enumerated elements), pri-
ority, and availability. The results were used to guide
revision of the models.

Model revision
Initial models were refined through an iterative process in-
volving both domain expert feedback and review against
sample clinical notes. Data elements, relationships, and
value sets were revised based on feedback from the card
sorting activities conducted during the information model-
ing interviews. Values and value domains provided by re-
searchers were included. We manually populated instances
of candidate models using a sample of de-identified clinical
notes from cancer patients and compared those models to
the original notes to verify sufficient expressivity. This re-
view identified both new data elements and new linguistic
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modifiers describing negation, hedging, temporality, and
other qualifiers for inclusion in the value sets. These items
were added to the model and the process was repeated with
an additional set of documents.

Model validation
Finally, candidate models generated from this sequence
of activities were presented to domain experts to validate
that the information of interest in a set of reports could
be represented accurately. The process was conducted as
a presentation by the original information modeling
interviewer. For each major part of the domain model,
we presented the expert with example text, highlighted
to show entities and their relationships in tandem with
the associated representation. For example, we depicted
a cancer Phenotype as the sum of information deriving
from the Primary Tumor as well as the subsequent
Metastatic Tumor. For each major modeling decision,
we also asked experts to comment on the appropriate-
ness of this method for the specific example. For ex-
ample, we defined an initial set of Episode types
corresponding to important intervals in a patient’s Dis-
ease Course and had the experts review them to confirm
that they were correct. Results informed the final candi-
date models which were then prepared for release.

Results
Informant interviews
A total of 13 interviews were performed with domain ex-
perts, including 6 contextual interviews and 7 information
modeling interviews. Interviews were performed with
translational researchers and their staff working in the
areas of breast cancer, ovarian cancer, and melanoma be-
tween October 2014 and August 2015. Participants in-
cluded principal investigators, research fellows, and
clinical data managers. Interview lengths ranged from
approximately 1 to 2 h.
For information modeling interviews, the total number

of data elements considered in the card sort was 137
(breast cancer), 86 (ovarian cancer) and 97 (melanoma).
Of the total, 16 (breast cancer), 15 (ovarian cancer) and
25 (melanoma) new data elements were added by the
participants.

Prioritization
For the breast cancer model, informants prioritized 101/
137 data elements as specifically important to them, 35/
137 data elements as potentially important only to other
researchers but not to themselves, and 1/137 data ele-
ments as not important to themselves or other re-
searchers. For the ovarian cancer model, informants
prioritized 81/86 data elements as specifically important
to them, 4/86 data elements as potentially important to
other researchers but not to themselves, and 1/86 data

elements as not important to themselves or to other re-
searchers. For the melanoma model, informants priori-
tized 86/97 data elements as specifically important to
them, 9/97 data elements as potentially important to
other researchers but not to themselves, and 2/97 data
elements as not important to themselves or to other
researchers.

Availability
Of the total data elements, research staff currently
tasked with collecting this data indicated that the large
majority of these data elements could only be manually
abstracted at present. This included 112/137 data ele-
ments for breast cancer, 79/86 data elements for ovarian
cancer and 90/97 data elements for melanoma which are
currently and routinely abstracted from free text elec-
tronic medical records. Structured data is available for
only a small number of data elements in each model.

Overlap among individual models
Models for breast cancer, ovarian cancer and melanoma
contained significant overlap with 52 data elements
shared by all three models. These included key variables
such as tumor stage, treatment, and outcome. In con-
trast, 129 data elements were unique to a specific do-
main. These included specific types of somatic
mutations (e.g. BRAF), germline mutations (e.g. BRCA1),
biomarkers (e.g. CA125), risk factors (e.g. UV exposure)
prognostic features of the tumor (e.g. tumor infiltrating
lymphocytes), and specific clinical features (e.g. associ-
ated ascites).

Information model
Figure 2 provides an overview of the information model
including the four constituent levels: Mention, Docu-
ment, Episode, and Phenotype.

Mentions (Level 1)
Mentions are represented using the cTAKES type system,
which provides an interoperability standard based on the
SHARP secondary use Clinical Element Models. This data
provides essential building blocks for higher-level
summarization of Documents, Episodes and Phenotypes.
For temporal representation, we reuse entities articulated
in the cTAKES temporal module, including events,
document time relations (DocTimeRel) that build on the
classic Allen temporal relations [54], and the notion of
temporal containers.

Composition (Level 2)
Individual mentions and their relations are combined
into a composition model representing all details from
an individual clinical note. As an example, Document 1
in Fig. 3 includes multiple mentions of a Mass that is
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summarized into one event detail in the corresponding
composition model. Data captured in Level 1 cTAKES
types can be transformed to Level 2 FHIR resources
which are aggregated to create FHIR compositions (R5),
and stored as event details (R7). Resources selected as
an initial subset of the FHIR Data Standard for Trial Use
2 include Condition, Patient, Observation, BodySite, Pro-
cedure, and MedicationStatement, which were sufficient
for modeling a large number of concepts extracted from
clinical text via NLP. OWL classes from an existing NLP
information extraction schema [55] were modified to
represent this subset of FHIR resources.

Episodes (Level 3)
At the Episode level, we model specific disease-relevant in-
tervals with expected key events, as Episodes within a Dis-
ease Course, extending previous work on cancer trajectories
[29]. Events are contained and ordered within these
disease-relevant episodes. Episodes are hierarchical (con-
taining other episodes), may overlap, and include start and
end dates as well as start and end events. For example, a
Primary Tumor episode is composed of constituent

episodes (phases) including a Diagnostic episode. The diag-
nostic episode begins with the presentation of a complaint,
symptom, or sign that initiates a diagnostic workup, and
ends with a pathologic, laboratory, or radiologic diagnosis
of a new Cancer. Episodes are defined as extensions of the
FHIR Bundle class and can be ordered to form an ab-
stracted timeline of a patient’s Disease Course (Fig. 4). Thus,
events from Documents 1, 2 and 3 in Fig. 3 (e.g. mammo-
gram, mass, needle biopsy, invasive ductal carcinoma, T1,
N0, M0, BRCA status) are classified as belonging to a Pri-
mary Tumor episode in the Diagnostic phase whereas the
events from Document 4 (e.g. MRI, enhancing lesion, meta-
static carcinoma) are classified as belonging to a Metastatic
Tumor episode in the Diagnostic phase. Extraction of sub-
sequent entities, events, and relations can thus be condi-
tioned on the unique context of the disease-specific
episode. Visualization and search methods can also leverage
the context to return more relevant results.

Phenotypes (Level 4)
At the phenotype level, we model abstractions of key
variables over time. Disease indicators are grouped

Fig. 2 Classes used in cancer phenotype representations. Individual mentions extracted from NLP (Level 1) are instantiated as FHIR Objects, which
are collected in Compositions corresponding to individual documents (Level 2). These FHIR objects become events that are aggregated into
distinct Episodes of care (Level 3) and eventually analyzed to form patient and phenotype level summaries (Level 4)
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under Manifestations of Disease, a class subsuming Clin-
ical Manifestations (e.g. cancer type, stage, histology,
etc.) and Molecular Manifestations (e.g. receptor status).
Cancer, Tumor, Cancer Phenotype, and Tumor Phenotype
classes represent the overall progression and treatment
of cancers and individual solid tumors, with Cancer
summarizing details relavent to the disease as a
whole, and Tumor summarizing details relevant to
individual mass-occupying lesions. Cancers may ex-
hibit different Cancer Phenotypes over time, just as
Tumors may exhibit more than one Tumor Pheno-
type. Cancers and Tumors may be treated, thus alter-
ing the phenotypes with which they are associated.
For example, a given tumor may have the phenotype
“ER positive” at one point in time, but may acquire

the phenotype “ER negative” at another point in time.
Example attributes of Cancer Phenotype and Tumor Pheno-
type are shown in Table 2. Phenotypes also include co-
morbidities, including those that are relevant to cancer.
Additional classes describe Treatments, Outcomes, and
Germline Sequence Variations and Tumor Sequence Varia-
tions. Wherever possible, phenotype level entities are de-
fined within existing biomedical ontologies, favoring those
developed using OBO principles. For example, Germline
Sequence Variation links to the Sequence Ontology class,
sequence_variant, by referencing the class id (SO:0001060)
in the rdfs: seeAlso annotation property.
Linkages between mentions, documents, and epi-

sodes are accomplished through provenance exten-
sions to the FHIR resources (R8). Each higher-level

Fig. 3 Example patient records and their representation as compositions
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resource refers to one or more lower-level resources,
using the “prov:wasDerivedFrom” relationship from
the PROV provenance ontology [22]. The transitive
closure of these relationships, along with direct rela-
tionships between concepts such as Cancer and
Tumor, will form a complete derivation path for the
abstracted models.
The DeepPhe model is defined in publicly available

OWL files [56] distributed under a creative commons
Attribution International 4.0 license. Readers are en-
couraged to use GitHub code control and issue-tracking
tools for the model repository to provide comments,
suggest enhancements, and explore potential extensions
and adaptations to the models (R4).

Use of the model for phenotyping
Construction of a patient phenotype is envisioned as a
multi-step process. Currently we leverage the models de-
scribed above (1) to produce dictionaries for a new con-
cept recognition component of cTAKES [45] using the
NobleCoder concept recognition tool [57], and (2) as the
knowledge representation for developing phenotyping
rules capable of combining individual observations from
the mention level into appropriate instances of data ele-
ments at the phenotype level. Initial rules validating the
approach were developed using the Semantic Web Rule
Language [58], with subsequent rules implemented in
the Drools system [59] (Fig. 5). In the future, we will ex-
tend our DeepPhe NLP pipeline to (3) leverage the

Fig. 4 Summarization of records from Fig. 3 into Episodes and Patient/Phenotype Summary
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model’s attributes and valid values to selectively process
documents based on class (e.g. Breast Cancer, Ovarian
Cancer) and (4) interdigitate EMR data, cancer registry
data, and data derived from NLP pipelines as input to
the phenotyping rules.

Model validation
Both contextual inquiry and information modeling inter-
views (including card sorts) were used to develop a set
of competency questions [60] suitable for validating the
resulting cancer phenotype models. Competency ques-
tions reflect prototypical questions that might be asked
by cancer investigators. Resulting questions encompass
the identification of patients with specific clinical pro-
files, potentially including temporal relationships be-
tween sentinel events; comparison of patients by cohort;
integration of information across multiple sources; and
identification of available information. Sample compe-
tency questions are given in Table 3; full details are
available at the project website [56].

Discussion
Proponents of “deep phenotyping” argue for the import-
ance of detailed phenotypic descriptions - generally in a
computable form—as prerequisites for finely-grained ana-
lyses that stratify patients into previously unknown classi-
fications, thus enabling more precise investigation and
characterization of human disease [1, 61–64]. This is also
a key goal of precision medicine, which will require much
more sophisticated analysis of patient data to derive
meaningful features for classification and prediction.

Achieving both of these goals will require advances in ex-
traction of key details from patient records and also in as-
sembling those details into sufficiently expressive and
flexible representations. Although previous efforts such as
eMERGE have shown the potential of large-scale extrac-
tion of phenotypic information from both structured and
unstructured data sources [9], the resulting classifications
have typically been dichotomous, describing patients in
terms of the presence or absence of one or more specified
diseases. More detailed models are needed to build pheno-
type descriptions that capture the inherent complexity
and diversity in the manifestations of human disease. Spe-
cifically, these models must convert individual facts and
observations into computable phenotypes, describing pa-
tients at a level of granularity appropriate for interpret-
ation of individual cases, comparison between cases,
cohort selection, and hypothesis generation through
exploration of large datasets.
The DeepPhe information model builds on entities that

can be extracted from structured or unstructured data in
medical records and aggregated into individual documents,
episodes, and eventually into high-level phenotypic descrip-
tions. Provenance linkages tying higher-level phenotypic
representations to constituent observational details provide
audit trails suitable for verifying the abstractions, while also
enabling analyses to move between levels of abstraction as
necessary for specific tasks.
The use of the HL7 FHIR data model bridges the gap

between two key applications of patient data: data result-
ing from direct clinical care and secondary use of clinical
data for research purposes. Although FHIR was clearly
developed to meet clinical interoperability needs, the
simple, well-documented designs of FHIR resources and
data types, particularly including extension mechanisms,
simplified the process of developing phenotype abstrac-
tions needed for translational research. This approach
provides a model for adapting FHIR to support second-
ary use of clinical data, similar to efforts that use FHIR
to integrate genomics into clinical records [39].
Our development of cancer-specific attributes and

value sets raised familiar design issues such as pre-
and post-coordination of descriptors [36] and differ-
ences in domain perspectives. As definitive answers to
these questions are often not possible, our modeling
efforts relied on a combination of pragmatism and
reference to existing best practices. For example,
biomarker test results (e.g. Estrogen Receptor, Proges-
terone Receptor and Her2Neu Receptor status) pre-
sented a challenge, as initial attempts to pre-compose
testing methods, marker, and interpretation led to an
unwieldy number of potential combinations. A post-
composed model was chosen instead, with the under-
standing that equivalence classes would be added as
needed.

Table 2 Attributes of (a) cancer and (b) Tumor phenotypes

(a)

Cancer Phenotype

Cancer Type carcinoma, sarcoma, etc.

Histologic Type ductal, lobular, etc.

Tumor Extent in-situ, invasive, etc.

Cancer Stage Stage I, Stage IIA, etc.

T Classification Primary Tumor Classification (pTis, T2a, etc.)

N Classification Regional lymph node classification (pNx, N1, etc.)

M Classification Distant metastasis classification (M0, M1, etc.)

Manifestations Clinical and Molecular classifications of the
cancer (hypercalcemia, hypercoaguability, etc.)

(b)

Tumor Phenotype

Cancer Type by cell of origin (carcinoma, sarcoma, etc.)

Histologic Type ductal, lobular, etc.

Tumor Extent in-situ, invasive, etc.

Manifestations Clinical and Molecular classifications of the
tumor (size, receptor status, Nottingham score, etc.)
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Genetic and molecular descriptors present additional
challenges for cancer modeling. We have included
classes for both sequence variations and molecular
manifestation resulting from those variants, with rela-
tionships between associated classes as necessary. User-
facing tools based on these models might choose to
combine these factors if necessary to align with the pref-
erences of users in specific domains. We have chosen to
adopt an initial model of structural variation that is sig-
nificantly less detailed than the GeneticObservation sug-
gested by the SMART on FHIR Genomics effort [39].
Subsequent evolution of our model will align more
closely with this effort.
Our multi-level modeling approach identified—but did

not fully resolve—modeling challenges associate with
multiple uses of terms such as “tumor” or “cancer”. At
the mention level, these terms refer to specific state-
ments from clinical notes, while at the phenotype level
they refer to abstractions of complex pathophysiologic
events. Thus, we have included entities in our represen-
tation at both Level 1 and Level 4 that share the same
names, although they refer to different conceptualiza-
tions. This duplication was deemed preferable to the
creation of alternative terms.
Our cancer information model is presented here as a

computable representation of longitudinal phenotype
and treatment data at multiple levels of abstraction.
Realizing the complexity and diversity of cancer treat-
ment and disease progression, we do not expect that this
approach is in any way final or definitive. We plan to en-
gage an even broader range of informatics from the can-
cer research community to identify use cases suitable for
extending the expressivity of the model and for guiding

any necessary revisions. Extension of the models to han-
dle non-solid cancers (e.g. leukemias) would be particu-
larly useful for validation of the overall approach.
Feedback can be provided at the project GitHub page,
https://github.com/deepphe/models. We also plan to
work with systems developers, cancer researchers en-
gaged in complementary computational approaches such
as tumor growth simulations [65, 66], and with related
efforts such GA4GH [67], PhenoPackets [68], and others
developing phenotype models [8] to identify additional
use cases and opportunities for encouraging broader
adoption and use of common methods and standards.

Limitations
Although our modeling process combined both exten-
sive interviews aimed at eliciting information needs from
cancer researchers, review of relevant guidelines and
standards for cancer care, and consideration of compe-
tency questions, our models are not expected to be
generalizable to all use cases, both in terms of specific
modeling decisions and scope of relevant concerns. We
anticipate potential revisions to the model to accommo-
date the practicalities of working with functional NLP
tools. Finally, FHIR RDF representations from the HL7/
W3C community are evolving and (as of this writing)
not fully complete. It is possible that completion of these
efforts may lead to the adoption of some RDF models
that are not directly compatible with our proposed infor-
mation models. If any such inconsistencies arise, we will
endeavor to ensure that subsequent revisions to our
model are compatible with community-developed FHIR/
RDF models to the greatest extent possible.

(See figure on previous page.)
Fig. 5 An example abstraction rule and its expression in SWRL. Summarization rules convert assertions extracted from individual documents into
higher-level summaries. (1) A subset of the upper-levels of the information model showing key concepts in representation of both instance and
summary models. (2) A mapping of those concepts to levels in the information model. (3) A subset of the elements used in a Patient/Phentoype
level summary. (4) A graphical example of a rule taking instances (5) and transforming them into a summary representation (6). This rule indicates
that the value of a FISH test will take precedence over results of an IHC test. This rule is given in English (7), SWRL (8), and Drools (9)

Table 3 Sample competency questions

Category Description Sample question

Clinicalcriteria Find patients matching some desired criteria, independent of
temporal relations

Which patients have had atypical endometriosis?

Eventrel Find patients who experience two or more clinically-relevant
events, related by a specified time interval.

Which patients were given chemotherapy within eight
weeks of their death?

Stratification Given two sets of patients similar in key respects, compare
certain outcomes based on stratification of categorical
values such as care, phenotype, etc.

What portion of BRCA patients with PALB2 were given
PARP inhibitor therapy?

Triangulation Some information cannot be interpreted on the basis of
any one source. Integration of related information from
multiple sources is required to develop full understanding.

Which patients had medications that were ordered (as per physician
charts), but not administered (as per Medication Administration
Records (MARs) or nursing records)?

Schema What information is available on which patients? For which patients do I have a valid date of death?
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Conclusion
Improved phenotypic descriptions of cancer and patient
phenotypes are needed to advance translational research
[69], quality care measures [4], and precision medicine
[70]. We illustrate the potential benefits of using FHIR-
compatible models, and offer a foundation suitable for
extension to other domains.
We present a multi-level information model designed

to support capture of cancer clinical data at multiple
levels, from specific mentions in clinical texts, to
summarization at increasingly higher levels of abstrac-
tion including documents, episodes, and phenotypes.
The model is designed to be used by computational sys-
tems that extract these representations. Our model also
provides an early example of rich representational
models for deep phenotypes [69], suitable for adaptation,
generalization, and community comment.
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