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Abstract

Background: To date, a large number of acoustic therapies have been applied to treat tinnitus. The effect that
produces those auditory stimuli is, however, not well understood yet. Furthermore, the conventional clinical
protocol is based on a trial-error procedure, and there is not a formal and adequate treatment follow-up. At
present, the only way to evaluate acoustic therapies is by means of subjective methods such as analog visual scale
and ad-hoc questionnaires.

Methods: This protocol seeks to establish an objective methodology to treat tinnitus with acoustic therapies based
on electroencephalographic (EEG) activity evaluation. On the hypothesis that acoustic therapies should produce
perceptual and cognitive changes at a cortical level, it is proposed to examine neural electrical activity of patients
suffering from refractory and chronic tinnitus in four different stages: at the beginning of the experiment, at one
week of treatment, at five weeks of treatment, and at eight weeks of treatment. Four of the most efficient acoustic
therapies found at the moment are considered: retraining, auditory discrimination, enriched acoustic environment,
and binaural.

Discussion: EEG has become a standard brain imaging tool to quantify and qualify neural oscillations, which are
basically spatial, temporal, and spectral patterns associated with particular perceptual, cognitive, motor and
emotional processes. Neural oscillations have been traditionally studied on the basis of event-related experiments,
where time-locked and phase-locked responses (i.e., event-related potentials) along with time-locked but not
necessary phase-locked responses (i.e., event-related (de) synchronization) have been essentially estimated. Both
potentials and levels of synchronization related to auditory stimuli are herein proposed to assess the effect of
acoustic therapies.
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Keywords: Tinnitus, Acoustic therapy, Electroencephalography (EEG), Auditory perception, Neural oscillations

* Correspondence: Im.aloval@itesm.mx

'Escuela de Ingenieria y Ciencias, Tecnoldgico de Monterrey, Eugenio Garza
Sada 2501, 64849 Monterrey, NL, Mexico

Full list of author information is available at the end of the article

- © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12901-017-0042-z&domain=pdf
http://orcid.org/0000-0002-2256-2958
http://www.isrctn.com/ISRCTN14553550
mailto:lm.aloval@itesm.mx
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Alonso-Valerdi et al. BMC Ear, Nose and Throat Disorders (2017) 17:9

Background

The auditory system is aimed at hearing and balance. It
is constituted by the peripheral hearing system (outer,
middle and inner ear) and the central auditory system
(primary and association cortices), both of them inter-
connected via the auditory nerve. Overall, the hearing
process takes place as follows. First, air acoustic signals
are converted to mechanical vibrations in the peripheral
hearing system. Then, mechanical vibrations are trans-
duced into electric signals within the cochlea. Finally,
electrical signals are conducted through the auditory
nerve to the auditory cortex, where they are decoded. As
more complex the auditory stimulus is, auditory cortices
will be more involved in the processing of information,
particularly the association cortex [1-3]. In this respect,
auditory neural processing takes place initially within the
cochlear nucleus. Afterwards, it moves forward from in-
ferior colliculus to thalamus and auditory cortex. Audi-
tory processing outputs expand to several major non-
auditory neural areas, including those associated with
memory, emotions, attention, consciousness and sen-
sorimotor processing [4]. Refer to Fig. 1.

An auditory problem that affects 5-15% of the world
population is tinnitus [5]. In 1% of the cases, it may be
considered as impairment which affects the daily life [6, 7].
Tinnitus is an auditory phantom percept of chronic high
pitched sound, typically in the frequency range of 6-8 kHz,
without any external sound source [8, 9]. Tinnitus percept
is usually simple, with common forms resembling pure
tones (‘ringing’), Gaussian noise (‘hissing’), or buzzing [10].
In 1982, the Committee on Hearing, Bioacoustics and Bio-
mechanics of the United States of America defined tinnitus
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as a conscious experience of a sound that is originated
from patients’ own head. Later, in [11], it was redefined the
term as the perception of a sound that results exclusively
from nervous system activity, and without any correspond-
ing mechanical vibratory activity proceeding from the
cochlea. Additionally, in [12], tinnitus was classified into
objective and subjective. Objective tinnitus (somatosensory
sounds) was associated with peripheral vascular abnormal-
ities detectable by stethoscopic inspection, whereas
subjective tinnitus was determined as an acoustic per-
ception merely experienced by the patient. In line
with acoustic principles, tinnitus is assumed subjective
and is defined in terms of loudness and pitch. To
characterize tinnitus is necessary a frequency response
curve that is obtained objectively in animals [13], but
subjectively in human beings [14].

Tinnitus may be caused by exposure to loud noise,
fever, ototoxicity or a transient disturbance in the middle
ear. It eventually disappears in most of the cases, but it
remains in 15% of the affected population [15]. Tinnitus
can be perceived by people of all ages, either those with
normal hearing or those with deafness. Interestingly,
when a hearing loss exists, the pitch of tinnitus corre-
sponds to the frequency region of that hearing loss [16].
The probability of a person to suffer from tinnitus in-
creases with age and degree of hearing loss: around 12%
of patients suffering from tinnitus are over 60 years,
while only 3% of them are between 20 and 30 years [17].
In 3% of the total affected population, tinnitus is enough
intense to deteriorate the quality of life. Tinnitus com-
monly provokes sleep disturbance, restricted working
capacity, difficulties on attention, psychiatric anguish,
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anxiety and depression [15, 18]. According to [11],
people experiencing tinnitus can be divided into five
main categories: (i) Category 0, patients without hypera-
cusis or hearing loss, and whose tinnitus has little im-
pact on their daily lives; (ii) Category 1, patients with a
significant tinnitus but without hiperacusia or hearing
loss; (iii) Category 2, patients with both significant tin-
nitus and hearing loss; (iv) Category 3, patients experien-
cing significant hyperacusis for a long period of time
with or without tinnitus; and (v) Category 4, patients
with progressive tinnitus and hyperacusis.

The origin of tinnitus is still unknown. Tinnitus is gen-
erally triggered by hearing loss, and very often by noise-
induced hearing loss, but most chronic tinnitus is of cen-
tral origin; that is, it is in the brain and not generated in
the ear. Head or neck injuries can also trigger tinnitus by
altering somatosensory inputs, which in turn affect audi-
tory pathways and lead to tinnitus or modulate its inten-
sity. Emotional and attentional state could be also
involved in the development and maintenance of tinnitus
via top-down mechanisms [19]. Neuroimaging studies in
humans and animals suggest that tinnitus is associated
with increased neural synchrony, reorganization of tono-
topic maps, and increased spontaneous firing rates in the
auditory system [16]. Specifically, electrophysiological
studies have revealed that the brain oscillatory activity
decreases in the alpha band (10-14 Hz), and in-
creases in delta (1.5-4 Hz) and gamma (> 30 Hz)
bands [20]. Abnormal brain oscillations on the frontal
lobe have been found as well. As this lobe is related
to the emotional and attentional regulation, frontal ir-
regularities have been associated with stress caused by
tinnitus [21]. On the other hand, a number of func-
tional brain imaging studies has also shown aberrant
neural activity within the central auditory pathway of
tinnitus patients. Changes in the inferior colliculus,
the thalamus and the auditory cortex have been dem-
onstrated by using both Positron Emission Tomog-
raphy [22-30] and functional Magnetic Resonance
Imaging [31-33]. Alterations of neural activity were
also observed in non-auditory brain structures, espe-
cially in the limbic system [29, 34, 35]. Using high-
resolution magnetic resonance imaging and voxel-
based morphometry, circumscribed alterations in the
auditory system (medial geniculate nucleus of the thal-
amus) and the limbic system (subcallosal region including
the nucleus accumbens) were detected [36].

To date, there is no medical, neurological, or neuro-
physiological therapy that has been proved to cure tin-
nitus [5]. Therefore, there is a wide variety of treatments
for tinnitus, including hearing aids, maskers, counseling,
retraining therapy, music therapy, acupuncture, herbal
treatments, and acoustic therapy [37]. Particularly,
acoustic therapies aim to reverse the neuroplasticity
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phenomenon related to tinnitus by adequately stimulat-
ing the auditory pathway. If neuroplastic changes are
produced, habituation and/or suppression of the tinnitus
may be achieved [38]. Habituation refers to the elimin-
ation of the tinnitus effects without eliminating sound
perception per se. In contrast, suppression is the reduc-
tion or disappearance of the tinnitus perception. The
suppression might last from a few seconds to days. Some
of the most relevant acoustic therapies so far are the fol-
lowing: tinnitus masking therapy [12], tinnitus retraining
therapy [11], tinnitus phase-out [39-41], high frequency
therapy [42, 43], auditory discrimination therapy [44, 45],
therapy for enriched acoustic environment [20], binaural
therapy [46], and neuromodulation [21, 47].

Even though a large number of acoustic therapies have
been designed to treat tinnitus, the effect that produces
the corresponding auditory stimulus is not well under-
stood yet. Up to now, the effectiveness of the acoustic
therapies to treat patients suffering from tinnitus is eval-
uated by means of a visual analog scale and/or ad hoc
questionnaires. The visual analog scale is used to quan-
tify subjectively certain sensations of the patients such as
pain. This scale is a line whose ends respectively mean
lack of sensation and extreme feeling. What patients do
is to mark a point on the line that matches their sensa-
tion magnitude. On the other hand, the questionnaires
consist of a series of questions that allow identifying the
difficulties that patients are facing due to the tinnitus,
and whether those difficulties are overcome after an
acoustic therapy had been applied. Typically, only three
responses are provided in the questionnaires: yes, some-
times, and no [20, 21]. Despite the popularity of these
two methods, the resulting evaluation is completely sub-
jective and does not allow an effective quantification of
the acoustic therapy effects. This has leaded to apply the
acoustic therapies following a trial-error procedure, what
delays the patient healing, or even could deteriorate the
patient condition.

As very little attention has been paid to the import-
ance of an objective method to evaluate acoustic therap-
ies used to treat tinnitus [21, 47], this research protocol
seeks to establish a new methodology based on the treat-
ment monitoring at a cortical level. Since a likely cause
of tinnitus is the neuronal hyperactivity in the nervous
system, EEG which measures non-invasively the elec-
trical activity of the cerebral cortex seems to be a feas-
ible method to assess objectively the acoustic therapy
effects. Having in mind all the issues raised herein, there
are two primary aims of this study: (1) To apply four
(retraining, auditory discrimination, enriched acoustic
environment, and binaural) of the most successful
acoustic therapies at present to patients suffering from
tinnitus, and who had received other palliative treat-
ments with no positive results; and (2) to record the
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EEG signals of those patients before, during and after
the application of the corresponding acoustic therapy, so
as to analyze the neural behavior of auditory and non-
auditory nervous systems. The study of spontaneous
activity at resting state, evoked activity and induced ac-
tivity will be undertaken after data collection.

As the goal of the acoustic therapies is the habituation
or suppression of tinnitus, it is hypothesized that these
therapies should produce perceptual and cognitive
changes (specifically those related to attention and mem-
ory), even though they could not be beneficial. It is ex-
pected that the patients’ EEG signals along the acoustic
therapy will reveal neural modifications, which could ex-
plain why this treatment is so effective in some cases,
and waste of time in some others. Results from this re-
search might help to pointing out acoustic therapies as a
potential solution for certain patients, but not a viable
treatment for many others. Tinnitus has been proposed
as an abnormal activity proceeding from multifunctional
neural networks [48], and its heterogeneity hinders to
find a universal cure to treat it. As a result, to establish
an objective methodology which could approve or dis-
card acoustic therapies as a feasible tinnitus treatment is
a worthwhile research.

The present protocol was approved by the Ethical
Committee of the Tecnoldgico de Monterrey (CON-
BIOETICA19CEI00820130520) on June 20th 2016,
and has been recently attracted L'Oréal-UNESCO
Organization as a sponsor. The research project is
undertaken in collaboration with the National Institute
of Rehabilitation (Mexico City), where patients with
chronic and refractory tinnitus interested in being
treated with acoustic therapies are recruited for the
study. Materials, equipment, and procedures are speci-
fied in the remaining part of this document.

Methods

Generation of the acoustic therapies

In order to generate the acoustic therapies, two main
software programs are used: MATLAB and Audacity.
MATLARB is a proprietary programming language devel-
oped by MathWorks, whose software license is available
in the Tecnolégico de Monterrey. Audacity is free open-
source audio software for multi-track recording and
editing [49]. The acoustic therapies are designed in line
with the patient audiology evaluation carried out by the
National Institute of Rehabilitation. Such evaluation in-
cludes audiometry, hearing loss, tinnitus pitch matching
and tinnitus handicap inventory. The main adjustment
parameters are taken from the audiometry, which mea-
sures the ability of each ear to perceive the vibrations
within different frequency bands of the audible
spectrum.
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As was stated before, four of the eight acoustic therap-
ies herein described are considered. Patients suffering
from chronic and refractory tinnitus coming from the
National Institute of Rehabilitation are submitted to a
random selection so as to belong to a therapy group or a
control group. The acoustic stimuli for each group is
specified in the forthcoming sections [50-53].

Control group

For this group, a simple relaxing music is employed and
the same rules followed in the therapy groups are
established.

ADT group

Auditory discrimination therapy (ADT) requires the at-
tention of the patient on the therapy. The vast majority
of published works on ADT use oddball paradigms as
stimulus. These paradigms consist of composed sound
of standard and deviant pulses, presented in a random
way. The patient has to note which type of pulse is in-
volved (standard or deviant). The standard pulse is white
noise with duration of 500 ms (50% probability). The
deviant pulse can range from 4 to 8 kHz with duration
between 50 and 100 ms (50% probability). The inter-
latency between pulses could be around 1.5 s. A sample
test of ADT signal is shown in Fig. 2.

TRT group

To generate tinnitus retraining therapy (TRT), a random
noise signal is used. This signal is additionally filtered by
octave bands, depending on the tinnitus frequencies and
hearing loss in each ear. This therapy has two main ob-
jectives: to get used to the reactions of limbic-autonomic
systems, as well as to the tinnitus perception. TRT can
be effective, regardless of the etiology of tinnitus. TRT is
achieved by directive counseling and exposure to low-
level broadband noise. The first component of TRT, dir-
ective counseling, may change the way tinnitus is per-
ceived. The patient is taught the basic knowledge about
the auditory system and its function, the mechanism of
tinnitus generation and the annoyance associated with
tinnitus. The repetition of these points in the follow-ups
helps the patient to perceive the signal as a non-danger.
The second element of TRT therapy, sound therapy,
aims to decrease the sound contrast between tinnitus
and silent environment leading to a reduced detection of
tinnitus. A sample test of TRT signal is shown in Fig. 3.

EAE group

Therapy for enriched acoustic environment (EAE) is
based on a sequence of random frequency tones (burst
and pip pulses) with amplitude proportional to the hear-
ing lost reported on patients’ audiometry. Frequency
pulses stimulate the auditory pathway in a selective and
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Fig. 2 Sample of ADT signal: time and frequency analysis

personalized way. The stimulation is selective, because
each tone of the sequence has a response curve in fre-
quencies very similar to the curves of tuning neurons of
the auditory pathway [54]. The stimulation is personal-
ized and enriched, because it is designed based on the
hearing loss of each patient. A sample test of EAE signal
is shown in Fig. 4.

Binaural group

Psychoacoustics is essentially the study of the perception
of sound. This includes how the human listens to, the
psychological responses, and the physiological impact of
music and sound on the nervous system [55]. Binaural
therapy is the one that has more evidence of psycho-
acoustic effects than the other therapies. The process of
reproducing this binaural effect using audio technology
was originally developed in the early 1970’s by Gerard
Oster, a biophysicist from New York City [56]. A notable
example of the binaural effect is the work presented in
[57], where neural oscillations and binaural therapy at

10 Hz were synchronized. A sample test of binaural sig-
nal is shown in Fig. 5.

Electroencephalographic evaluation

EEG is a non-invasive and relatively non-expensive tech-
nique that measures the electric fields produced by the
pyramidal neurons of the cerebral cortex during the syn-
aptic communication. The synapse is the communica-
tion bridge between the axon (output) of a neuron and
dendrites (inputs) of the next neuron. The number of
synaptic inputs (dendrites) that are simultaneously ex-
cited determines the amplitude of the EEG signals. EEG
signals are also characterized by the frequency at which
oscillates the neural networks, and it can range between
0.01 and 600 Hz. In general, perception, cognitive states,
and motor activity determine the oscillation frequency
of the neural networks [58]. EEG is an extensively used
method that gives an insight into the complex and dy-
namic mechanisms of the human brain: from the decod-
ing of external stimuli registered by the sense organs, to
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the programming of a reaction executed through the
muscles [59].

In tinnitus research, neuroimaging techniques have
been used to find the association of this neurological
disease with alterations in different brain areas. Neural
systems related to attention, perception, distress, mem-
ory and emotions have been of special interest. EEG
findings are particularly discussed hereinafter, along with
their relevance for the present work.

Spontaneous activity at resting state

Several theories on the neural anomalies due to tinnitus
have been proposed. Most of investigators have opted to
examine tinnitus effects at resting state, since the human
brain generates spontaneous fluctuations in widely sepa-
rated brain regions, and within a wide frequency range (0-
100 Hz). Traditionally, neurophysiological effects of tin-
nitus have been assessed under the following conditions:
(1) comparison of brain activity between tinnitus and
non-tinnitus participants; (2) experiments undertaken in a

quiet room; (3) participants in seated position in most of
the cases; (4) EEG montage with different number of elec-
trodes, from 19 to 128 recording sites; (5) eyes-close (EC),
eyes-open (EO), and thereof conditions have been consid-
ered; (6) EEG recordings from 2 to 10 min long have been
taken, and (7) power and amplitudes of EEG signals across
delta, theta, alpha, beta and gamma frequency bands have
been particularly explored [5, 48, 60—65].

The main findings of aforementioned studies have pro-
vided neurophysiological and neuro-dynamic evidence
to show that tinnitus is due to both bottom-up and top-
down dysfunctions. This means that not only peripheral
auditory system, but central non-auditory cognitive sys-
tem is also involved in tinnitus genesis [61]. In terms of
the auditory system, EEG synchronization of delta, theta,
and beta bands have been detected as indicative of a
chronic dysrhythmia of thalamus cortical circuits, fol-
lowing auditory deafferentation [5]. Tinnitus loudness
has been associated with enhanced delta and gamma
band activity on the contralateral auditory cortex.
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Gamma activity has been also correlated to perception
of tinnitus, level of attention directed towards it, and
emotions generated by such perception [65]. With re-
spect to the non-auditory system, tinnitus-related emo-
tional distress has been associated with alpha, beta and
gamma frequency bands [5].

Evoked activity: Event-related potentials (ERPs)
Event-related potentials (ERPs) are time-locked and
phase-locked brain responses associated with particu-
lar perceptual, cognitive, motor and emotional states
[62, 66—68]. They are of two types: exogenous and
endogenous. Exogenous components appear within
100 ms after stimulus onset, and are defined by the
physical characteristics of such stimulus (e.g., inten-
sity, tone, frequency, pitch and timbre). Endogenous
components depend on psychological variables such
as attention or task relevance [69-71]. In particular,
auditory ERPs are originated from primary cortical
areas and depend on the cognitive state of the pa-
tient. Some typical auditory ERPs are P1, N1, P2 and
N2, which respectively occur 50, 100, 170 and 250 ms
after stimulus onset [71].

N1, P2 and N2 have been used to quantify the effects
of tinnitus at a neural level. It has been shown that pa-
tients suffering from severe tinnitus have significant
changes in amplitude and latency of their ERPs. It has
also been observed that the reaction times of these pa-
tients are much longer than healthy individuals [72]. For
example, in [73], and then in [74], it was found that N1,
N2, P2, and P3 components (evoked potential for deci-
sion making) of patients with chronic tinnitus showed
longer latencies in comparison with those of healthy
people. Similarly, a significant decrease in amplitude of
the P3 component was found. This could be the result
of a deficiency in the central auditory processing system
due to tinnitus [73, 74]. Additionally, in [75], it was
found that patients experiencing severe tinnitus, and
who had been unsuccessfully treated with acoustic ther-
apy, did not reflect any change on either N1 or P2 com-
ponents. Researchers concluded that no habituation to
tinnitus was achieved. Finally, in [76], it was analyzed the
N1 component of patients with chronic tinnitus and sug-
gested that their attention was very focused on tinnitus,
making difficult the use of acoustic therapies. In general,
N1 component has been the most widely used and robust
response to assess auditory brain function in cerebrovas-
cular diseases, schizophrenia and tinnitus [77].

Induced activity

Another way to analyze neural processing is the
quantification of the level of (de) synchronization of
the EEG signals. This technique is called event-related
oscillations (EROs) and what reflects is the neural
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processing of internal (e.g., level of attention) and ex-
ternal (e.g., motor activity) events. EROs appear in
specific bandwidths and both processes (synchronization
and desynchronization) may exist simultaneously [78].
EROs can be analyzed in time by mapping the
event-related desynchronization (ERD) and event-related
synchronization (ERS) and in frequency by determining
the event-related spectrum.

ERD/ERS maps allow visualizing the neural processing
of the cerebral cortex from a few milliseconds to several
seconds. This is a method that was proposed in [78],
and which has been significantly enhanced in [79, 80]. In
particular, auditory ERD/ERS maps have been mainly in-
vestigated in [81-83]. Some of their findings are outlined
as follows: (1) Auditory ERD/ERS maps reflect cognitive
and attentional processes, rather than the decoding of
the auditory stimulus per se; (2) auditory stimulus pro-
cessing is associated with alpha band synchronization
between 10 and 12 Hz; (3) auditory memory increases
the level of synchronization of the neurons; (4) the com-
parison of sounds increases the level of desynchronization
of the neurons; and (5) auditory stimuli modify the
level of neural synchronization in temporal and
parietal lobes.

With regard to the event-related spectrum, this tech-
nique allows to study neural dynamics that ERPs and
ERD/ERS maps cannot reflect such as phase modifica-
tions of the EEG signals (ERP pitfall) and broadband fre-
quency variations (ERD/ERS drawback). Previous studies
[84—87] have demonstrated that auditory stimuli evoke
neural synchronization around 40 Hz, and that such
synchronization increases if the attention focused on the
stimulus increases as well.

Even though, ERD/ERS analysis has not been under-
taken yet to monitor electrophysiological anomalies of
patients suffering from tinnitus, we consider that audi-
tory EROs could be a valuable tool on the basis of
present evidence. Similarly, if acoustic therapies are be-
ing applied successfully, the effect might be detectable
by the same means.

Analysis strategy

The existing body of research concerning neuroimaging
studies on tinnitus has attempted to validate EEG mea-
sures as a biomarker to diagnose tinnitus and monitor
its progress. Although no validation has been achieved
yet, analysis of spontaneous and evoked activity has re-
vealed valuable information. In the case of spontaneous
activity examination, modulation of brain rhythms in
delta, theta, alpha, beta and gamma frequency bands has
been associated with chronic dysrhythmias of thalamus
cortical circuits, tinnitus loudness and perception, level
of attention, and intensity of destructive emotions.
Newly research conducted in [60], it was found no
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association between psychoacoustic and psychosocial
scores and brain oscillatory activity at the time to assess
tinnitus perception. They concluded that EEG rhythms
should not be considered as a viable biomarker or out-
come measure in clinical trial of tinnitus [60]. However,
further improvements on analysis procedures followed
up to now could lead to obtain more concrete results.
This can be illustrated briefly by the work of Klimesch.
He considered that theoretical EEG frequency bands
were not appropriate since they vary according to age,
sex, and current mental state [88]. Furthermore, he re-
cently proposed a new method to calculate real fre-
quency bands in accordance with heart rate [89].
Possibly, the calculation of individual EEG frequency
bands for each patient may permit a more properly
spontaneous activity examination in our study. Regard-
ing evoked activity analysis, the EEG waveform P1-N1-
P2 has been the most studied. The three components
are maximal on fronto-central regions and are involved
in auditory stimulus processing, attention mechanisms,
and memory processes. The vast majority of studies on
ERPs [71-76] have found that patients suffering from
tinnitus have generally shorter and later components
than healthy people, perhaps owing to deficiencies in the
central auditory systems. Recently, in [77], it has been
questioned the validity of ERP-assessment since the ma-
jority of studies only uses 1 kHz tones. These tones have
been preferred because they evoke optimal auditory
ERPs, but there is no relevance between the auditory
stimulus and tinnitus. The selection of relevant auditory
stimulus to evoke EEG activity in order to investigate
the cortical reorganization due to tinnitus evolution is
discussed in Section Passive Mode.

Apart from the examination of spontaneous and
evoked EEG activity to evaluate the tinnitus perception,
ERD and ERS of EEG signals may be also very helpful,
since they reflect important aspects of sensory, motor,
and cognitive cortical processing. ERD and ERS have
been successfully used to study the neural response in
clinical cases such as pain evaluation [90] and neuro-
rehabilitation [91]. The enhancement of ERD/ERS quan-
tification must be, however, considered as well. In [92],
it was demonstrated that the conventional method pro-
posed in [79] to quantify ERD/ERS introduces a positive
bias, resulting in an overestimation of ERS and an
underestimation of ERD. Authors proposed to combine
single-trial baseline subtraction approach, in conjunction
with partial least square regression, to achieve a correct
detection and quantification of ERD/ERS [92].

In view of the above argument, the analysis of spon-
taneous, evoked, and induced EEG activity using im-
proved techniques could lead us to evaluate properly the
effectiveness of acoustic therapies to treat tinnitus. In
addition, the consideration of other EEG measures such
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as phase, neural generators, and cross-frequency-coupling
might fulfill a broad and thorough assessment of acoustic
therapies [93].

Analysis tools

To undertake the EEG signal processing, two high level
programming languages are used: MATLAB and Python.
With respect to MATLAB, EEGLAB which is an open-
source MATLAB toolbox for processing continuous and
event-related EEG signals are essentially employed [94].
As regards Python, Wyrm that is a pythonic toolbox for
on-line and off-line data analysis might be very useful
[95]. Although Wyrm was created for brain-computer
interfacing, this has a wide variety of tools for processing
EEG signals. Note that Python is an open-source pro-
gramming language, and as efficient as MATLAB.

Facilities

Laboratory

Patients are examined in a well-equipped research la-
boratory (Fig. 6) with appropriate conditions to attend
people, and record EEG data. Those conditions include
a quiet atmosphere, water and toilet services, washing
facilities, quiet air conditioner and parking place. In
addition, this laboratory was chosen because of the low
background noise, which was moreover measured before
testing and was around 35 dBA. This parameter is good
enough to listen the acoustic therapies and to record
EEG data.

Equipment and software

To record EEG data, a g USBamp is available at the la-
boratory (Fig. 7a). The g.USBamp is a high-performance
and high-accuracy biosignal amplifier. It allows acquiring
sixteen EEG channels at a sampling frequency of up to
32.7 kHz. The amplifier is configured to sample at
256 Hz within a bandwidth between 0.1 and 100 Hz.
The Cz channel is used for referencing the other sixteen
EEG channels, and left lobe ear works as ground. This
EEG configuration is illustrated in Fig. 7b.

To set-up the experimental procedure, OpenViBE soft-
ware is utilized [96]. OpenViBE is open-source multi-
platform software for brain-computer interfaces and
real-time Neurosciences. This software is a very feasible
solution since it has an easy to use graphical language,
and it also provides a compatible acquisition server with
g.USBamp.

Devices for acoustic therapies

To end Section Facilities, it is worth noting that audio
players are provided to patients. These audio players
have a 4Gb memory, and include a pair of headphones
and a battery charger. No cost for the audio player is
charged.
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Owing to the audio chain (player + headphones), it is
possible that the acoustic signal that the patient receives
through headphones, loses fidelity given the physical and
electronic properties of the instruments involved in the
audio chain. Therefore, it is necessary to control the
audio properties of the sound in the laboratory with the
proper equipment. In order to evaluate the audio quality,
the audio chain is composed by acoustic signal, audio
player, analyzer, headphones and sound pressure level.

In order to know the error between the design of the
acoustic therapy and its application, it was necessary to
verify the signal along to the audio chain, and two tests
were carried out. First, the output of audio player was
connected to the input of the analyzer and the signal
was recorded. Figure 8 (on the left) shows the frequency
response of a selected frequency. As can be seen from
the figure, there is either no distortion or other kind of
impurities in the original signal. Second, the sound pres-
sure emitted by the headphones was measured by a

Sound Level Meter as a flat wave front, and its frequency
response was recorded with a Fast Fourier Transform
analyzer (see Fig. 8, right side). There is no distortion in
the signal and only a slight increase between 3 and
4 kHz due to intrinsic components of the headphones.
This frequency response of the headphones is suffi-
ciently good to be used for acoustic therapy purposes. In
addition, the volume limit was established in the mobile
device according to the audiometry curve of each
patient.

Procedure

Study design

Patients of the National Institute of Rehabilitation suffer-
ing from refractory and chronic tinnitus, who had been
received homeopathic treatments with no positive ef-
fects, are asked to take part in the present project. They
are informed about the experimental procedure, and no-
tified that their head physician is also following-up the

infrastructure limitation

Fig. 7 Facilities in the Tecnoldgico de Monterrey to undertake the project: On the left, the equipment that is employed to record the EEG signals;
and on the right, the 17 EEG channels based on the 10/20 system which are used. Only channels P3 and P4 could not be recorded because of
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project. We aim at recruiting around 60 patients in total,
so as to have 15 patients per group.

Once patients have been agreed to participate and a
written consent form has been obtained, they are ran-
domly assigned into one of five groups: control, ADT,
TRT, EAE, and binaural [97]. They are instructed to use
the assigned therapy for one hour, every day, and at any
time of the day. The therapy is monitored for eight
weeks as is depicted in Fig. 9. During that span, four
EEG recordings and three online questionnaires are con-
ducted. The first EEG recording is taken at the begin-
ning of the study. The other three recordings are
respectively carried out one, five and eight weeks after
therapy initialization. EEG data is recorded in four dif-
ferent conditions: rest, acoustic therapy, passive mode
and active mode. Each EEG session lasts around 60 min
and has been organized as shown in Table 1. As can
been seen from the table, resting condition (Section
Resting Condition) is recorded in session 1, acoustic
therapy condition (Section Acoustic Therapy) is re-
corded in session 4, passive mode condition (Section
Passive Mode) is taken in the four sessions, and active
mode condition (Section Active Mode) is taken from
second session to ahead. With regard to online question-
naires, these are filled in at three different spans: one,
five and eight weeks after treatment initialization [98].

These questionnaires are intended as a psychological
and subjective measurement to assess the emotional and
behavioral irregularities related to tinnitus. The psycho-
logical part is based on the Hospital Anxiety and De-
pression Scale (HADS) presented in [99]. The tinnitus
assessment is an ad-hoc version of the Tinnitus Handi-
cap Inventory adapted from the National Institute of Re-
habilitation, and created originally in [100]. As
questionnaires are a psychological measurement that
can reveal emotional and behavioral irregularities related
to tinnitus, they could be later associated with EEG
outcomes.

Resting condition Resting condition is recorded in ses-
sion 1; that is, at the beginning of the study when no
therapy has been applied yet. Patients are asked to sit
down on a comfortable chair, to be relax, and to keep
their eyes open (EO) for three minutes. Their vision is
directed to a fixation point on the computer screen in
use. After EO period, they are asked to keep their eyes
close (EC) for the following three minutes. Although EO
and EC conditions have been the most examined brain
state in neuroimaging studies related to tinnitus percep-
tion, no agreement on which condition is most reason-
able, or what duration is more convenient, has been
reached yet. Either EO or EC, and duration variation

Consent

N

9]

L 4 /Qm

Acoustic therapy for

Form @ one hour every day
/

Week 1 I Week 2
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EEG SO
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Fig. 9 Study design of the protocol. Acoustic therapies are monitored for eight weeks. EEG signals are recorded at the beginning of the study, at
one week of treatment, at five weeks of treatment, and at eight weeks of treatment. Once patients have completed the first week of treatment,
they are required to fill in online questionnaires concerning the psychoacoustic evaluation
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Table 1 Organization of the experimental procedure
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Total Duration per Session

Session 1 Session 2 Session 3 Session 4
39 min 53 min 53 min 56 min
Duration per Activity 15 min Consent form
15 min Online questionnaire
15 min Electrode mounting
6 min EO/EC
3 min Therapy
3 min Passive mode
20 min Restaurant Park Construction in progress

from two [65] up to ten minutes [60] have been reported
in previous studies.

In the present protocol, we propose to record periods
of three minutes, in line with prior research conducted
to determine neurophysiological parameters that depend
on mental states at rest such as level of attention [101],
alpha peak frequency [102], and level of motor imagery
ability [103]. With respect to the selection between EO
and EC, and even though both conditions are recorded
at this stage, EC seems to be more reasonable to evalu-
ate the tinnitus perception in the rest of the experimen-
tal stages (acoustic therapy, passive mode, and active
mode). In [77], it was reported that enhanced gamma ac-
tivity, which had been previously related to tinnitus per-
ception, most probably proceeded from involuntary eye
movements and saccades, rather than abnormal neural
activity due to tinnitus. On the other hand, it was associ-
ated eye closure with diminution of high frequency brain
oscillations in [104]. Taken together, these results sug-
gest that if gamma ERS exists owing to tinnitus percep-
tion, such neural synchronization should be more
detectable in EC, than in EO condition. In addition to
this evidence, it was argued that alpha band rhythms can
work as biomarker to differentiate brain states that re-
quire different attentional degrees such as EC and EO
[101]. As EO involves interaction with the environment
(external attentional process), and tinnitus perception is
an internal attentional process, EC might be a more ef-
fective condition to study the effect of acoustic therapies
during the auditory retraining.

Acoustic therapy This condition is recorded in last ses-
sion (fourth session), when the assigned acoustic therapy
has been already applied for two months. Similar to pre-
vious condition, patients are asked to keep their EC for
three minutes while they listen to their acoustic therap-
ies. As was aforementioned, this condition (acoustic
therapy) and the rest of them (passive and active modes)
are only monitored in EC mode.

EEG mapping of tinnitus perception during acoustic
therapy might reveal if there is any neural synchrony
modification as a result of the treatment, in comparison
with resting condition when this had not been received
yet. In this way, if any beneficial effects have been pro-
duced during acoustic retraining, these should be
reflected in this particular recording. An important point
to remark is that the main goal of the project is to evalu-
ate the therapy effect (independent variable), rather than
tinnitus perception per se. Consequently, acoustic stimu-
lation always depends on the acoustic therapy in use.

Passive mode Passive mode is the only condition that is
recorded in all the sessions: from session 1 to session 4.
As the preceding condition, EEG recordings are only
made with EC. In passive mode, auditory ERPs are ex-
amined, and for that purpose, stimulus with duration of
1 s and an inter-stimulus interval of 2.5 s are used. In
total, 50 trials are taken, and hence each session lasts
around two minutes.

Auditory ERPs have been extensively employed to
study the tinnitus nature, and generally, 1 kHz tones
have been preferred because of convenience (optimum
responses over the auditory cortex), rather than for rele-
vance. In other investigations, tinnitus sound has been
emulated, and subsequently, it has been used as auditory
stimulus [77]. However, it is important to keep in mind
that tinnitus frequency response curve is subjectively ob-
tained in humans [14], and we would depend on pa-
tients’ perception to establish auditory stimulus, what in
turn could produce subjective outcomes. The use of
auditory stimulus based on the acoustic therapy at hand
would standardize the evoke response, at least in each
group. Acoustic therapies are moreover the subject of
the study, and it seems plausible to provide the same
auditory stimulation used to achieve acoustic retraining,
as well as to assess such retraining.

Active mode Active mode is recorded in sessions 2, 3,
and 4, and EC is requested as well. In each session, a
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usual acoustic environment is played, whilst five associ-
ated auditory stimuli are randomly played. Patients are
instructed to identify the randomized stimuli by pressing
a keyboard button. The acoustic environments along
with their related stimuli in each session are the follow-
ing: (1) restaurant — soda can being opened, door clos-
ing, glass breaking, microwave sound, and human sound
(tasting food); (2) park — camera clicking, book page
turning, cards shuffling, human sound (laughing), and
human sound (whistling); and (3) construction in pro-
gress — hit, bang, mobile dialing, police siren, and human
sound (yelling). All the stimuli have been standardized
to 1 s and are repeated 50 times at a random rate [105].

Although tinnitus perception has been related to ab-
normal neural activity in the auditory system, tinnitus
distress has been associated with co-activation of frontal,
limbic, memory and automatic systems [48, 77]. Memory
is of particular interest because it is a sensory represen-
tation of the world, which allows humans interacting
with their environment. In essence, new input patterns
are first decoded and storage in the long-term memory
of the brain. When those patterns appear again, brain re-
trieves information from memory, and makes a predic-
tion. In this way, the consumption of mental resources is
reduced [106]. What we pursue in active mode registry
is to investigate if patients suffering from chronic tin-
nitus have memory atrophies, by evaluating their reac-
tion time to recognize common sounds in typical
environments. This EEG evaluation might be a way to
assess indirectly tinnitus distress.

At present, no reliable EEG-based methods have been
found. In fact, some authors [60] consider that EEG is
not an effective way to study tinnitus effects. On this
evidence, several EEG evaluations have been proposed in
this protocol: from no specific auditory stimulation (rest-
ing condition), to auditory pattern recognition (active
mode). Possibly, this set-up could also lead us to propose
an efficient EEG-based methodology to study tinnitus
effects.

Selection criteria

A random sample of around 60 patients without any his-
tory of otitis, cerebellopontine angle tumors, psychiatrist
pathologies, demyelinating diseases of the nervous sys-
tem, or epilepsy is expected to be recruited. Patients can
be either female or male, they must be older than
18 years old, they must accept voluntarily to participate
in the project, and they must sign a consent form.
Owing to the expected difficulty in obtaining partici-
pants, patients with normal audition, unilateral or bilat-
eral hyperacusis, and/or conductive sensory-neural
hyperacusis are included. It is worth noting that the Na-
tional Institute of Rehabilitation provides the following
information about each patient: tinnitus sound matching
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(ie., perception of tinnitus), minimum masking level (i.e.,
volume at which an external narrowband noise masks or
covers), and loudness discomfort level (ie., volume at
which external sound becomes uncomfortable or painful
for a tinnitus patient).

Post-study treatment

In the case that patients do not report either habituation
or suppression to tinnitus during the two-month treat-
ment, standard versions of acoustic therapies are pro-
vided to patients, if they decide to continue with the
post-study treatment. Only four of the five therapies in
use are applied in post-study treatment because the one
originally assigned to the patient must be discarded. Pa-
tients are instructed to use each therapy every day for
30 min and during two weeks. After this testing period,
patients must report if they detect any positive change.
If any, the therapy of interest is adjusted to the patient
audiometry. For the post-study treatment stage, no EEG
monitoring is undertaken since it is beyond the scope of
the project.

Discussion

A limitation of this research proposal is the guarantee of
acoustic therapy application as is indicated. This proced-
ure cannot be verified as drug administration can be via
blood test. In order to increase reliability, only liable pa-
tients are recruited according to a previous filtering
process undertaken in the National Institute of Rehabili-
tation. Furthermore, patients are notified about the ex-
perimental procedure, and they must sign a compromise
statement, agreeing to take part in the program. As a
further work, an application in a mobile device can be
implemented to measure the exposition time to the
therapy.

Another limitation of the proposal is the number of
EEG channels. As can be seen from Fig. 7, only 17 of the
19 electrodes of the 10/20 system are mounted. How-
ever, we consider that the small number of available
channels may restrict somehow the study, but the esti-
mation of EEG measures is still feasible and reliable. It is
well-known that the spatial resolution of EEG is very
poor and underdetermined, even if a large number of
sensors are used. EEG signals are smeared as they pass
through the surrounding tissue and the poorly conduct-
ive skull. Furthermore, the surface distribution of elec-
trical currents is also somewhat distorted since the
conductivity and the thickness of the skull is non-
uniform [77]. The determination of signal sources is,
therefore, complex and inaccurate due to EEG nature,
rather than the number of sensors in use. Up to now,
data acquisition in previously conducted EEG-based
studies has been made using from 19 [64] to 128 [5] sen-
sors. As can been seen, consensus has not been reached
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yet, and even the use of too many channels does not
guarantee the analysis of all of them. For instance, in [5],
it was reduced the number of electrodes from 128 to
109 channels by omitting the outermost ring of elec-
trodes, as they usually show high amounts of noise.
Lastly, the study of certain EEG measures such as ERPs
is commonly undertaken only over one or two recording
sites, what is achievable by means of the EEG layout
depicted in Fig. 6. In conclusion, we consider that re-
cordings of 17 EEG channels can be exploited to obtain
consistent results.
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