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Abstract 

Background:  The species pool concept was formulated over the past several decades and has since played an 
important role in explaining multi-scale ecological patterns. Previous statistical methods were developed to identify 
species pools based on broad-scale species range maps or community similarity computed from data collected from 
many areas. No statistical method is available for estimating species pools for a single local community (sampling 
area size may be very small as ≤ 1 km2). In this study, based on limited local abundance information, we developed a 
simple method to estimate the area size and richness of a species pool for a local ecological community. The method 
involves two steps. In the first step, parameters from a truncated negative trinomial model characterizing the distri‑
butional aggregation of all species (i.e., non-random species distribution) in the local community were estimated. 
In the second step, we assume that the unseen species in the local community are most likely the rare species, only 
found in the remaining part of the species pool, and vice versa, if the remaining portion of the pool was surveyed and 
was contrasted with the sampled area. Therefore, we can estimate the area size of the pool, as long as an abundance 
threshold for defining rare species is given. Since the size of the pool is dependent on the rarity threshold, to unani‑
mously determine the pool size, we developed an optimal method to delineate the rarity threshold based on the 
balance of the changing rates of species absence probabilities in the sampled and unsampled areas of the pool.

Results:  For a 50 ha (0.5 km2) forest plot in the Barro Colorado Island of central Panama, our model predicted that 
the local, if not regional, species pool for the 0.5 km2 forest plot was nearly the entire island. Accordingly, tree species 
richness in this pool was estimated as around 360. When the sampling size was smaller, the upper bound of the 95% 
confidence interval could reach 418, which was very close to the flora record of tree richness for the island. A numeri‑
cal test further demonstrated the power and reliability of the proposed method, as the true values of area size and 
species richness for the hypothetical species pool have been well covered by the 95% confidence intervals of the true 
values.

Conclusions:  Our method fills the knowledge gap on estimating species pools for a single local ecological assem‑
blage with little information. The method is statistically robust and independent of sampling size, as proved by both 
empirical and numerical tests.

Keywords:  Regional processes, Distributional aggregation, Sampling theory, Jackknife estimator, Unseen species, 
Asymptotic variance
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Background
Ecological communities are assembled from a variety of 
regional and local processes [1]. As a regional process, 
the species pool hypothesis has gained much attention in 

contemporary ecology over the past decades [2, 3]. The 
species pool hypothesis posits a group of species pre-
sent in a larger area that is ready to colonize a local com-
munity [4–7]. Whereas the concept of species pool has 
been applied in empirical studies, it is still challenging to 
accurately determine the area size and contained species 
number of the species pool.

Species pool size is important for determining the 
space–time community structure of local samples, in 
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both neutral and niche theories [6, 8–14]. To evaluate the 
statistical significance of regional process roles in species 
diversity patterns, some null models have been employed 
[15, 16]. However, the central problem accompanying 
these null models is adequate delineation of the species 
pool, which could strongly influence the interpretation of 
relevant mechanisms underpinning local species diver-
sity. Previous delineation of the species pool was usu-
ally carried out in relatively arbitrary or empirical ways. 
For example, some studies define the size of species pool 
based on ecologically pertinent areas, such as biogeo-
graphic regions or terrestrial continents [2, 17].

Two types of spatial data have been widely employed 
in ecological studies: large-scale distribution of species 
and local-scale distribution of species. Some recent stud-
ies [2, 18–21] developed statistical methods to deline-
ate the species pool, which typically require computing 
pairwise distance or species turnover [22]; or perform-
ing regression. Apparently, the performance of these 
methods is limited as they require many data gathered 
from many large-scale or mesoscale areas as inputs (e.g., 
range maps of species or species richness collected from 
a large number of sampling units). When only limited 
data (i.e., species abundance data) surveyed from a very 
local community are in hand, all of these methods would 
be unsuitable and inapplicable. Here a local community 
is defined to have a sampling area size no more than 
1 km2 (e.g., permanent forest plots). Until now, there has 
been no statistical method available for delineating local 
or regional species pools [6, 12, 23] based on species 
distribution or abundance data from a single ecological 
community.

One difficulty in defining an adequate species pool is 
the compounding effect of species that are absent from 
the local community, or very rare and not accounted for 
during sampling despite being present [24, 25]. Accord-
ing to the definition of species pool, these unseen species 
are typically undocumented for the local community but 
certainly will be present in a larger community [26, 27]. 
These species may be detected by expanding the sam-
pling domain to neighboring areas of the local plot. To 
this end, predicting the number of unseen species based 
on limited abundance information of observed species in 
the local community is a key to identify proper local or 
regional species pools for a single local community.

Defining the species pool should reflect the species 
spatial distribution. Species distribution is not random 
in space, usually presenting an aggregation pattern [28]. 
A regular pattern is also possible. Therefore, a statisti-
cal method for delineating a species pool should be able 
to describe these general species distributional patterns 
in both the local community and its pool. For achieving 

such a goal, a parametric probabilistic model accounting 
for distributional aggregation might be used. The nega-
tive binomial model (NBD) has been used extensively for 
modeling species distributional aggregation [29, 30], but 
it is not directly related to the areal size of the species 
pool. It should be modified when applied to model a spe-
cies pool.

Two quantities need to be addressed when relating the 
concept of species pool to species diversity patterns in a 
local community: the areal size of the species pool and 
the number of species in the pool. For the available data 
provided from a specific local community, how can we 
estimate these two quantities? To achieve this goal, by 
(1) using some equivalence assumptions between unseen 
and rare species and (2) modeling distribution aggrega-
tion of species in the local community, we develop a sim-
ple probabilistic method to infer area size and species 
diversity of the local, if not regional, species pool for the 
local community.

Please note that species pool can be either local or 
regional in the early development of the concept [6, 23]. 
For a regional species pool, it is defined at a broad scale. 
However, for a local species pool, its spatial extent can be 
very small and local. Species in the local species pool can 
migrate into the targeted community in very short time 
and distance [6, 23]. In the later development of the con-
cept, species pool is quantified in a more probabilistic 
and numerical way [18, 19], in which the delineation of 
species pool is a function of the migration ability of spe-
cies in the targeted ecological community (this could also 
be applied to the statistical model in our paper). In this 
case, local and regional species pools represent a con-
tinuum of the overall dispersal ability of species across 
different spatial scales [5]. To this end, if the general dis-
persal ability of species in the targeted ecological com-
munity is low, the corresponding species pool for the 
targeted community is expected to be small, being a local 
species pool.

Methods
A truncated negative trinomial model
Assume there are SA species present over a large bioge-
ographic region with area A. The region can be decom-
posed into two disjoint parts with respective areas a and 
h as in Fig. 1, where a is the sampled area and the whole 
region A represents its species pool.

Note that A = a + h. Let Xa and Xh denote the num-
bers of organisms of a species respectively scattered over 
the two parts. To account for the dependency of the two 
abundances in the areas a and h for the same species, we 
extend the NBD model to a truncated negative trinomial 
distribution (NTD) with the probability function as
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where x and y are nonnegative integers; I(·) is an indicator 
function and defined as I(E) = 1 if the statement E is true; 
otherwise I(E) =  0. The truncation of the model at zero 
is necessary to ensure that all considered species belong-
ing to the species pool are present in the pool, otherwise 
SA is undefined. All species are assumed to share the same 
parameters α and β because they inhabit the same region 
with similar environmental factors. The model param-
eter α is used to measure spatial distribution aggregation, 
while β is a rate parameter having a reciprocal relationship 
to the mean abundance. A further interpretation of Eq. (1) 
is provided in the Additional Methods of Additional file 1.

Note that, from the model in (1), the species abundance 
in the sampled area Xa can be proven to have a marginal 
probability function

Estimation of parameters α and β
Let the sampled data be (Q1,Q2, . . . ,QM) from the local 
area a, where Qn represents the number of species with 
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n individuals in the data. When the observed number of 
species in the sampled area a is given, (Q1,Q2, . . . ,QM) 
follows a multinomial distribution with total 

∑M
n=1Qn 

and cell probabilities (φ1,φ2, . . . ,φM), where

and M is the maximum abundance observed in the local 
area a. Theorem  1 in Additional file  1 provides a proof 
for explaining why (Q1,Q2, . . . ,QM) follows the multino-
mial distribution. As a result, the log likelihood function 
is expressed as follows:

where C is a constant, which is unrelated to parameters α 
and β. Note that analogous applications can be found in 
previous studies [31, 32]. The maximum likelihood esti-
mators (MLE) α̂ and β̂ of α and β can be found by maxi-
mizing the log likelihood function, independent of the 
species pool area A.

Estimation of the area size for the species pool
For a large species pool the unsampled area h in Fig.  1 
would have many species that could not be observed in 
the sampled area a, and vice versa. These species may 
have species abundances 1, 2, …. in the unsampled area h. 
However, if a species is very common in h, it is very likely 
to be seen in a as well; the reverse is also true. There-
fore, only those rare species in the unsampled region h 
(or sampled area a) with numbers of individuals less than 
a rarity threshold (e.g., 10) would be likely unseen in the 
sampled area a (or unsampled area h). These species thus 
constitute the candidate species unseen in the sampled 
area a (or unsampled area h). For computation feasibility, 
and since the size of h is unknown, the same threshold 
t is used for both the sampled and unsampled regions. 
Accordingly, the expected number of unseen species in 
the area a (or h) should have the form:

where t is the population threshold for defining the 
rare species. Additionally, Ea(Q0) and Eh(Q0) denote the 
expected numbers of unseen species in the sampled area 
a and unsampled area h, respectively. Ea(Qi) and Eh(Qi) 
denote the expected numbers of species with abundance i 
in the sampled area a and unsampled area h, respectively, 

(3a)φn =
P(Xa = n)

1− P(Xa = 0)

(3b)L(α,β|Q1, . . . ,QM ) = C +

M
∑

n=1

Qn log (φn),

(4)
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Fig. 1  Spatial relationships between species pool A, local sampled 
(or censused) area a, and remaining unsampled area h. Note that 
A = a + h
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i.e., Ea(Qi) = SAP(Xa = i) and Eh(Qi) = SAP(Xh = i). Here 
SA is thus far unknown, but is cancelled out when substi-
tuted into both sides of Eq. (4). Thus, the resultant equa-
tions are as follows:

For example, in a 50 ha (0.5 km2) forest plot from the 
Barro Colorado Island of central Panama (BCI) [33–
36], a tree species has 696 living individuals on average 
based on 2005 census data. It is reasonable that species 
with abundances less than 10 or a larger value in unsam-
pled habitat h would be unseen in the BCI plot. In this 
case, the boundary of h is unknown, and may include 
the remaining part of BCI island or neighboring main-
land territory. Thus, t would be pre-defined as 10, then 
by inserting Eq. (2) into Eq. (3) or Eq. (4) when α and β 
have been estimated or given, we can estimate the size 
of unsampled area h or the size of species pool A, using 
A = a + h (Fig. 1).

When t  =  1, we have Ea(Q0)  =  Eh(Q1) and 
Eh(Q0) = Ea(Q1), equivalently, Ea(Q0)/Eh(Q1) = 1 and Eh
(Q0)/Ea(Q1) = 1. Thus, the number of unseen species in 
sampled area a can be estimated as the number of single-
tons in the remaining area h, or vice versa. This is similar 
to the first-order Jackknife estimator of species richness 
[37, 38].

To numerically solve h for a given population threshold 
t, following Eq. (5), we minimize the following quantity as

In practice, when the population rarity threshold t is 
unknown and no empirical values can be referred to, it 
is necessary to define an optimal threshold t based on 
the limited species information from sampled area a. It is 
possible to establish another formula using the probabil-
ity of a species unseen in the unsampled area, P(Xh = 0), 
decreasing in h while conversely, P(Xa = 0) is increasing. 
As a result, we consider an equilibrium status of unseen 
species in the species pool for which the increasing 
P(Xh =  0) rate is approximately equal to the decreasing 
P(Xa =  0) rate. Therefore, the optimal t can be numeri-
cally found from minimizing
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Numerically, for many given t values [and correspond-
ingly many candidate A values solved from Eq.  (6)], the 
optimal value should be the smallest, after which the 
square of the difference in Eq.  (7) would change slowly 
(which can be clearly shown in the results). Here we set 
the optimal threshold to the largest t to make the square 
of the difference larger than 10−10.

Estimation of species number for the species pool
If the optimal t̂ and area size of pool Â have been deter-
mined using Eqs. (6) and (7), we could estimate the spe-
cies number S

Â
 in the pool by solving the following 

equality as,

where Sa is the number of observed species found in 
sampled area a. For the BCI forest plot, the 2005 census 
data have Sa = 298. Finally, P(Xa) is related to the MLEs 
α̂ and β̂. Solving Eq. (8), we obtain an explicit formula for 
estimating species number in the estimated pool Â as,

Asymptotic variances and 95% confidence interval for the 
area size and species number of the species pool
Because A = a + h and a are fixed, the variance of the 
estimated area size A, found from Eq. (6), is equal to the 
variance of estimated h (i.e., Var(Â) = Var(ĥ)), which is 
computed by defining

Use the Taylor expansion of G(ĥ, α̂, β̂) at ĥ = h (see 
Additional file  1 for details), we then approximate the 
variance of ĥ using

For the variance of S
Â

, we define H(ĥ, α̂, β̂) = S
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/
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which only involves ĥ = Â− a, α̂, and β̂ while it is unre-
lated to observed species richness Sa in the sampled area. 
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Using the variance decomposition formula repeatedly, 
the variance of S

Â
 can be estimated:

The technical derivation of the above formulas (Eqs. 10 
and 11) and definition of each symbol on the right side 
of the formulas for both Var(Â) and V âr(S

Â
) have been 

presented in detail in Additional file 1.
A 95% confidence interval (CI) of the species pool A 

can be conventionally derived from a normality assump-
tion. However, the resultant lower bound of the 95% CI 
of A could be smaller than the local sample area when A 
is considerably larger than a. To avoid this situation, we 
applied a log-transformation to the 95% CI of A. This 
technique has been applied to species richness estima-
tion [39], and the details are provided as follows.

Assume that ĥ = Â− a follows a log normal distribu-
tion, i.e., log(ĥ) is distributed normally, then the 95% CI 
of A is expressed by 

[

a+ ĥ
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Note that the merit of the resultant 95% confidence 
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An empirical test
In our study, the entire 50-ha BCI plot was investigated 
(sampling fraction  =  1). In addition, tree communities 
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from three smaller sampling areas were also studied sep-
arately for comparison, with sample fractions set at 0.25 
(12.5 ha), 0.5 (25 ha) and 0.75 (37.5 ha), respectively. For 
each sampling size, we applied the truncated NTD model 
described above and its marginal distribution to deter-
mine the distributional aggregation status of all species in 
the local community. Then Eqs. (6, 7, and 9) were used to 
determine the optimal threshold of rarity, area size and 
species richness of the species pool. The 95% confidence 
intervals of the area and species richness of the pool were 
estimated using Eqs. (12, 13). All computations were con-
ducted using R software [40] and the computational R 
code for implementing the proposed method for estimat-
ing species pools is available in Additional file 2.

A numerical test
We also conducted a numerical test by setting a 
hypothetical species pool with area size A =  1500  ha 
and species number SA  =  2000. Given a local sam-
ple with size a  =  60 and species frequency counts 
(Q1,Q2, . . . ,QM) generated from the truncated NTD 
model with α = 0.1 and β = 1 using Eq. (2), we tested 
the performance of our proposed method on estimat-
ing the hypothetical species pool regarding its area size 
and the corresponding species richness (i.e., A = 1500 
and SA = 2000).

Being similar to the empirical test above, the above 
hypothetical local area a with size 60 was further divided 
into four different sampling scales (thus representing 
different sample sizes) for testing the robustness and 
scale insensitivity of the proposed method separately as 
a = 60, 45, 30 and 15. We then used Eq. (7) to determine 
the optimal threshold t value for each sample size; and 
the optimal result was displayed in Additional file 1: Fig-
ure S1. Given the optimal threshold t value identified for 
each sampling scale, 95% confidence intervals of A and SA 
can be constructed again using Eqs. (12, 13) accordingly. 
Figs. S1–S3 of this numerical example can be reproduced 
step-by-step using the computational R code provided in 
Additional file 2.

Table 1  Estimated area size, species richness, and 95% confidence intervals of the species pool for the BCI forest plot

Results from the four different sampling fractions of the plot are presented and compared to show the estimated robustness of our model with respect to varying 
sampling sizes. Optimal rarity threshold t and clumping parameter α̂ for each sampling scale are also provided for reference

Sampling fraction α̂ Area size (ha) Optimal threshold t Area size of pool A Species richness of pool SA

Estimate 95% CI Estimate 95% CI

0.25 0.075 12.5 20 1169.2 (843.0, 1623.5) 357.2 (319.0, 417.7)

0.50 0.088 25  13 1082.6 (736.2, 1597.7) 362.3 (335.8, 401.4)

0.75 0.105 37.5 10 1015.1 (604.8, 1722.3) 349.8 (325.8, 388.3)

1.0 0.100 50 8 973.5 (636.2, 1504.9) 359.8 (339.0, 391.7)
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Results
By applying the optimal criterion using Eq.  (7), we set 
the optimal threshold of t  =  20, 13, 10 and 8 for the 
cases when sampling fractions were 0.25, 0.5, 0.75 and 1, 
respectively, in the BCI plot (Table 1; Fig. 2). By setting 
the above optimal threshold for each sampling size, the 
square of the difference in Eq.  (7) would reduce slowly 
and reach a stable value closed to zero (Fig. 2).

The demarcation of the species pool is strongly related 
to the threshold of population rarity (Fig.  3). When the 
rarity threshold is set larger, more rare species are taken 
into account, and the estimated area size of the regional 
species pool is accordingly larger, regardless of the sam-
pling fraction used (Fig. 3).

Based on this optimal threshold, our empirical test 
showed that the local species pool for the 50-ha local 
BCI tree community was around 1000 ha with 95% con-
fidence interval bounds at 636.19 and 1504.89 when 
the entire BCI plot was sampled and analyzed (Table  1; 
Fig.  3). This is close to the area size of the entire BCI 
island (~ 1560 ha). Thus, we conclude BCI island is suf-
ficient to be a local, if not regional species pool for the 
50 ha BCI stem-mapping plot. Accordingly, the estimated 
species number of the pool was 360 with the 95% confi-
dence interval bounds at 339 and 392. We note that the 

calculated species pool would be smaller if the sampling 
fraction was smaller.

For the four different sampling fractions of the entire 
BCI forest plot, although the pool area size estimation 
would decrease slightly with increasing sampling frac-
tion (Table 1), the estimated species richness of the pool 
was uncorrelated with sampling scale (Table  1). More 
importantly, the 95% confidence intervals of species rich-
ness and area size for different sample scales overlapped 
extensively.

Finally, in addition to the empirical test shown above, 
the numerical test further demonstrated the power and 
reliability of the proposed method in estimating spe-
cies pools. The true values of area size (i.e., A =  1500) 
and species richness (i.e., SA =  2000) for the hypotheti-
cal species pool have been covered very well by the 95% 
confidence intervals when the optimal thresholds were 
determined by the suggested procedure using Eq.  (7) 
(Figs. S2 and S3, and Table S1 of Additional file 1) regard-
less of the sampling scales studied.

Discussion
Advantages of applying the truncated NTD model
The present study provides a simple probabilistic method 
for delineating the area size and estimating species rich-
ness of the species pool for a local ecological community 
in which limited species abundance information is avail-
able. One key novelty of our model is that it is unneces-
sary to know or estimate species richness (SA) of the pool 
when estimating the pool areal size (A). The truncated 
NTD model (Eq. 1) and its marginal distribution Eq. (2) 
contains the information for pool size A, which could be 
estimated using Eq.  (6). Of course, the species number 
presented in the pool could be easily estimated after the 
area size for the pool has been estimated using Eq. (9).

Importantly in the present model, the size of the pool 
is presumably related to the distributional aggregation 
of species. If more species have aggregated distributions, 
it is likely that there are more rare species present in the 
pool but not observed in the local samples. In this case, 
the rarity threshold t should be set higher and as a result, 
the area size of the pool should be larger (Table 1). The 
employed model in Eq.  (1) or (2) is an extension of the 
NBD model and can depict the possible spatial distribu-
tional patterns of species in the local community because 
the NBD is quite general. Therefore, the model can char-
acterize diverse patterns of species spatial distribution, 
including aggregation, regularity and randomness [29, 30, 
41, 42].

Another key point in our assumption is that the species 
pool represents a large ecological community contain-
ing all species that can colonize the local community or 
remaining part of the pool. The truncated NTD (Eq.  1) 

Fig. 2  Square of the difference between the changing rates of 
unseen probabilities in the sampled area a and unsampled habitat 
h, for different threshold t values. We choose a cutoff point here as 
10−10 (shown as the black horizontal dashed line), after which the 
square of the difference would approach zero and thus decrease very 
slowly. Different curves represent different sampling fractions (or local 
area size) of the entire BCI forest plot used to infer the area size of the 
species pool. The optimal threshold positions for different sampling 
sizes are highlighted with vertical arrows
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reflects this assumption, as it would return zero if a spe-
cies is not present in either part of the pool (i.e., a or h). 
Consequently, such species would be excluded in the 
estimation of species pool size and richness; moreo-
ver, any species from the pool should be present in the 
local community with positive probabilistic values. The 
marginal probability of the truncated NTD can reflect 
this fact, as the probability of a species presence in the 
pool using Eq. (2) is never zero when a = A; that is, the 
absence probability using Eq.  (2) in the pool A is zero. 
In contrast, the absence of a species could be possible in 
a local area a when a  < A. Lastly, its marginal distribu-
tion allows the species pool area size A to enter Eq.  (2) 
directly, which is required to be independently estimated 
when other parameters (α and β) have been estimated in 
advance.

Information provided by unseen and rare species on local 
or regional species pools
Based on the original definition, a species pool should 
only contain those species that can colonize or recolo-
nize the local site readily when environmental or habitat 
conditions have changed. In classical richness estima-
tors, unseen species represent the species that have not 
been seen in the local site at the current time, but 
would become detectable if more extensive field surveys 
are conducted in the local site or the sampling area is 
expanded to include neighboring areas.

Nearly all richness estimators, such as Jackknife, Chao 
and others [26, 37, 38, 43, 44], have incorporated spe-
cies with single or double individuals in the ecological 
community to estimate the lower bound of the number 
of unseen species in the community. However, these 

Fig. 3  Relationships between area size of the associated species pool and population rarity threshold for the BCI local forest plot. The shadowed 
area is the 95% confidence band of A when the corresponding threshold t varies. Four sampling fractions of the entire BCI plot (0.25: 12.5, 0.5: 25, 
0.75: 37.5 and 1.0: 50 ha) were analyzed and compared for their consistency in estimating the species pool. The vertical dashed line indicates the 
optimal threshold identified from Fig. 2 for each sampling scale. The horizontal dashed line indicates the area size of the entire BCI island
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low-bound richness estimators rarely consider the infor-
mation of other rare or even common species, and an 
exception case is the bootstrap estimator [45].

However, for estimating species pool area size in our 
model, in addition to singleton and doubleton species, 
we further considered other rare species (not as so rare 
as the singletons or doubletons, but rare enough, such as 
species with three, four or five individuals, etc., defined 
by a rarity threshold (Eq.  4). The key reason for inclu-
sion of other less rare species from the local commu-
nity is based on the fact that unseen species in sampled 
area a (Fig.  1) would be those species that occur in the 
unsampled region h with low abundances. As mentioned 
previously, these species in h with small abundances 1, 
2, …, t would be very likely to be unseen in the sampled 
area a, contributing to the estimation of unseen species 
in the sampled area. As a result, we hypothesize that the 
threshold of rarity is dynamically related to the number 
of unseen species when the local area size a varies.

To define an optimal threshold value of rarity, our 
method considers that there is a tradeoff between the 
changing rates of P(Xa = 0) and P(Xh = 0), when the spe-
cies pool size A increases (Eq. 7). This tradeoff is based 
on the premise that when the pool is sufficiently large, 
the numbers of unseen species in both sampled site a 
and unsampled habitat h, respectively would reach sta-
ble values that will not change or will change slowly, no 
matter how A is further expanded. Because we have two 
unknown variables t and h, we were able to solve them 
using both Eqs. (6) and (7). The other parameters, α and 
β, describing spatial distribution have been estimated 
independently of t and h using Eq. (3b).

Conclusively, our present method is not simply a classic 
richness estimator in comparison to previous studies [26, 
38, 45]. Unlike previous richness estimators, our method 
incorporated the abundance information of rare species 
in the truncated NTD model. To this end, our method is 
more suitable for estimating the areal size or extrapolat-
ing species number of a species pool covering a vast area, 
even at a broad biogeographic scale (as demonstrated in 
the numerical test, the ratio between the area sizes for 
the pool and the target community is A/a = 25: Figs. S1–
S3 and Table S1 of Additional file 1). This is accomplished 
using species abundance information from a local eco-
logical community at a very small spatial scale. A recent 
review paper [46] also evaluated different methods, tak-
ing Hui’s Occupancy Rank Curve for instance [47], for 
conducting broad-scale richness extrapolation from local 
spatial scales. However, the exceptional advantage of our 
proposed method is that it can estimate optimal species 
richness and area size simultaneously, both of which are 
indispensible components for defining species pools.

Robustness of our model with respect to sample size
If only a part of the entire BCI forest plot was sampled, the 
estimation of species diversity and area size for the species 
pool would not be altered. This is because our method is 
insensitive to changing sampling size (Table 1 and Figs. 3, 
4). The 95% confidence intervals for species richness and 
area size, respectively, under different sampling fractions 
(or resultant local areas) would largely overlap from each 
other (Table 1). When the sampling fraction was 0.25, the 
estimation of the 95% confidence interval for the species 
richness for the pool was bounded by 319.0 and 417.7. 
The upper bound was close to the flora record of the 
number of tree species (including shrubs, around 450) on 
the island [48, 49]. The results for the numerical example 
further strongly proved that our method is insensitive to 
changing sampling size (Figs. S2, S3 and Table S1 of Addi-
tional file 1): no matter what the local sampling fraction is, 
the estimated area size and species number for the hypo-
thetical species pool are always close to the true values 
(Table S1 of Additional file  1); and of course, the corre-
sponding true values are well covered by the 95% confi-
dence intervals of both research targets (Figs. S2, S3 and 
Table S1 of Additional file 1).

The key reason that the estimation using our method 
is consistent across different sampling scales is the use of 
the optimal threshold. When the sampling fraction of the 
entire forest plot was larger, the optimal rarity threshold 
t would decrease (Table  1). This is reasonable: as more 
areas of the entire species pool have been sampled (i.e., 
sampling fraction of the area a increases), fewer unseen 
species are expected in the remaining habitat h of the 
pool. Thus, only those rare species with extremely small 
population sizes hidden in h would be unseen when con-
ducting species surveys in a. In such a case, the rarity 
threshold t is expected to be smaller.

Comparison with other methods
As mentioned earlier, some previous studies [2, 18–20] 
also developed statistical methods to delineate the spe-
cies pool. Most of these methods are probabilistic, similar 
to the method used in the present study. Moreover, akin 
to the rarity threshold used in our study, some methods 
[18, 20] utilized some kind of probability threshold to 
exclude or include species from the pool. However, other 
methods typically require abundance or incidence infor-
mation (e.g., range maps) of species occurring in many 
local communities sampled from a broad spatial extent to 
compute community dissimilarity or measure range over-
laps. Therefore, these methods are not applicable when 
only a single local community is sampled and studied.

Of course, it is necessary to mention that our method, 
the truncated NTD model used here, is parametric. The 
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power of such parametric models concerning the estima-
tion of species richness in the species pools depends on 
whether the local observed data satisfy the assumptions 
underlying the NTD or NBD (the marginal distribution 
of NTD) [50, 51]. However, as mentioned previously, 
because NBD or NTD models are very flexible on mod-
eling species distribution ranging from random to highly 
aggregate patterns [51–53], it is of high likelihood that 
our model works very well in the estimation of species 
pool as to both area size and species richness.

Conclusions
As a comparison and conclusion, our method for esti-
mating local or regional species pool is quite simple and 
the only information needed is the species abundance 
information in the local sample. By incorporating the 
information from unseen and rare species, our method 

can provide diverse information, including an estimation 
of the species pool area size with statistical confidence 
intervals, evaluation of overall species distributional 
aggregation in the local community, estimation of species 
number in the pool, and number of unseen species that 
have been unobserved in the local community relative to 
its pool.
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