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Abstract 

Background:  The ecosystems across Tibetan Plateau are changing rapidly under the influence of climate warming, 
which has caused substantial changes in spatial and temporal environmental patterns. Stipa purpurea, as a dominant 
herbsage resource in alpine steppe, has a great influence on animal husbandry in the Tibetan Plateau. Global warm-
ing has been forecasted to continue in the future (2050s, 2070s), questioning the future distribution of S. purpurea and 
its response to climate change. The maximum entropy (MaxEnt) modeling, due to its multiple advantages (e.g. uses 
presence-only data, performs well with incomplete data, and requires small sample sizes and gaps), has been used to 
understand species environment relationships and predict species distributions across locations that have not been 
sampled.

Results:  Annual mean temperature, annual precipitation, temperature seasonality, altitude, and precipitation during 
the driest month, significantly affected the distribution of S. purpurea. Only 0.70% of the Tibetan Plateau area included 
a very highly suitable habitat (habitat suitability [HS] = 0.8–1.0). Highly suitable habitat (HS = 0.6–0.8), moderately 
suitable habitat (HS = 0.4–0.6), and unsuitable habitat (HS = 0.2–0.4) occupied 6.20, 14.30 and 22.40% of the Tibetan 
Plateau area, respectively, and the majority (56.40%) of the Tibetan Plateau area constituted a highly unsuitable habi-
tat (HS = 0–0.2). In addition, the response curves of species ecological suitability simulated by generalized additive 
model nearly corresponded with the response curves generated by the MaxEnt model.

Conclusions:  At a temporal scale, the habitat suitability of S. purpurea tends to increase from the 1990s to 2050s, 
but decline from the 2050s to 2070s. At a spatial scale, the future distribution of S. purpurea will not exhibit sweeping 
changes and will remain in the central and southeastern regions of the Tibetan Plateau. These results benefit the local 
animal husbandry and provide evidence for establishing reasonable management practices.
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Background
During the last 100  years, global warming has caused 
substantial changes in spatial and temporal environ-
mental patterns [1], especially in high-altitude regions 
[2], and these changes also determine the viability and 

conservation of species [1]. As the world’s third pole, 
Tibetan Plateau has a fragile vegetation that is vulnerable 
to climate change [2], and temperature and precipitation 
have been reported to be the main factors affecting the 
vegetation dynamic [3]. Furthermore, low temperature 
is taken as one of the most momentous limiting factors 
for the performance of alpine plants, whereas warming 
reinforces photosynthetic capacity and growth rates of 
these alpine plants [4, 5]. In addition, both topographic 
(e.g. slope, aspect, altitude and so on) and soil (e.g. soil 
physical, chemical and biological properties) factors play 
a vital role in plant growth across Tibetan Plateau [6].
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Stipa purpurea, a perennial grass species from the fam-
ily poaceae, is widespread throughout the Tibetan Pla-
teau [7]. As a dominant herbage resource in alpine steppe 
of the Tibetan Plateau, the production of S. purpurea has 
a great influence on animal husbandry on the Plateau 
[8]. S. purpurea steppe constitutes a horizontal zonation 
in the plains and vertical zonation on mountain slopes 
[9, 10]. Due to its strong resistance to cold, drought and 
gale, S. purpurea can grow well in severe alpine environ-
ments, thus playing an important role in the preservation 
and stabilization of landscape diversity and heterogeneity 
[11]. Apart from preventing wind damage and regulating 
sand, S. purpurea conserves water and soil to preserve the 
stability of natural habitat [7]. However, S. purpurea as a 
plant species with one of the highest altitudinal distri-
bution in the world is now suffering from global climate 
change and factitious disturbances [12]. The distribution 
of S. purpurea is affected not only by geographic location, 
but also by biological factors and natural and anthropo-
genic disturbances. Among abiotic disturbances, drought 
stress has drawn much attention because it is a main lim-
iting factor for crop yield. The available soil water, which 
is largely determined by regional rainfall, affects plant 
growth, biomass accumulation, and leaf gas exchange 
rates [13].

Because of the concerns regarding the changing abiotic 
conditions in the Tibetan Plateau, there is an increasing 
interest in developing predictions to understand future 
communities. One tool to do this is species distribution 
modeling (SDM) which employs suitability indices. Suit-
ability indices describe the relationship between habitat 
suitability score and a given environmental variable of 
a target species. Habitat suitability is a way to predict 
the suitability of habitat at a certain location for a given 
species or group of species based on their observed 
affinity for particular environmental conditions [14]. 
However, the ability to predict species distributions is 
highly dependent on the way in which the models are 
constructed, the quality, quantity, and availability of the 
records of true absence, and the distribution of present 
species, and the environmental predictor variables used 
to model the potential distribution of the species [15–17]. 
SDM depicts the relationships of different ecological var-
iables and assesses habitat suitability for a given species. 
Climatic changes can affect the distribution of interacting 
species, which in turn may change the interactions [18]. 
However, species interactions may also affect climate 
change, for example, by changing community dynam-
ics [19]. Understanding habitat suitability is thus critical 
for the development of long-term conservation strate-
gies. Therefore, there is growing interest in understand-
ing habitat suitability, species distributions, and habitat 

ecology for an improved environmental management 
across climates and terrestrial ecosystems [20, 21].

There are many types of typical SDMs, such as Max-
Ent [22], BIOCLIM [23], DOMAIN [24], generalized 
additive model (GAM) [25], GLM [26], and BIOMAP-
PER [27], et al. We selected maximum entropy (MaxEnt) 
modeling because of its multiple advantages: (1) it uses 
presence-only data and performs well with incomplete 
data; and (2) requires small sample size and allows gaps 
[28]. Using the current distribution data for S. purpurea 
and the present climate data, the present study aimed to 
predict the effects of future climate change on the distri-
bution of S. purpurea across the Tibetan Plateau using 
the MaxEnt model. The objectives of this study were to: 
(1) model the influence of bioclimatic and topographic 
factors on species distribution patterns; and (2) discuss 
the change in habitat suitability distribution during three 
periods (the 1990s, 2050s and 2070s) in the Tibetan Pla-
teau. The results will contribute to better understanding 
of the processes and mechanisms of adaptation and diffu-
sion of biology under complex climate and environmen-
tal conditions and provide theoretical basis and guidance 
for the management of agriculture and animal husbandry 
in the region.

Methods
Study area
The Tibetan Plateau (26°00′–39°47′N, 73°19′–104°47′ E) 
is located in northwestern China. It is situated at extreme 
altitude, with an average elevation of over 4000  m, and 
covers an area of approximately 2.58 million km2. Pre-
cipitation and temperature have clear regional distribu-
tion patterns, with annual precipitation increasing from 
roughly 50–700  mm from the northwest to the south-
east, and annual temperature increasing gradually from 
−  15 to 20  °C from the northeast to the southeast [29]. 
The region is characterized by simultaneous heat and 
moisture, with a two distinct seasons, and the precipita-
tion that diminishes from south to north and from east 
to west. Vegetation types from central to western Tibetan 
Plateau are alpine meadow, alpine steppe, alpine shrub 
grassland and desert grassland [30].

Data compilation
S. purpurea data
From July to mid-August in 2015, we conducted a mul-
tisite survey during the peak growing season in 11 coun-
ties: Geer, Gaize, Nima, Zhongba, Dingri, Anduo, Nagqu, 
Yushu, Maduo, Wulan and Daocheng. The surveyed 
species indices included vegetation coverage, density, 
and height within each quadrat (0.5 m × 0.5 m), and the 
distribution of S. purpurea over the Tibetan Plateau was 
recorded from 80 specimens. Furthermore, 52 samples 
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Fig. 1  The vegetation types of grasslands in Tibetan Plateau. The distribution point and source of S. purpurea in Tibetan Plateau.(S. purpurea I repre-
sents field survey sample; S. purpurea II represents Herbarium of Botany Institute, CAS; The Sample collection route stands for field survey roadmap 
in Tibetan Plateau) (a). Habitat suitability distribution of S. purpurea (b)
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were obtained from the Herbarium of Botany Institute 
at the Chinese Academy of Sciences. Figure 1a shows the 
detailed distribution of S. purpurea in the Tibetan Pla-
teau (Additional file 1: Table S1). The datasets used and 
analysed during the current study available from the cor-
responding author on reasonable request.

Environmental variables
Bioclimatic variables are crucial in defining species’ 
environmental niches. Data for 19 bioclimatic variables 
were downloaded from WorldClim-Global Climate Data 
(www.worldclim.org/bioclim), which included the cur-
rent  conditions (interpolations of observed data, repre-
sentative of 1960–1990) and future conditions (the 2050s, 
2070s), as well as the downscaled global climate model 
data from CMIP5 (IPCC Fifth Assessment Report, AR5). 
All environmental data used in this model had a 30 arc-
second spatial resolution (also referred to as 1  km spa-
tial resolution). The topographic variables included slope, 
aspect and altitude. The altitude variable with 30 m spa-
tial resolution was downloaded from Geospatial Data 
Cloud (http://www.gscloud.cn/). The slope and aspect 
variables were calculated using ArcToolbox, Spatial Ana-
lyst, Surface Analyst in GIS 10.2 (Esri, Redlands, CA, 
USA).

Representative concentration pathways (RCPs) are four 
greenhouse gas concentration (not emissions) trajecto-
ries adopted by the Intergovernmental Panel on Climate 
Change (IPCC) in its AR5 in 2014 [31]. This supersedes 
the Special Report on Emissions Scenarios (SRES) pro-
jections published in 2000 [32]. These pathways are used 
in climate modeling and research to describe four possi-
ble future climates, all of which are considered possible 

depending on how many greenhouse gases are emit-
ted in the near future. The four RCPs—RCP2.6, RCP4.5, 
RCP6, and RCP8.5—are named after a possible range 
of Radiative Forcing values in the year 2100 relative to 
pre-industrial values (+ 2.6, + 4.5, + 6.0, and + 8.5 W/
m2, respectively) [33]. Here, we selected the RCP2.6 and 
RCP8.5 models to simulate habitat suitability distribu-
tions of S. purpurea in the 2050s and 2070s. MaxEnt out-
put for habitat suitability distribution of the species were 
reclassified in GIS 10.2 (Esri, USA) with ArcToolbox, 
Spatial Analyst and Reclassify. To compare the changes in 
the area of suitable habitat in RCP2.6 from the 1990s to 
2050s, we used the ecological suitability index of 0.60 as 
the threshold to distinguish the stand or fall of the eco-
logical suitability—values greater than 0.60 were defined 
as better suitability and less than 0.60 as poor suitability.

Data analysis
To establish a model that has better performance with 
fewer variables, we performed a correlation analysis and 
principal component analysis, and then screened eight 
bioclimatic variables (Table 1) to explore the response of 
S. purpurea to climate change. Only one variable from 
each set of highly cross-correlated variables (r2  >  0.85; 
Fig.  2) was kept for further analysis [14]. These 19 bio-
climate variables were extracted from the corresponding 
layers using ArcGIS 10.2 (Esri, USA). In addition, topo-
graphic variables altitude, slope and aspect were chosen 
to explore the response of S. purpurea to terrain factor 
change (Table 1). 

The package mgcv in R language [34] was used to 
establish the GAM and verify the results of the MaxEnt 
model response curves for 11 environmental variables.

Table 1  The selected environment variables for modeling the habitat suitability distribution of S. purpurea

Eight bioclimatic variables were selected from nineteen bioclimatic which downloaded from WorldClim-Global Climate Data (www.worldclim.org/bioclim). The 
altitude variable with 30 m spatial resolution was downloaded from Geospatial Data Cloud (http://www.gscloud.cn/). The slope and aspect variables were calculated 
using ArcToolbox—Spatial Analyst—Surface Analyst in GIS 10.2

Data source Category Variables Abbreviations Units

Geospatial data cloud Topographic Altitude DEM m

Slope Slope Degree

Aspect Aspect Degree

WorldClim Bioclimatic Annual mean temperature Bio1 °C

Mean diurnal range (mean of monthly (max temp − min temp)) Bio2 °C

Isothermality (BIO2/BIO7) (*100) Bio3 –

Temperature Seasonality (standard deviation * 100) Bio4 °C

Annual precipitation Bio12 mm

Precipitation of driest month (3 months) Bio14 mm

Precipitation seasonality (Coefficient of variation) Bio15 Fraction

Precipitation of coldest quarter (3 months) Bio19 mm

http://www.worldclim.org/bioclim
http://www.gscloud.cn/
http://www.worldclim.org/bioclim
http://www.gscloud.cn/
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Model simulation
Maximum entropy (MaxEnt) model
The MaxEnt theory was proposed by Jaynes [35]. It allows 
a probability distribution of maximum entropy to be cal-
culated for the modeled target based on a set of environ-
ment variables [22].

For a random variable λ that has n different potential 
results X1, X2, … Xn, for which the occurrence probabili-
ties are P1, P2, … Pn, respectively, the entropy of λ is given 
by the formula [14]:

The MaxEnt theory can be employed to predict spe-
cies habitat suitability as follows. If we know nothing 
about local ecological conditions or a species’ life hab-
its, the most practical prediction is that the probabilities 
that the area is either suitable or not for the species are 
both 0.5. Any data that indicate that species is present 
within a set of local ecological conditions is information 
that will reduce the uncertainty of a MaxEnt model. The 
more information is available, the more the uncertainty 
is reduced. The MaxEnt method is used to establish a 
model with the maximum entropy consistent with avail-
able knowledge [36]. We established the models with 
MaxEnt modeling version3.3.3k, which can be down-
loaded free from http://www.cs.princeton.edu/.

The receiver operating characteristic (ROC) describes 
corresponding values for omission error (FPR—horizon-
tal axis) and sensitivity (TPR—vertical axes), with one 
point for each unique threshold value. The area under 

(1)H(�) =

n∑

i=1

Pilog
1
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n∑
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the ROC (AUC) was used as the MaxEnt predictive per-
formance metric under the ROC curve. AUC values, 
which were obtained for both the training and evaluation 
data sets, are named training and testing AUC, respec-
tively [37]. AUC values are used generally for qualita-
tive characterization of distribution models. Araújo 
et al. [38] expanded a model evaluation index to “fail” for 
0.50 < AUC < 0.60, “poor” for 0.60 < AUC < 0.70, “fair” 
0.70 < AUC < 0.80, “good” 0.80 < AUC < 0.90, and “excel-
lent” for 0.90 < AUC < 1.00. The AUC of the ROC plot 
for test localities (AUCtest) can be used as the basis for 
MaxEnt model tuning of the settings [39]. Higher values 
reflect better ability of the model to discriminate between 
conditions at withheld (testing) occurrence localities and 
those at background localities (by ranking the former 
higher than the latter based on their predicted suitability 
values) [40].

Many recent studies have shown that the current 
default settings in MaxEnt were based on an extensive 
empirical tuning study, which can result in poorly per-
forming models [41, 42]. For the original predictor vari-
ables (‘feature class’ or FC), allowing more FC enables 
more flexible and complex fits to the observed data. 
Users can specify which FC will be allowed, and adjust 
the level of regulation multiplier (RM; default  =  1.0). 
However, higher flexibility can increase the propensity 
for model overfitting. We built models with RM values 
ranging from 0 to 4 (increments of 0.5) and with six dif-
ferent FC combinations (L, LQ, H, LQH, LQHP, LQHPT; 
where L =  linear, Q = quadratic, H = hinge, P = prod-
uct and T = threshold). In the present study, we used the 

Fig. 2  The principal component analysis (PCA) of environmental variables (a). Correlation analysis of the independent variables (b), and the colored 
solid circles represent the significant correlation (P < 0.05)

http://www.cs.princeton.edu/
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method of collecting samples and sample information to 
predict the distribution of S. purpurea.

Model verification method
The flexibility of the GAM enables to predict the func-
tional form of the appropriate variable. As an explora-
tory tool, the smoothing and additive models are of high 
value, and many environmental and ecological studies 
used the fitted additive model as the final model [43].

Because S. purpurea is affected by both biological and 
abiotic environmental variables, the relationship between 
its spatial distribution and a particular environmental 
variable is not always linear. Therefore, a proper paramet-
ric method should be implemented when examining the 
relationships between ecological suitability of S. purpu-
rea’s and environmental variables.

We used GAM to verify the outputs of MaxEnt. In 
ArcGIS10.2 (Esri, USA), we selected transects of envi-
ronmental variables and extracted each environmental 
variable to construct the model. The selected transects 
are given in the supporting information (Additional file 2: 
Figure S1, S2 and S3). The model can be expressed as:

where MUY is the expectancy value of Y, G(MUY) is 
copula, α0 is the intercept, in fn(xn), fn(···) is the single-
variable function used to explain variable xn and ε is the 
random variable.

Before analyzing the relationship between ecological 
suitability and an individual variable, the normal Q–Q 
should be used, and the copula can be determined based 
on a roughly normal distribution of ecological suitability. 
Here, identity link: g(z) =  z was selected as the copula. 
Through correlation analysis and principal component 
analysis, we selected 11 environmental variables that are 
thought to be uncorrelated or have little relationship.

Results
Model training
Model performance and contribution of environmental 
variables
The outputs of AUCtest were significantly different under 
different model settings (Fig. 3a). The variable FC showed 
greater difference at the equal level of RM, whereas the 
variable RM presented little difference at the equal level 
of FC. For FC  =  LQHPT and RM  =  0.5, the value of 
AUCtest reached the maximum, indicating that MaxEnt 
can perform well.

The ROC estimate showed that the AUC values of the 
training and test data-sets were 0.901 and 0.937, respec-
tively, which revealed a high level of accuracy in the 
model prediction (Fig. 3b).

(2)G(MUY) = α0 + f1(x1)+ · · · · · · + fn(xn)+

The results of the jackknife test of the variables’ con-
tribution to the model are shown in Fig. 3c. Among the 
11 environmental variables used to establish the model, 
annual mean temperature (Bio1) and annual precipitation 
(Bio12) had very high weights when used independently, 
whereas temperature seasonality (Bio4), altitude and pre-
cipitation during the driest month (Bio14) had moderate 
weight when used separately, indicating that these vari-
ables could affect the habitat suitability distribution of 
S. purpurea. The other variables, including isothermal-
ity (Bio3), slope, precipitation seasonality (Bio15), mean 
diurnal temperature range (Bio2) and aspect, showed low 
weight and thus indicated poor influence on the habitat 
suitability distribution of S. purpurea.

Response of habitat suitability to environmental variables
Response curves showed the quantitative relationship 
between the logistic probability of the presence and 
environmental variables, and deepened the understand-
ing of the ecological niche of the species by illustrating 
the responses of 11 variables to S. purpurea suitabil-
ity (Fig.  4a). Based on the response curves, the suitable 
annual mean temperature (Bio1) ranged from −  3 to 
5 °C which demonstrated that the optomal environmen-
tal temperature for growth of S. purpurea’s was low. The 
response curves of Bio2 showed that from 14 to 15 °C was 
the suitable annual mean temperature range. However, 
Bio2 did not influence the habitat suitability significantly. 
The optimal isothermality (Bio3), which is defined by the 
ratio between Bio2 and Bio7 and reflects the regional 
temperature fluctuation, for eco-suitability was approxi-
mately 0.40.

Greater seasonality reflects greater variability in tem-
perature, which is illustrated by temperature seasonal-
ity Bio4 as the degree of temperature variation over a 
given period. The response curve for Bio4 showed that 
the highest probability of S. purpurea presence was asso-
ciated with areas in where the temperature seasonality 
values ranged from 70 to 95. In addition, based to the 
response curve for precipitation during the driest month 
(Bio14), the suitable precipitation in the driest month 
was under 0 mm, which further confirmed that S. purpu-
rea is drought resistant.

Based on the response curves for altitude and slope, the 
suitable altitude for the species is from 4200 to 4800 m at 
the slope greater than 70°.

Relationship between habitat suitability for S. purpurea’s 
and environmental Variables
GAM confirmed the relationship between the response 
variable (habitat/ecological suitability) and explanatory 
variable (environmental variable) (Fig. 4b). With respect 
to Bio1, the eco-suitability increased as temperature 
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increased from −  15 to 0  °C and decreased when the 
temperature was greater than 0  °C. The results fol-
lowed a normal distribution, with the most appropriate 
temperature ranging from −  3 to 3  °C. With respect to 
mean diurnal temperature range (Bio2), the response 
curve conformed approximately with the MaxEnt out-
put. The isothermality (Bio3) in the range from 0.35 to 
0.40 revealed that GAM reflected the optimal change 
in eco-suitability at 0.37. The ecologically suitable range 
of annual precipitation (Bio12) for the species was from 
200 to 800  mm but it was very low as the precipitation 

exceeded 1000  mm. The ecological suitability declined 
at first and then recovered for precipitation of the direst 
month (Bio14). The minimum value of the precipitation 
seasonality (Bio15) was close to 0.70. In terms of environ-
mental variables Bio1–Bio4, Bio12, Bio14 and Bio15, the 
trends of the response curves were in harmony with the 
outputs from the MaxEnt analysis. However, there was a 
significant difference in the response curve for precipita-
tion of the coldest quarter (Bio19). The MaxEnt results 
showed that the eco-suitability increased with increasing 
Bio19.

Fig. 3  a Shows the value of AUCtest in different MaxEnt model settings (L = linear, Q = quadratic, H = hinge, P = product and T = threshold). b 
Represents the results of the AUC (area under ROC) curves in developing S. purpurea habitat suitability model. c Represents the results of the jack-
knife test of variables’ contribution in modeling S. purpurea habitat suitability distribution
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The analysis of the response curves of the terrain vari-
ables aspect, slope, and altitude had similar curves with 
the modeling results of MaxEnt; the most suitable eleva-
tion for the species was estimated at 3000–5000 m. The 
simulations of the relationship between the response 
and explanatory variables using the GAM were consist-
ent with the results obtained by MaxEnt. The AUC val-
ues of the training (0.901) and test (0.937) data-sets also 
indicated that the MaxEnt model was reliable in analyz-
ing the distribution of S. purpurea across the Tibetan 
Plateau.

Distribution and prediction of S. purpurea
Distribution of S. purpurea
The predicted habitat suitability was divided into five 
probability classes (Fig.  1b): 0–0.20 represented highly 
unsuitable habitat, 0.20–0.40 was unsuitable habitat, 
0.40–0.60 indicated moderately suitable habitat, 0.60–
0.80 was highly suitable habitat, and 0.80–1.00 indicated 
very highly suitable habitat. Only 0.70% of the area could 
be considered a very highly suitable habitat, followed by 
highly suitable habitat (6.20%); moderately suitable habi-
tat (14.30%), and unsuitable habitat (22.40%). The great-
est percentage (56.40%) of the Tibetan Plateau area was 
classified as highly unsuitable habitat. The loading of the 
suitability, altitude, annual mean temperature (Bio1) and 
annual precipitation (Bio12) layer into ArcGIS10.2 (Esri, 
USA) revealed that among these suitability classes, the 

highly suitable habitat was found only in the midlands 
and the northeast side of the study area, where the annual 
mean precipitation ranged from 0 to 899  mm, annual 
mean temperature was from − 3.1 to 3.8 °C,and altitude 
ranged from 3806 to 5654 m.

Predicting the distribution of S. purpurea
The habitat suitability distributions of S. purpurea’s in the 
2050s and 2070s were shown in Fig. 5a–d. Generally, the 
habitat suitability of S. purpurea in RCP2.6 and RCP8.5 
revealed that habitat suitability for the species increased 
from the 1990s to 2050s, then decreased from the 2050s 
to 2070s. Figure  5e, f illustrated that the change in the 
distribution of S. purpurea under the two scenarios in the 
1990s, 2050s and 2070s. The comparison of the RCP2.6 
scenario between the 2050s and 1990s and between the 
2070s and 1990s revealed an increase suitable area of 
3739 km2 in the 2050s and an increase of 193 km2 in the 
2070s, which illustrated that in the RCP2.6 scenario, the 
future distribution of suitable habitat for S. purpurea will 
increase with increasing temperature. The comparison 
of the RCP8.5 scebario between the 2050s and 1990s and 
between the 2070s and 1990s revealed greater amplitude 
of variation than that observed for RCP 2.6; an increase 
in suitable area with a value of 5076 km2 was predicted 
in the 2050s, but a decrease with a value of 113 km2 was 
predicted for the 2070s. This suggested that the greater 
change in temperature the more obvious effect could be 

Fig. 4  a Describes the response curves of 11 environmental variables in S. purpurea habitat distribution model. b Describes the MaxEnt verification 
results based on Generalized Additive Model (GAM)
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found on the distribution of S. purpurea. Taken together, 
these results suggested that suitable habitat for S. pur-
purea will increase from the 1990s to 2050s and then 
decline from the 2050s to 2070s.

Discussion
Relationship between S. purpurea’s habitat suitability 
and environmental variables
Among the 11 environmental variables adopted in the 
model, annual mean temperature (Bio1) and annual pre-
cipitation (Bio12) were the most important contributors to 

Fig. 5  Based on MaxEnt forecast the spatial potential distribution of S. purpurea in 2050 s and 2070 s.(Based on RCP2.6 in 2050 s (a), Based on 
RCP2.6 in 2070 s (b), Based on RCP2.6 in 2050 s (c), Based on RCP8.5 in 2070 s (d). The area alteration of S. purpurea in current period, 2050 s and 
2070 s Based on RCP2.6 (e); Based on RCP 8.5 (f)



Page 10 of 12Ma and Sun ﻿BMC Ecol  (2018) 18:10 

habitat suitability distribution of S. purpurea as indicated 
by their high weighs when used independently. Hence, 
precipitation and temperature are important environ-
mental factors that affect plant growth and distribution 
[44]. The optimal environmental temperature for growth 
of S. purpurea is low (−  3 to 5  °C), as indicated by Bio1 
response curve. Some studies indicated that S. purpurea is 
a plant adapted to semiarid alpine cold meadow or alpine 
steppe where the mean annual temperature is approxi-
mately − 1.5 °C [45]. Rainfall is one of the most significant 
factors in shaping the function and structure of plants and 
terrestrial ecosystems on the Tibetan Plateau [13] and the 
suitable annual mean precipitation is at most 1000 mm for 
growth of S. purpurea. Besides, temperature seasonality 
(Bio4), altitude and precipitation during the driest month 
(Bio14) also have an effect on the habitat suitability distri-
bution of S. purpurea. The response curve for precipitation 
seasonality showed that the greater precipitation seasonal-
ity increased the probability that S. purpurea was present 
at a location. In the coldest season, rise of precipitation 
increased habitat suitability for S. purpurea. Wang et  al. 
[46] also found that temperature is an important climatic 
factor for growth of plants in semiarid or arid regions. 
Based on the response curves of DEM, suitable altitude 
for S. purpurea is between 4200 and 4800 m, which cor-
responds to the altitude range of the alpine grassland dis-
tribution from 4500 to 4800 m [45]. Continuous pressure 
from environmental stresses promotes plant adaptation 
and evolution of numerous mechanisms for survival under 
adverse conditions [47]. Thus, the relatively higher per-
centage of fats and soluble sugars in seeds at higher alti-
tude might provide enough energy for seed germination 
and initial growth of seedlings, thereby enhancing the abil-
ity of seedlings to resist harsh environmental conditions 
[48]. Seed germination and subsequent seedling growth 
are directly related to population regeneration and com-
munity formation. The seeds of S. purpurea by raising its 
growth rate compensate for this competitive disadvantage, 
which guarantees early development and growth of S. pur-
purea in high altitude regions [49].

The other variables, such as isothermality (Bio3), slope, 
precipitation seasonality (Bio15), mean diurnal tempera-
ture range (Bio2) and aspect, have little influence on the 
habitat suitability distribution of S. purpurea. In terms 
of the effects of rainfall on plant growth, Zhang et al. [50] 
concluded that precipitation changes in a growing season 
affect the plant growth of plants and primary productivity. 
There was a significant difference in response curve for pre-
cipitation in the coldest season (Bio19) between MaxEnt 
and GAM results. According to the MaxEnt analysis, the 
eco-suitability increased as Bio19 increased, whereas the 
GAM results indicated that the eco-suitability increased 
and then decreased with increasing Bio19. A trend of 

increased overall temperature and humidity has been 
detected in Tibetan Plateau in recent years, which is con-
ducive to the growth of grassland vegetation [51]. There-
fore, the response curve of ecological suitability habitat and 
Bio19 inferred from the MaxEnt analysis reflect better the 
growth conditions of S. purpurea. Vegetation usually starts 
to grow when the temperature rises above 0 °C. However, a 
lag of 1–2 months between vegetation growth and precipi-
tation [44] suggested that that small amounts of rain affect 
plant habitat suitability in the coldest season. The response 
curves for slope revealed that most of the sampled speci-
mens were found on slope greater than 70°. The reason for 
such unusually steep slopes is that, due to high altitude of 
the Tibetan Plateau, the spatial resolution of 30 m used by 
remote sensing to obtain the slope effect could not reflect 
the actual terrain of the Plateau.

Changes in distribution of S. purpurea in the future
From the perspective of the overall ecological suitability 
of S. purpurea, the proportions of highly suitable habi-
tat and very highly suitable habitat are 6.20 and 0.70%, 
respectively. Global warming promotes vegetation 
growth [5, 52, 53], and a simulation of the warming cli-
mate in the alpine meadow area of the Tibetan Plateau 
revealed that temperature had a positive effect on alpine 
steppe by accelerating the process of alpine phenology 
and prolonging the growing season. However, a continu-
ous rise in temperature had a negative effect on vegeta-
tion [54, 55]). In the RCP8.5 scenario, the suitability of 
the overall landscape and the areas with habitats suit-
able for survival of S. purpurea’ was higher than that 
in RCP2.6. S. purpurea is distributed in the central and 
southeastern regions of the Tibetan Plateau, and from 
the large spatial scale perspective, the future distribution 
of S. purpurea will not exhibit sweeping changes. Future 
growth conditions of S. purpurea will have a great impact 
on the livestock husbandry of Tibetan Plateau and on 
the modulation and improvement of the ecosystems on 
Tibetan Plateau and even Eurasian continent [13].

Apart from the above environmental factors, some other 
factors could also influence plant suitable habitats. Duan 
et al. [56] reported that overgrazing and excessive reclama-
tion accelerate large-scale grassland degradation on the 
Tibetan Plateau. Significant decrease in grassland produc-
tivity and biological diversity has becoming a great obstacle 
to sustainable social economic and ecological develop-
ment. Human activities including livestock overgrazing, 
yak trampling, and sod removal for construction, have cre-
ated huge areas of “black soil” (also known as black soil-
type degraded grassland). The sod layer, which is from 10 
to 15 cm deep, is totally removed by intensive grazing and 
activities of rodents leaving the sub-soil uncovered [57]. In 
addition, unsustainable land use practices have resulted in 
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great reduction of soil organic carbon and a rapid decline 
of soil fertility and crop productivity [58]. Once degraded, 
these eco-systems cannot be restored easily [59]. There-
fore, our future study will focus on the effects of human 
activities on the distribution of S. purpurea.

Conclusions
Estimating how the future distribution of S. purpurea will 
respond to rapid environmental climatic modifications is of 
vital importance for determining the viability and conserva-
tion of S. purpurea. The results indicated that on a tempo-
ral scale, the suitable habitat for S. purpure tend to increase 
from the 1990s to 2050s and then decline from the 2050s to 
2070s. On a spatial scale, the future distribution of S. purpu-
rea will not experience sweeping changes, and the main dis-
tribution areas of the species will remain in the central and 
southeastern regions of the Tibetan Plateau. Our results will 
benefit the local animal husbandry and provide evidence for 
establishing reasonable management practices.
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