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anti-inflammatory agents in (LPS from
E. coli O111:B4) activated macrophages
and microglial cells; focus on sepsis
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Abstract

Background: Acute systemic inflammatory response syndrome arising from infection can lead to multiple organ
failure and death, with greater susceptibility occurring in immunocompromised individuals. Moreover, sub-acute
chronic inflammation is a contributor to the pathology of diverse degenerative diseases (Parkinson’s disease,
Alzheimer’s disease and arthritis). Given the known limitations in Western medicine to treat a broad range of
inflammatory related illness as well as the emergence of antibiotic resistance, there is a renewed interest in
complementary and alternative medicines (CAMs) to achieve these means.

Methods: A high throughput (HTP) screening of >1400 commonly sold natural products (bulk herbs, cooking spices,
teas, leaves, supplement components, nutraceutical food components, fruit and vegetables, rinds, seeds, polyphenolics
etc.) was conducted to elucidate anti-inflammatory substances in lipopolysaccharide (LPS) (E. coli serotype O111:B4)
monocytes: RAW 264.7 macrophages [peripheral], BV-2 microglia [brain]) relative to hydrocortisone, dexamethasone
and L-N6-(1Iminoethyl)lysine (L-NIL). HTP evaluation was also carried out for lethal kill curves against E.coli 0157:H7
1x106 CFU/mL relative to penicillin. Validation studies were performed to assess cytokine profiling using antibody
arrays. Findings were corroborated by independent ELISAs and NO2–/iNOS expression quantified using the Griess
Reagent and immunocytochemistry, respectively. For robust screening, we developed an in-vitro efficacy paradigm to
ensure anti-inflammatory parameters were observed independent of cytotoxicity. This caution was taken given that
many plants exert tumoricidal and anti-inflammatory effects at close range through similar signaling pathways, which
could lead to false positives.
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Results: The data show that activated BV-2 microglia cells (+ LPS 1μg/ml) release >10-fold greater IL-6, MIP1/2, RANTES
and nitric oxide (NO2–), where RAW 264.7 macrophages (+ LPS 1μg/ml) produced > 10-fold rise in sTNFR2, MCP-1, IL-6,
GCSF, RANTES and NO2–. Data validation studies establish hydrocortisone and dexamethasone as suppressing multiple
pro-inflammatory processes, where L-NIL suppressed NO2–, but had no effect on iNOS expression or IL-6.
The screening results demonstrate relative few valid hits with anti-inflammatory effects at < 250μg/ml for
the following: Bay Leaf (Laurus nobilis), Elecampagne Root (Inula helenium), Tansy (Tanacetum vulgare),Yerba (Eriodictyon
californicum) and Centipeda (Centipeda minima), Ashwagandha (Withania somnifera), Feverfew (Tanacetum parthenium),
Rosemary (Rosmarinus officinalis), Turmeric Root (Curcuma Longa), Osha Root (Ligusticum porteri), Green Tea (Camellia
sinensis) and constituents: cardamonin, apigenin, quercetin, biochanin A, eupatorin, (-)-epigallocatechin gallate (EGCG)
and butein. Natural products lethal against [E. coli 0157:H7] where the LC50 < 100 μg/ml included bioactive
silver hydrosol-Argentyn 23, green tea (its constituents EGCG > Polyphenon 60 > (-)-Gallocatechin > Epicatechin >
(+)-Catechin), Grapeseed Extract (Vitis vinifera), Chinese Gallnut (its constituents gallic acid > caffeic acid) and gallic
acid containing plants such as Babul Chall Bark (Acacia Arabica), Arjun (Terminalia Arjuna) and Bayberry Root Bark
(Morella Cerifera).

Conclusions: These findings emphasize and validate the previous work of others and identify the most effective CAM
anti-inflammatory, antibacterial compounds using these models. Future work will be required to evaluate potential
combination strategies for long-term use to prevent chronic inflammation and possibly lower the risk of sepsis in
immunocompromised at risk populations.

Background
Global health initiatives are encumbered by a vast majority
of the population suffering from non-communicable
inflammatory diseases such as cardiovascular disease, neu-
rodegeneration, diabetes, arthritis, ulcerative colitis/bowel
disease and cancer. Also, with increased incidence of anti-
biotic resistance, acute inflammation from sepsis plays a
major role in mortalities arising from diverse infectious
agents [1, 2]. Given limitations in Western medicine to
treat/prevent a broad range of inflammatory related
illness, there is a renewed interest in complementary
and alternative medicines (CAMs) to achieve these
means [3–9].
While there exist a plethora of scientific publications

on the efficacy of individual CAMs in specific inflamma-
tory models, there lacks a relative comparative potency
rank of the most commonly marketed CAMs in a single
study, conducted under uniform conditions. Our high
throughput (HTP) screening library houses over 1400
products most which are available and sold to con-
sumers throughout the world in the form of bulk herbs,
cooking spices, teas, leaves, supplement components,
nutraceutical food components, fruit and vegetables,
roots, rinds, seeds, polyphenolics etc. The purpose of the
current study is to screen commonly utilized CAMs for
anti-inflammatory efficacy under uniform standard con-
ditions to elucidate the most potent at non-toxic/low
therapeutic concentrations (<250 μg/mL), and further to
compare these to steroidal and NSAID drugs.
The in-vitro model employed was that of monocytes

(peripheral and central nervous system) stimulated by
lipopolysaccharide (LPS) derived from E. coli O111:B4.

LPS is a cell wall endotoxic component from gram nega-
tive bacteria which evokes a deadly cytokine storm asso-
ciated with septicemia, septic shock and multi organ
failure. Known biologic consequences of LPS include the
colossal release of chemotactic cytokines, IL-3 IL-12,
TNF-alpha, IL-6, IL-1 beta, inducible nitric oxide (iNOS)
NO3 -/NO2 -, P-selectin, CD 11b/CD18 (Mac-1) ICAM-
1, PGE2 which enable massive neutrophil infiltration
and hemolytic [10–13]. While many of these inflamma-
tory molecules at high concentrations are lethal, sub-
chronic rises of the same are associated with age related
inflammatory degenerative diseases such as Parkinson’s
disease, Alzheimer’s disease and arthritis [14–17]. There-
fore, the use of LPS in this model and subsequent eluci-
dation of the most effective CAMs against inflammatory
parameters, can provide information on potential thera-
peutics for both chronic and acute inflammatory
processes.
In this study, we conduct a HTP screening of CAMs

to assess both capacity to kill a pathogenic strain of
E.coli 0157:H7 as well as to mitigate the pro-
inflammatory effects from E.Coli derived endotoxin cell
wall component; LPS.

Methods
Hanks Balanced Salt Solution, (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid) (HEPES), ethanol, sulf-
anilamide, 96 well plates, general reagents and supplies,
were all purchased from Sigma-Aldrich, (St Louis, MO,
USA) or VWR (Radnor, PA, USA). Imaging probes were
purchased from Life Technologies (Grand Island, NY,
USA). Natural products were purchased from Frontier
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Natural Products Co-op (Norway, IA, USA), Monterey
Bay Spice Company (Watsonville, CA, USA), Mountain
Rose Herbs (Eugene, OR, USA), Mayway Traditional
Chinese Herbs (Oakland, CA, USA), Kalyx Natural
Marketplace (Camden, NY, USA), Futureceuticals
(Momence, IL, USA), organic fruit vegetable market:
New Leaf (Tallahassee, FL, USA), Florida Food Products
Inc. (Eustis, FL, USA), Patel Brothers Indian Grocery
(Tampa, FL, USA), Opil Gold from Aging Sciences LLC
(Wayland, MA, USA) and Colloidal Silver - Argentyn
23® Natural Immunogenics (Sarasota, FL, USA). Elisa
kits and cytokine antibody arrays were purchased from
Assay Biotech (Sunnyvale, CA) and Raybiotech
(Norcross, GA, USA).

Cell culture
BV-2 microglia (BV-2) cells were provided by Eliza-
beta Blasi [18], and RAW 264.7 cells were purchased
from American Type Culture Collection (Manassas,
VA, USA). Cells were cultured in DMEM high glu-
cose media [glucose 4500 mg/L] containing 5% FBS,
4 mM L-glutamine, and penicillin/streptomycin (100
U/0.1 mg/mL). Culture conditions were maintained
at 37 °C in 5% CO2/atmosphere and every 2–3 days,
the media was replaced and cells sub-cultured. For
experiments, plating media consisted of DMEM

(minus phenol red) [glucose 4500 mg/L], 2.5% FBS
and penicillin/streptomycin (100 U/0.1 mg/mL). LPS
O111:B4 was prepared in HBSS at 1 mg/mL and
stored at –20 °C. For experiments, LPS was added to the
culture media at a working concentration of 1μg/mL.

Bacterial culture
A single colony of E. coli O157:H7 was grown on an agar
plate. E. coli was then inoculated into a 20 mL of Luria-
Bertani (LB) in a flask, grown at 37 °C with moderate
shaking (180 rpm), to an OD 600 nm = 0.6. One mL of
the culture suspension was moved into a 1.5 mL Eppen-
dorf tube and centrifuged for 1 min at 10,000 g (4 °C).
After discarding the supernatant, the bacterial pellet
was re- suspended in 1 mL sterilized water. This cen-
trifugation was repeated twice. The bacteria were
stored at 4 °C. The bacterial cell numbers were then
determined using colony forming units (CFU) through
serial dilution plating on LB plate at 37 °C. The experi-
mental concentration of E. coli was 1 x 106 CFU/mL.

Sample preparation
All natural chemicals and reference drugs were dissolved
in DMSO [5–20mg/mL] and crude herbs in absolute
ethanol [50 mg/mL] after being diced, macerated and
powdered then stored at –20 °C. All plants were

Fig. 1 Cytokine release profile in LPS activated RAW 264.7 cells. The data are displayed as the cytokine array blot image and array grid layout
with leading changes presented in highlighted boxes
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cataloged by manufacturer, botanical and common
names. All dilutions were prepared in sterile HBSS +
5 mM HEPES, adjusted to a pH of 7.4, ensuring solv-
ent concentration of DMSO or absolute ethanol at
less than 0.5%.

Cell and microbial -viability
Cell and microbial viability were assessed using resazurin
]7 -Hydroxy-3H-phenoxazin-3-one 10-oxide] (Alamar

Blue) indicator dye [19]. A working solution of resa-
zurin was prepared in sterile HBSS minus phenol red
(0.5 mg/mL), then added (15% v/v) to each sample.
Samples were returned to the incubator for 2–4 h,
and reduction of the dye by viable cells (to resorufin,
a fluorescent compound) was quantitatively analyzed
using a Synergy HTX multi-mode reader Bio-Tek Inc.
(Winooski, VT, USA) with settings at [550 nm/580 nm],
[excitation/emission].

In-Vitro efficacy index
Several methodological concerns were addressed regard-
ing HTP screenings. These included basic controls for
pH (neutralized with buffered HBSS) and cell viability.

In-vitro, immortal (malignant) immunocompetent cell
lines such as glioma cells, macrophages, microglia, lym-
phocytes or granulocytes are of tumor origin, and many
natural compounds simultaneously induce apoptosis in
malignant cells and attenuate inflammation via the same
pathways (i.e. phosphorylation of extracellular signal-
regulated kinase (ERK), c-jun NH2-terminal kinase
(JNK) phosphorylation and mitogen-activated protein ki-
nases (MAPK)/NF-κB) [20–26]. For this reason, we con-
structed and utilized an in-vitro efficacy index (iEI)
paradigm, to ensure that anti-inflammatory effects are
occurring at non-cytotoxic concentrations. The iEI is de-
fined as the LC50 (toxic concentration)/IC50 (anti-in-
flammatory concentration) ratio, with higher values
reflecting a greater confidence in the anti-inflammatory
effects occurring independently of cell death.

Nitrite (NO2–)/iNOS expression
Quantification of nitrite (NO2−) was determined
using the Greiss reagent [27]. The Greiss reagent was
prepared by mixing an equal volume of 1.0%
sulfanilamide in 10% phosphoric acid and 0.1% N-
(1-naphthyl)-ethylenediamine in deionized water,

Fig. 2 Cytokine release profile in LPS activated BV-2 cells. The data are displayed as the cytokine array blot image and array grid layout
with leading changes presented in highlighted boxes
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which was added directly to the cell supernatant
(experimental media consisting of DMEM - phenol
red) and incubated at room temperature for 10 min.
Controls and blanks were run simultaneously, and
subtracted from the final value to eliminate interfer-
ence. Samples were analyzed at 540 nm on a Synergy
HTX multi-mode reader; Bio-Tek (Winooski, VT,
USA).
iNOS protein expression was determined using im-

munocytochemistry. Cells were fixed in 4% paraformal-
dehyde/permeabilized in 0.2% Triton X 100 in
phosphate buffered saline (PBS) and incubated with
anti-iNOS, an N-Terminal antibody produced in rabbit
for 24 h at 4 °C in a casein blocking buffer. Samples
were washed in PBS, then incubated with anti-rabbit
Alexa Fluor® 488 conjugate for two hours at RT. Samples
were counterstained with propidium iodide and imaged
using a fluorescent/inverted microscope, CCD camera
and data acquisition using ToupTek View ; ToupTek
Photonics Co (Zhejiang, P.R.China).

Mouse cytokine antibody array
Mouse Cytokine Antibody Arrays (Product Code:
AAM-CYT-1000) Ray Biotech; (Norcross, GA, USA)
were used to profile the effects of LPS (1μg/mL) on
BV-2 and RAW 234.7 cell lines. Each experiment was
carried out according to the manufacturer’s instruc-
tions, and in triplicate. Briefly, antibody-coated array
membranes were first incubated for 30 min with 1
mL of blocking buffer. After 30 min, blocking buffer
was decanted and replaced with 1 mL supernatant
from control (untreated) samples, cells treated with
(1ug/mL LPS only) and a media blank. Membranes
were incubated overnight at 4 °C with mild shaking.
The next day, the medium was decanted; membranes
were washed, and subsequently incubated with 1 mL
biotin-conjugated antibodies for 6 h. Lastly, biotin-
conjugated antibodies were removed and membranes
were incubated with HRP-conjugated streptavidin
(2h), then evaluated for densitometry using a chemi-
luminescence substrate monitored on a VersaDoc
Imager/Quantity One software from Bio-Rad:
(Hercules, CA, USA).

IL-6 (Interleukin-6) ELISA
After experimental treatment, cells supernatants were
directly evaluated for concentration of IL-6 using a
Murine OmniKine™ IL-6 ELISA (Product Code # OK-
0187), Assay Biotechnology Inc. (Sunnyvale, CA,
USA), performed according to the manufacturer’s
guidelines. Data was quantified by optical density at
450 nm using a Synergy HTX multi-mode reader
from Bio-Tek (Winooski, VT, USA).

Fig. 3 ELISA: Quantification of IL-6 in the supernatant of resting and
LPS activated cells (BV-2 cells, RAW 264.7 cells). The data represent
IL-6 (pg/μl) and are expressed as the Mean ± S. E. M., n = 3. Differences
between resting and LPS activated cells were determined by a
student’s T test (*) P < 0.001

Fig. 4 NO2- production in resting and LPS activated cells (BV-2 cells,
RAW 264.7 cells) ± selective iNOS inhibitor: L-NIL (12 μg/mL). The data
represent NO2- produced (μM) and are expressed as the Mean ± S. E.
M., n = 3. Differences between resting and LPS activated cells were
determined by a student’s T test (*) P < 0.001. Differences between
LPS vs. LPS/L-NIL treated cells were determined by a student’s T test [*]
P < 0.001. iNOS expression was analyzed by ICC using rabbit
anti-mouse iNOS/goat anti-rabbit Alexafluor 488, in fixed permeabilized,
propidium iodide nuclear counterstained cells (a) resting BV-2
cells (b) resting RAW 264.7 cells (c) LPS activated BV-2 cells (d)
and RAW 264.7 cells
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Data analysis
Statistical analysis was performed using Graph Pad
Prism (version 3.0; Graph Pad Software Inc. San Diego,
CA, USA) with significance of difference between the
groups assessed using a one-way ANOVA then followed

Fig. 5 High-through-put study design. The basic study layout
consisted of a primary first level tier 1 screening by which all CAMs
were tested to reduce NO2- in LPS treated BV-2 and RAW 264.7 cells
[maximum working concentrations were : 230μg/mL (plant based)
and 92μg/ml (metabolites, drugs and polyphenolics)]. a, b Compounds
displaying an IC50 below the 1st tier concentrations were further
evaluated as per the template (c). All compounds were simultaneously
evaluated for toxicity/anti-inflammatory effects and an iEI differential
was established (LC50/IC50) to prevent false positives incurred by
cytotoxic effects

Table 1 Efficacy of anti-inflammatory CAMS relative to cellular
toxicity in LPS activated RAW 264.7 cells

RAW 264.7 cells + 1μ/mL LPS: anti-inflammatory potency

Substance Anti-inflammatory
IC50 (μg/mL)

Toxicity LC50
(μg/mL)

iEI (LC50/
IC50)

L-N-lysine dihydrochloride 4.4 250.0 >57.4

Cardamonin 6.1 250.0 >40.8

Dexamethasone 1.6 260.0 >22.4

Hydrocortisone 45.6 250.0 >5.4

Bay Leaf/Laurus nobilis 92.6 537.0 >5.8

Tansy Herb/Tanacetum
vulgare

76.7 934.9 12.2

Apicidin 0.2 2.4 11.7

Apigenin 30.8 252.0 8.2

Yerba Santa Lf/E. californicum 194.0 1413.4 7.3

Butein 8.0 57.9 7.3

Ashwagandha/Withania
somnifera

457.2 3306.0 7.2

Centipeda Herb/Centipeda
minima

213.7 1260.5 5.9

Rosemary Lf/Rosmarinus
officinalis

132.4 754.8 5.7

Feverfew/Tanacetum
parthenium

48.4 264.2 5.5

Green Tea Std sigma T5550 45.5 228.7 5.0

Elecampane Root/Inula
helenium

257.8 1276.0 4.9

Quercetin 14.3 63.8 4.5

Commiphora myrrha resin 127.1 5221.1 4.1

Amla/Phyllanthus emblica 156.7 641.0 4.1

Herb de province 203.4 793.2 3.9

Turmeric Root/Curcuma
longa

87.3 274.3 3.1

Biochanin A 119.0 345.1 2.9

Trifala 195.3 559.5 2.9

Cinnamon/Cinnamomum
burmannii

344.9 923.0 >2.6

EGCG 20.0 50.8 2.5

Bergamottin 67.1 161.7 2.4

Osha Root/Ligusticum porteri 43.4 104.1 2.4

Kalijiri Purple Fleablame 58.0 130.0 2.2

Curcumin 12.6 28.1 2.2

Rabdosia rubescens Herb 104.9 220.3 2.1

White Sage/Salvia apiana 62.0 129.5 2.1

Blood Root/Sanguinaria
canadensis

23.4 47.4 2.0

The data represent LC50 values for toxicity and IC50 values for NO2- reduction
both determined by regression analysis on a minimum of 6 concentrations,
(n = 4). The ratio of LC50/IC50 μg/mL is the iEI (in- vitro efficacy index), where
the greater the value the greater the confidence in the anti-inflammatory
effects. The symbol [>] denotes an iEI value acquired on a maximum upper
limit concentration being tested
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by Tukey post hoc means comparison test, or a Student’s
t test. IC50s were determined by regression analysis using
Origin Software (Origin Lab, Northampton, MA).

Results
Validation
Validation studies were conducted to determine profiled
cytokine differentials in LPS activated RAW 264.7 (Fig. 1)
and BV-2 cells (Fig. 2), respectively - using semi quanti-
tative antibody microarrays, which were run in triplicate.
The representative panel shows both cell lines exposed
to LPS prompted the greater release of MCP-1, GCSF,
MIP1a, MIP1g and MIP-2, sTNFR1/11, RANTES and
IL-6. Quantitative analysis of IL-6 was corroborated by
ELISA (Fig. 3), and iNOS protein expression was evalu-
ated by ICC (Fig. 4b) and NO2- release using the Griess
Reagent (Fig. 4a), the latter of which was reduced in the
presence of iNOS inhibitor (L-NIL).

Screening
The initial HTP screening was conducted using a natural
plant library housing over 1400 extracts including: 1)
Plants: seeds, fruits, vegetables and herbs (of diverse eth-
nic nature including Chinese, Egyptian, Indian etc.) 2)
Natural derived chemicals/polyphenolics 3) Metabolic
Substrates: amino acids, vitamins and energy intermedi-
ates such as organic acids, glycolytic intermediates and
4) Reference NSAID and steroidal anti-inflammatory
drugs. The preliminary screen was conducted to assess
reduction of NO2- in LPS activated cells [equal to or
less than 230 μg/mL] for all compounds (Fig. 5a).

Table 2 Efficacy of natural anti-inflammatory compounds
relative to cellular toxicity in LPS activated BV-2 cells

BV-2 microglia cells + 1μg/mL LPS: anti-inflammatory potency

Substance Anti-inflammatory
IC50 (μg/mL)

Toxicity LC50
(μg/mL)

iEI (LC50/
IC50)

Cardamonin 1.6 265.0 >169.4

Dexamethasone 1.9 260.0 >136.8

Bay Leaf/Laurus nobilis 34.2 537.0 >15.7

Quercetin 27.8 250.0 >8.9

Apicidin 0.0 0.6 65.5

L-N-lysine dihydrochloride 4.2 247.2 58.8

Elecampane Root/Inula
helenium

154.4 1486.0 35.7

Ashwagandha/Withania
somnifera

166.4 2848.3 17.1

Hydrocortisone 13.0 219.2 16.9

Apigenin 25.2 337.0 13.4

Optilgold 9.4 113.6 12.1

Biochanin A 33.7 369.2 10.9

Tansy Herb/Tanacetum
vulgare

143.0 1302.1 9.1

Feverfew/Tanacetum
parthenium

28.2 230.2 8.2

Centipeda/Centipeda
minima

258.4 2105.2 8.1

Osha Root/Ligusticum
porteri

29.5 203.4 6.9

Eupatorin 39.3 265.2 6.7

Turmeric Root/Curcuma
longa

74.4 498.9 6.7

Herb de province 167.2 1115.3 6.7

Granati peel/Punica
granatum rind

75.7 439.1 5.8

Rabdosia rubescens Herb 34.5 192.7 5.6

Rosemary Lf/Rosmarinus
officinali

43.0 214.8 5.0

Trifala 88.3 408.8 4.6

Green Tea Std Sigma T5550 38.0 169.7 4.5

Curcumin 10.2 43.2 4.2

Myrrh/Commiphora myrrha 31.8 132.8 4.2

Clove/Syzygium aromaticum 149.0 615.1 4.1

Indomethacin 17.9 67.2 3.7

Sage leaf/Salvia officinalis 80.3 298.4 3.7

Amla/Phyllanthus emblica 206.1 736.1 3.6

White Sage/Salvia apiana 79.2 282.0 3.6

Ganthoda 168.3 563.7 3.3

Succinum Resin 20.1 56.3 2.8

Genistein 5.6 14.7 2.6

Baicalein 7.8 20.1 2.6

Butein 1.2 2.9 2.3

Table 2 Efficacy of natural anti-inflammatory compounds
relative to cellular toxicity in LPS activated BV-2 cells
(Continued)

Maddar root/Rubia
tinctorum

59.2 135.0 2.3

Yerba Santa Lf/E.
californicum

18.3 41.4 2.3

EGCG 11.3 24.8 2.2

Phloretin 17.2 37.8 2.2

Frankincense/Boswellia
carterii

15.4 32.5 2.1

Fisetin 2.3 4.7 2.1

Piperine 36.2 75.1 2.1

Javentri Powder 16.5 34.1 2.1

Bergamottin 111.4 227.5 2.0

Cinnamon/Cinnamomum
burmann

135.0 260.0 <1.92

The data represent LC50 values for toxicity and IC50 values for NO2- reduction
both determined by regression analysis on a minimum of 6 concentrations,
(n = 4). The ratio of LC50/IC50 μg/mL is the iEI (in- vitro efficacy index), where
the greater the value the greater the confidence in the anti-inflammatory
effects. The symbol [>] denotes an iEI value acquired on a maximum upper
limit concentration being tested
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Substances that attenuated NO2– at less than 50% of
the 1st tier starting concentrations, were re-evaluated
over a dose range where LC50s (cytotoxicity) and IC50s

(NO2-) were simultaneously evaluated (Fig. 5b, c). From
the linear regression, LC50, IC50s concentrations were
determined and in-vitro efficacy index (iEI) was calcu-
lated by the ratio value : LC50/IC50 . The higher the
ratio, the greater confidence of true anti-inflammatory
effects, not attributable to cell death. All iEI values are
presented in Table 1 for RAW 264.7 cells/Table 2 for
BV-2 cells, with matching logarithmic scatter-plots
(Figs.6 and 7). Figure 8 shows a sample of NO2-/viability
dose response data, with corresponding immunochemi-
cal imaging for iNOS in RAW 264.7 cells, where super-
natant was evaluated for IL–6. The data from these
experiments show that L-NIL, while capable of inhi-
biting the catalytic function of iNOS, was not an
anti-inflammatory in the true sense. L-NIL suppressed
NO2- but had no effects on cytokine release or ex-
pression of iNOS. Most lead compounds that reduced
NO2- in both cell lines at sub-lethal concentrations
(2 x IC50 for NO2-inhibition) which corresponded to
a reduction of IL-6 in sample supernatant (Fig. 9). The
antimicrobial effects of natural products on the survival of
E.coli 0157:H7 (1x106 CFU/mL) were then evaluated. The
data show only a select few have therapeutic potency rela-
tive to penicillin/streptomycin (Table 3), colloidal silver
being the most effective (Fig. 10). The findings from this
study delineate the most potent anti-inflammatory/and
antibacterial natural compounds, when conducted in a
uniform controlled fashion in these particular models.

Discussion
The data from this study establish several findings
including [A] uncorroborated anti-inflammatory/

antimicrobial effects for over a thousand natural com-
pounds at concentrations less than 230 μg/mL using this
model; [B] corroborating data of existing work by other
research groups regarding anti-inflammatory effects of
green tea, curcumin, turmeric and rosemary ; and anti-
microbial properties of green tea, its catechins, Chinese
gallnut, gallic acid plant derived anti-fungal agents (cot-
ton/gossypol) or silver nanoparticle dispersions [28–37].
Lastly; [C] this work provides new evidence on some
lesser acknowledged herbs to which historical medicinal
value has been attributed, but little research has been
documented. Some of these include the following.
Elecampane (Inula helenium) (IH) has extensive his-

torical medicinal value, where its use dates back to the
Iron Age (c. 800–450 B.C.) throughout the third century
B.C. to 79 A.D. also mentioned by Pliny and further cor-
roborated in the Chilandar Medical Codex (13th or 14th
centuries A.D.) [38]. Within the last century, scientific
documentation is somewhat sparse on this herb having
primarily focused on its ability to cause allergic derma-
titis or act as an anti-cancer agent attributable to the
content of alantolactone and isoalantolactone [39–44].
Meager work has been performed investigating the effect
of IH on sepsis or age relate chronic inflammatory con-
ditions. Although meager research has been conducted
in IH, the findings presented here are in alignment with
existing researchers who have reported its capacity to
attenuate iNOS/NO2-, COX-2/PGE2, HMGB1 release
and NF-κB in LPS-activated RAW 264.7 cells or phorbol
activated T cells [45–48]. Interestingly, although we did
not find IH to have significant antimicrobial effects on
E.coli 0157:H7 (1x106 CFU/mL) at the low concentra-
tions criteria used in this study, others have reported its
capacity to destroy invasive pathogens such as Staphylo-
coccus aureus/methicillin-resistant (MRSA) gram-

Fig. 6 In-vitro efficacy scatter-plot for NO2–, inhibition vs. cell toxicity
in RAW 264.7 cells. The data are presented as LC50 (toxicity) vs. IC50
(iNOS inhibition) determined from a regression analysis on a minimum
of 6 concentrations

Fig. 7 In-vitro efficacy scatter-plot for NO2–, inhibition vs. cell toxicity
in BV-2 cells. The data are presented as LC50 (toxicity) vs. IC50 (iNOS
inhibition) determined from a regression analysis on a minimum of
6 concentrations
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positive bacteria, yeasts parasites and Mycobacterium
tuberculosis [42, 49–53]. These studies suggest IH as
being somewhat promising for attenuating inflammation
arising from diverse infective or inflammatory insults.

The data from this work also show that fresh dried
ethanol extracts of Bay leaf (BL) (Laurus nobilis) con-
tains anti-inflammatory properties [54, 55]. Previous
work by others demonstrates the oil (not aqueous)

Fig. 8 Linear regression profiles for NO2- inhibition and toxicity in RAW 264.7 cells, by which LC50s and IC50s were calculated for all compounds,
presented along with corresponding iNOS ICC images and IL-6 release measured at concentrations reflected by a square (◘). The data represent
NO2- and viability (% LPS Control), presented as the Mean ± S.E.M, n = 4. Statistical difference from the Controls were determined by a one-way
ANOVA, followed by a Tukey post – hoc test * P < 0.05 and IL-6 from controls by a student’s t-test* P < 0.05
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extracts to contain antimicrobial/food preserving prop-
erties due to cineole, eugenol, pinene, eucalyptol, linal-
ool, carvacrol and α-terpinenyl acetate all evidentially
toxic to Gram-positive bacteria (Staphylococcus aureus/
pyogenes) and fungi (Candida albicans, Aspergillus fumi-
gatus) [56–59]. Again, regarding the aqueous extract of
BL, our work corroborates the work of others having re-
ported the capacity to attenuate LPS mediated micro-
glia/macrophage activation thought to be attributable to
its sesquiterpene content [60, 61]. These type of sub-
stances are thought to be beneficial in chronic age re-
lated degeneration, by not only reducing inflammation
but also blocking neurotoxicity of AD pathological Aβ
(25-35)-component fragments [62].
Another herbal extract used in the current study to

which little data exists is Centipeda minima (CM). CM
has previously been reported to contain high levels of
helenalin with the capacity to LPS mediated elevation of
NO2–,TNF-α, IL-1b, iNOS and cyclooxygenase-2 in
macrophages [63]. CM also demonstrates the capacity to
attenuate tissue injury in-vivo involving inflammation
such as carrageen paw edema and liver fibrosis [63–65].
Although we did not find CM to have significant anti-
microbial effects on E.coli 0157:H7 (1 x 106 CFU/mL) at
the low concentration criteria used in this study, others
have reported its capacity to kill Enterobacter aerogenes,
Staphylococcus aureus, Yersinia enterocolitica and Bacil-
lus subtilis [66, 67].
Feverfew (Tanacetum parthenium) (TP) is another

rarely evaluated herb which long been reported to treat

inflammatory conditions including psoriasis, allergies,
arthritis, asthma and particularly migraines [68]. TP de-
rived sesquiterpene lactones such as parthenolide are be-
lieved to be responsible for observed anti-inflammatory
effects in animal models of carrageenan-induced edema,
osteoarthritis, colitis cystic fibrosis and phorbol triggered
mouse-ear edema [69–73]. TP constituents also
antagonize toll-like receptors, Akt/mTOR and NF-κB
pathways and block the downstream release of cytokines
[74, 75]. Like the present study, previous research re-
ports also corroborate capacity to reduce LPS activation
of BV-2 cells and RAW 264.7 cells alike [76, 77]. There
is also an antinociceptive aspect to feverfew commonly
reported, having benefit to ameliorate pain associated
with diabetic peripheral neuropathy [78].
The use of tansy (Tanacetum vulgare) (TV) as a

medicinal plant was reported dating back to the 8th
century A.D., when the Benedictine monks used it to
treat intestinal worms, ameliorate digestive problems,
fevers and sores. Interestingly, both feverfew and
tansy have in common hyper allergenic potential due
to parthenolide [79, 80]. Tansy is also rich in flavon-
oid glycosides, 7-O-glucosides of apigenin, luteolin,
scutellarein and 6- hydroxyluteolin, chrysoeriol and
eriodictyol as well as aglycones, hispidulin, nepetin,
eupatilin, jaceosidin, pectolinarigenin and axillarin
[81]. The oil contains 1,8-cineole and β-thujone as a
major constituent along with carveol, umbellulone,
davanone, dihydrocarvone, chrysanthenol, borneol and
myrtenol [82–85].

Fig. 9 Effects of lead anti-inflammatory products on IL-6 release in LPS treated BV-2 and RAW 264.7 cells. The data represents IL-6 (as % LPS
Control) and expressed as the Mean ± S.E.M., n = 3. Differences between activated cells ± natural compounds at sub-lethal dose were determined
by a student’s T test (*) P < 0.001
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Ashwagandha (Withania somnifera) (WS) is a highly
studied herb with a plethora of known health benefits, in
particular for prevention of cardiovascular disease. Its pri-
mary bioactive compound (Withaferin A) directly inhibits
β1-adrenergic receptors, HMG-CoA, angiotensinogen-
converting enzyme, total cholesterol, triglycerides, low
density lipoprotein and elevation of protective high
density lipoproteins and endogenous antioxidant systems
[86, 87]. In animal models, WS prevents isoproterenol in-
duced myocardial infarction, stroke distal middle cerebral

artery occlusion and monocrotaline induced pulmonary
hypertension in rats [88–91]. With respect to the immune
system, WS can attenuate mitogen induced T/B-cell acti-
vation, secretion of Th1 and Th2 cytokines and inhibit
NF-κB nuclear translocation in lymphocytes [92]. These
immunomodulating effects of WS are also reported in-
vitro for systemic LPS or E. coli administration in
mammals, where there is a reduction in neutrophil tissue
infiltration [93, 94] as well as tissue damage and pain asso-
ciated with rheumatoid arthritis [95–97]. Ashwagandha is
also an anti-infective agent lethal to gram-positive bac-
teria/cocci such as methicillin resistant Staphylococcus
aureus and Enterococcus, respectively [98]. The data in
this study ranks, validates and confirms pre-existing
research showing significant antimicrobial effects of green
tea EGCG polyphenon-60 (PP-60) Acacia arabica,grape-
seed extract, caffeic, gallic acid, chapparal (Larrea triden-
tata) [99–109], where little has been investigated on
antimicrobial herbs such as balm of Gilead Bud (Populus
candicans), an herb of great historical significance with
observed antibacterial and anti-inflammatory properties.

Conclusion
In conclusion, the data obtained in this work affords gen-
eral information on validated CAM anti-inflammatory
and antimicrobial compounds and relative potency at sub
lethal concentrations in LPS activated BV-2 and RAW
264.7 cells. Moreover, the data obtained also provide rela-
tive lethal potency of CAMs against the growth of E.coli
0157:H7. These findings can serve as a guide for future
examination of specific CAM based herbal/nutraceutical
anti-inflammatory/antimicrobial modalities for use in pre-
vention or treatment of disease.

Table 3 Efficacy of CAM antibacterial compounds on survival of
E.coli 0157:H7 (1x106 CFU/ml) @ 8 h in 31 °C

Anti-bacterial effects of natural compounds on E. coli 0157:H7 survival

Compound LC50 Units

Penicillin/Streptomycin 0.01 Units/μg.ml

Cholloidal Silver-Argentym 23® 0.02 μg/ml

(+) Gossypol 1.5 μg/ml

Grapeseed Extract/Vitis Vinifera 1.8 μg/ml

Green Tea Extract/Camellia Sinensis 2.0 μg/ml

(-)-Epigallocatechin gallate 3.7 μg/ml

Doxorubin hydrochloride 5.4 μg/ml

Gallic Acid 8.4 μg/ml

Caffeic Acid 10.1 μg/ml

Chinese Gallnut 10.4 μg/ml

Babul Chall Bark/Acacia arabica 13.4 μg/ml

Polyphenon 60 14.1 μg/ml

Uva Ursi/Arctostaphylos uva ursi 19.1 μg/ml

Arjun/Terminalia arjuna 23.8 μg/ml

Balm of Gilead Bud/Populus candicans 26.7 μg/ml

Bayberry Root/Morella cerifera 28.5 μg/ml

Blood Root/Sanguinaria canadensis/ 33.5 μg/ml

(-)-Gallocatechin 35.8 μg/ml

2-D08 37.0 μg/ml

Glyoxal Acid 39.6 μg/ml

Scutellarian 42.0 μg/ml

Kokum Black/Garcinia Indica 47.5 μg/ml

Indole 47.5 μg/ml

Trifala 47.7 μg/ml

CraneSbill Root/Geranium maculatum 51.6 μg/ml

Shi Liu Pi (Granati Peel) 60.4 μg/ml

Catuaba Bark/Trichilia Catigua 63.4 μg/ml

Chapparal/Larrea tridentata 73.6 μg/ml

Thymol 92.0 μg/ml

Esculetin 93.3 μg/ml

Epicatechin 114.0 μg/ml

Piperonal 115.1 μg/ml

(+)-Catechin 173.0 μg/ml

The data represents LC50 values determined by regression analysis, on a
minimum of 6 concentrations, (n = 4)

Fig. 10 The effect of colloidal Silver-Argentyn 23® on the survival
of E.coli 0157:H7 (1x106 CFU/ml) @ 8 h in 31°C. The data represent
viability (% Control), presented as the Mean ± S.E.M, n = 4. Statistical
differences from the Control were determined by a one-way ANOVA,
using the Tukey post – hoc test. * P < 0.05
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