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Abstract

Background: Type 2 diabetes mellitus (T2DM) is a metabolic disorder which accounts for high morbidity and
mortality due to complications like renal failure, amputations, cardiovascular disease, and cerebrovascular events.

Methods: We collected medical reports, lifestyle details, and blood samples of individuals and used the polymerase
chain reaction-ligase detection reaction method to genotype the SNPs, and a visit was conducted in August 2016
to obtain the incidence of Type 2 diabetes in the 2113 eligible people. To explore which genes and environmental
factors are associated with type 2 diabetes mellitus in a Chinese Han population, we used elastic net to build a model,
which is to explain which variables are strongly associated with T2DM, rather than predict the occurrence of T2DM.

Result: The genotype of the additive of rs964184, together with the history of hypertension, regular intake of meat and
waist circumference, increased the risk of T2DM (adjusted OR = 2.38, p = 0.042; adjusted OR = 3.31, p < 0.001; adjusted
OR = 1.05, p < 0.001). The TT genotype of the additive and recessive models of rs12654264, the CC genotype of the
additive and dominant models of rs2065412, the TT genotype of the additive and dominant models of rs4149336,
together with the degree of education, regular exercise, reduced the risk of T2DM (adjusted OR = 0.46, p = 0.017;
adjusted OR = 0.53, p = 0.021; adjusted OR = 0.59, p = 0.021; adjusted OR = 0.57, p = 0.01; adjusted OR = 0.59, p = 0.021;
adjusted OR = 0.57, p = 0.01; adjusted OR = 0.50, p = 0.007; adjusted OR = 0.80, p = 0.032) .

Conclusion: Eventually we identified a set of SNPs and environmental factors: rs5805 in the SLC12A3, rs12654264 in the
HMGCR, rs2065412 and rs414936 in the ABCA1, rs96418 in the ZPR1 gene, waistline, degree of education, exercise
frequency, hypertension, and the intake of meat. Although there was no interaction between these variables, people
with two risk factors had a higher risk of T2DM than those only having one factor. These results provide the theoretical
basis for gene and other risk factors screening to prevent T2DM.
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Background
As a global public health issue causing significant mor-
bidity and mortality, type 2 diabetes mellitus (T2DM) af-
fects more than 380 million people worldwide [1, 2].
The International Diabetes Federation has estimated that
the number of individuals with diabetes will increase
from 240 million in 2007 to 642 million in 2040 [3, 4].
In China, because of scientific and technological ad-
vances as well as socioeconomic development, the num-
ber of patients with diabetes is predicted to increase
from 20.8 million in 2000 to 42.3 million in 2030 [5, 6].
China has the largest number of people with diabetes,
with 92.4 million adults currently affected [7, 8]. T2DM
accounts for approximately 90% of all diabetes cases,
with an overall prevalence of 9.1% of the population.
T2DM occurs mainly when the body becomes unable to
effectively use insulin and pancreatic β cells to compen-
sate for an enhanced insulin demand, leading to uncon-
trolled glucose homeostasis [2, 9]. Over time, poor
glycemic control affects the blood vessels and nerves, ac-
celerating the development and progression of neuropa-
thies, micro- and macrovascular complications, and
premature death [9, 10].
Most cases of T2DM are closely related to genetic

and environmental risk factors [11, 12] and their in-
teractions [13]. Previous genome-wide association
studies [14–16] have identified numerous genetic
polymorphisms and rare genetic variants associated
with slight or significant effects on T2DM, suggesting
that the disease results from complex interactions be-
tween genetic mechanisms and environmental factors.
For instance, Zhang et al. [17] found a close relation-
ship between the SLC12A3 gene and T2DM, and
showed that a T allele in this gene had a modestly
unfavorable impact on lipid levels. Ference et al. [18]
showed that the genetic variants of the HMGCR gene
are associated with T2DM. Ergen et al. [19] suggested
ABCA1 polymorphism as a genetic marker of T2DM.
Fumitaka et al. [20] identified the genetic susceptibil-
ity of patients with a novel common variant of
rs964184 in ZPR1 to T2DM.
In addition to genetic predisposition, epidemiological

risk factors play crucial roles in T2DM, such as gender
differences, body mass index (BMI, weight in kilograms
divided by height in square meters), lifestyle (e.g., smok-
ing, alcohol consumption, etc.), and interactions between
various factors [11–13, 21, 22].
We comprehensively analyzed the potential interac-

tions between genes, physiological indices, biochemical
indicators, and behavioral factors and T2DM. We con-
structed a model by elastic net that included genes and
other environmental factors to identify variables strongly
associated with T2DM rather than to predict the occur-
rence of T2DM.
Methods
Subjects
A total of 2323 subjects, who underwent physical exam-
ination at a community health service center from April
2013 to July 2013, were selected by cluster random sam-
pling from 4 towns and townships in a district of
Ningbo, Zhejiang Province. All subjects had to meet the
following criteria: (1) Permanent residents aged more
than 40 years old; (2) Han ethnic; (3) no consanguinity
relation; (4) free from patients diagnosed with T2DM in
April 2013, as well as patients with severe liver and kid-
ney disease, malignant tumors and infectious diseases.
We collected individual medical reports, lifestyle details,
and blood samples and performed genotyping for single-
nucleotide polymorphisms (SNPs) using the polymerase
chain reaction-ligase detection reaction method. Inter-
views were performed in August 2016 to determine the
subjects’ incidence of T2DM. A total of 2113 people
qualified for the study. T2DM was diagnosed based on
World Health Organization guidelines [23]. The case
group included 100 patients diagnosed with CAD be-
tween April 2013 and August 2016. The rest who did
not develop type 2 diabetes in 2016 were in the control
group. The study was approved by the Medical Ethics
Committee of Hangzhou Normal University (No.
2013020), all participants signed informed consent
forms. The study design is as follows (Fig. 1):

Demographic information and epidemiological
investigation
Demographic variables mainly consisted of fundamental
demographic criteria such as age, sex, education level
and information on lifestyle such as smoking and drink-
ing behavior. The main lifestyle variables were defined
as follows. (1) Diet: “drink milk” and “drink soymilk”
were defined as maintaining a certain amount of milk or
soymilk intake every day, whereas “no milk intake habit”
was defined as “not drinking”. An average intake of fried
food of less than 1 time per week was defined as “no
fried food”; those who ate less than one sweet treat per
week were defined as “not eating sweets”. (2) Smoking:
smoking behavior was defined as smoking at least one
cigarette per day for at least 1 year. (3) Drinking: drink-
ing behavior was defined as drinking white wine ≥50 g,
red wine ≥150 g, or beer ≥500 g on average every day for
1 year or more. (4) Physical activity classification: “there
is little physical activity, such as desk workers such as
secretary” was defined as “sedentary”; “Light physical ac-
tivity” was defined as “office work, repair of electrical
clocks and watches, sales clerks, hotel services, chemical
laboratory operations, lectures, etc.”; “Students’ daily ac-
tivities, motor vehicle driving, electrical installation, lathe
operation, metal cutting, etc.” was defined as “moderate
physical activities”; “Non-mechanized agricultural labor,



Fig. 1 Study design
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steelmaking, dancing, sports movement, loading and
unloading, mining, loading and unloading cargo, con-
struction workers, etc.” was defined as “heavy physical
activity”.
Aaccording to standard protocols, anthropometric data,

including weight, waist circumference, BMI, total choles-
terol (TC), triglycerides (TG), high-density lipoprotein-
cholesterol (HDL-C), and low-density lipoprotein-
cholesterol (LDL-C) levels, systolic blood pressure (SBP),
diastolic blood pressure (DBP) were evaluated by profes-
sional medical examinations.
Blood samples were collected from the antecubital

vein after the subjects had fasted for ≥8 h. Part of the
collected samples was used to examine biochemical indi-
cators such as serum lipid levels, whereas the other part
was transferred into a test tube containing anti-
coagulant solution to extract DNA.

Isolation of genomic DNA
Genomic DNA was extracted from the blood cells using
a standard phenol/chloroform extraction method, centri-
fuged, and stored at − 80 °C. All genomic DNA samples
were analyzed by electrophoresis. DNA was extracted
using Tiangen Blood Genomic DNA extraction kits
(Tiangen Biotech, Beijing, China) and sent to Shanghai
Jierui Biological Engineering Co., Ltd., for genotyping
analysis using the polymerase chain reaction (PCR)-lig-
ase detection reaction (LDR) method (Generay Biotech
Company, Shanghai, China). For this part, we have cov-
ered this in detail in previous articles [24]. For quality
control, we randomly chose 10% of samples for re-
genotyping, and the concordance was 100%.
SNP selection and genotyping
Peripheral venous blood samples were collected from
the study subjects to evaluate four physiological indica-
tors of blood lipids (TC, TG, HDL-C, LDL-C and gene
locus information. SNPs were mainly searched using the
PubMed, Kyoto Encyclopedia of Genes and Genomes,
and GeneCard databases. The specific screening process
was as follows: (1) Literature related to gene polymor-
phisms, lipid levels, and atherosclerosis were searched in
NCB-PubMed, and SNPs were screened; (2) GeneView
information was obtained for relevant SNPs from the
GeneCards database and NCBI database, and then, mis-
sense mutations, 3′ untranslated region (3′ UTR), 5′
UTR, or transcription factor-binding sites were selected;
(3) The minor allele frequency (MAF) of SNPs in the
Chinese population was detected from the HapMap
database for the international human genome, and SNP
sites with MAF values greater than 0.05 were screened;
(4) Haploview software was used to conduct linkage im-
balance analysis on all selected sites, and tagSNP was se-
lected with r2 ≥ 0.8 as the standard.
This process identified 103 SNPs, including those in

SLC12A3, HMGCR, ABCA1, and KCNJ1, among others.
Information regarding all SNP loci is shown in Table S1.

Statistical analysis
Statistical analysis was conducted with SPSS 24.0 software
(SPSS, Inc., Chicago, IL, USA) and RStudio (Version
1.1.456. RStudio: Integrated development environment for
R. Boston, MA, USA; http://www.rstudio.org/) using the
glmnet package [25]. Elastic net regularization was used
for feature selection which automatically performs variable

http://www.rstudio.org/
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selection to shrink the model to reduce over-fitting and
co-variate correlation [26]. This technique has been
shown to be superior to other methods of analysis when
the set of features is much larger than the number of cases
[27]. Chi-squared test, t test, Fisher exact test (for categor-
ical variables), and Wilcoxon rank sum test (for continu-
ous variables) were used to evaluate demographic
characteristics and SNP genotypes. The odd ratios (ORs)
and 95% confidence intervals (CIs) by logistic regression
analysis were used to estimate the associations between
variables (such as genetic models and lifestyles)and the
risk of T2DM. The logistic-regression model based on 102
SNP feature selection and model based on SNP/ lifestyle
features were separately developed on an elastic net. A
gene-score was calculated for each person via the elastic
net of 5 selected SNPs weighted by their respective coeffi-
cients. The gene-scores were combined with 31 environ-
mental variables and 6 variables were screened out,
including gene-scores with nonzero coefficients as deter-
mined by elastic net. Finally, receiver operating character-
istic (ROC) curves were plotted to assess the efficiency of
the model. Acoording to Knol [28], we used Excel soft-
ware to identified interaction (RERI), OR, and 95% CI.
Haploview, plink, and g-plink were used to calculate the p
values of Hardy-Weinberg equilibrium. In all analyses, p
Table 1 Basic characteristics

Characteristic T2DM (+

Total 100

Age, Median (IQR), year 64(14.5)

Sex, n (%)

Male 49(49)

Female 51(51)

Weight, Median (IQR), year 63.2(5.05

BMI, mean ± SD, kg/m2 24.06 ± 4

Waistline, Median (IQR), cm 82.87(11

SBP, Median (IQR), mmHg 145(16.5

DBP, Median (IQR), mmHg 90(15)

TC, Median (IQR), mmol/L 4.99(1.39

TG, Median (IQR), mmol/L 1.50 (0.6

HDL-C, Median (IQR), mmol/L 1.24(0.32

LDL-C, Median (IQR), mmol/L 3.18(1.37

Degree of education, n (%)

Primary school education 78(3.6)

Junior middle school education 14(0.6)

High school and more than high school education 1

Frequency of exercise, n (%)

≥4 times/week 20(0.9)

<4 times/week 73(3.4)

IQR interquartile range, SD standard deviation, BMI body mass index, TC total chole
density lipoprotein cholesterol, SBP systolic blood pressure, DBP diastolic blood pre
values < 0.05 were considered to indicate a statistically sig-
nificant difference. The purpose of this study was not to
establish a model with good performance in predicting
T2DM, but rather to explain T2DM through a relatively
meaningful model, such as which SNP or environmental
factors are likely to cause the disease.

Results
General characteristics
The subjects included 2163 randomly selected men and
women: 54% of the subjects were female and 46% were
male. A summary of their demographic characteristics such
as age, sex, BMI, weight, HDL-C, LDC-C, TC, and TG is
shown in Table 1. There were significant differences in age,
weight, BMI, waistline, SBP, DBP, TG, LDL-C, degree of
education, and exercise frequency between the case and
control groups (p < 0.05) (Table 1). All studied SNPs in the
control subjects were in Hardy-Weinberg equilibrium (p >
0.05). The MAF of each SNP was more than 5% to ensure
that this study had sufficient statistical power (Table S1).

Gene-based model: SNPs associated with T2DM
Elastic net penalization allows for variable selection by
shrinking the coefficients of the variables not related to
the response to zero. Thus, variables with non-zero
) T2DM (−) t/z/χ2 P

2013

62(17) 7.04 0.0080

1.23 0.2680

917(45.5)

1096(54.5)

) 59.4(12.82) 5.49 0.0192

.55 23.15 ± 3.84 8.32 0.0039

) 15.10 0.0001

) 136(30) 23.80 < 0.001

80(16) 17.27 < 0.001

) 4.85(1.27) 1.99 0.1584

5) 1.28(0.87) 4.12 0.0423

) 1.26(0.38) 0.13 0.7179

) 2.98(1.11) 5.11 0.0238

7.23 0.0072

1468(67.9)

520(24.0)

82(3.8)

17.22 < 0.001

1708(79)

362(16.7)

sterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C low-
ssure
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coefficients are considered as important predictors. Se-
lection of the shrinkage parameter (lambda) for the elas-
tic net model was performed by 20 repetitions of 10-fold
cross-validation. The one-standard-error rule was used.
Using this value as the minimum lambda value resulted
in 5 variables being included in the prognostic model.
Initially, 102 SNPs were reduced to 5 potential predictors

in 2163 people, and were features with nonzero coefficients
in the elastic net model (Model A). The 5 potential SNPs
were rs5805 in SLC12A3, rs12654264 in HMGCR,
rs2065412 and rs414936 in ABCA1, and rs964184 in ZPR1.
The area under the ROC curve for model A was 0.63
(Fig. 2). Figure 2 shows the ROC curves generated for each
model. The black line represents model A, which was gen-
erated from SNP features using elastic net regression.
Table 2 is the association between the 5 SNPs and en-

vironmental factors with T2DM, which was examined
under each gene model. Without adjustment, the recessive
models of rs12654264 and dominant model of rs2065412
and rs4149336 were found to be significantly associated
with T2DM (Table 2). In the additive models, the TT
genotype of rs12654264 and CT genotype of rs4149336
were associated with a reduced risk of T2DM (unadjusted
OR = 0.45, 95%CI = 0.24–0.84, p = 0.012; unadjusted OR =
0.59, 95%CI = 0.37–0.92, p = 0.019). Subjects carrying the
TT genotype in the recessive model of rs12654264, CC +
CT genotype in the dominant model of rs2065412, and
TT + CT genotype in the dominant model of rs4149336
showed a lower risk of CAD than those with the AT+AA
genotype, TT genotype, and CC genotype (unadjusted
OR = 0.53, 95%CI = 0.32–0.90, p = 0.019; unadjusted OR =
Fig. 2 ROC curves of model A and model B: The black line represents mod
0.30, 95%CI = 0.11–0.81, p = 0.018; unadjusted OR = 0.57,
95%CI = 0.38–0.87, p = 0.009).

All covariance-based model
Considering that model A only focused on the influence
of genes on CAD, we recreated model B that included
genetic characteristics and physiological, biochemical,
and lifestyle indicators to identify factors related to
CAD. When 102 SNPs were reduced to 5 potential pre-
dictors, the features of the 5 SNPs were presented in the
gene-score calculation formula by elastic net. A gene-
score was calculated for every person by linear combin-
ation of the selected features weighted by their respect-
ive coefficients. The gene-score was combined with 31
lifestyle variables, and 6 variables with gene-scores with
nonzero coefficients were screened out by elastic net
(Model B). The red line represents the model B gener-
ated from the gene-score and lifestyle features using the
same technique. The area under the ROC for model B
was 0.71 (Fig. 2). The 6 variables were gene-score,
hypertension, meat intake, waistline, education degree,
and exercise frequency (Table S2 and Table 3).
After adjusting for these 6 variables, the recessive

models of rs12654264 and dominant models of rs2065412
and rs4149336 were still significantly associated with
T2DM (adjusted OR = 0.53, 95%CI = 0.32–0.91, p = 0.02;
adjusted OR = 0.73, 95%CI = 0.48–1.10, p = 0.02; adjusted
OR = 0.54, 95%CI = 0.37–0.88, p = 0.01) (Table 2). In the
additive models, the AA genotype of rs12654264, TT
genotype of rs2065412, and CC genotype of rs4149336
still increased the risk of T2DM (Table 2). Table S2 is the
el A; The red line represents model B



Table 2 Associations of genetic models with risk of type 2 diabetes mellitus

SNP Genotype Unadjusted OR(95%CI) Unadjusted P Adjusted OR(95%CI) Adjusted P

Rs5805

Additive CT/TT 0.73(0.47 ~ 1.13) 0.155 0.71(0.46 ~ 1.10) 0.130

CC/ TT 0.34(0.10 ~ 1.09) 0.069 0.34(0.11 ~ 1.12) 0.077

Dominant CC + CT/TT 0.67(0.44 ~ 1.02) 0.062 0.66(0.43 ~ 1.01) 0.050

Recessive CC/CT + TT 0.39(0.12 ~ 1.23) 0.107 0.40(0.12 ~ 1.28) 0.120

Rs12654264

Additive AT/AA 0.79(0.48 ~ 1.30) 0.347 0.81(0.49 ~ 1.35) 0.414

TT/AA 0.45(0.24 ~ 0.84) 0.012 0.46(0.25 ~ 0.87) 0.017

Dominant TT + AT/AA 0.66(0.41 ~ 1.06) 0.087 0.68(0.42 ~ 1.10) 0.512

Recessive TT/AT+AA 0.53(0.32 ~ 0.90) 0.019 0.53(0.32 ~ 0.91) 0.021

Rs2065412

Additive CT/TT 0.31(0.11 ~ 0.84) 0.022 0.31(0.11 ~ 0.86) 0.299

CC/TT – 0.999 – 0.999

Dominant CC + CT/TT 0.30(0.11 ~ 0.81) 0.018 0.73(0.48 ~ 1.10) 0.020

Recessive CC/CT + TT – 0.999 – 0.999

Rs4149336

Additive CT/CC 0.59(0.37 ~ 0.92) 0.019 0.59(0.37 ~ 0.92) 0.021

TT/CC 0.53(0.25 ~ 1.14) 0.103 0.52(0.24 ~ 1.19) 0.094

Dominant TT + CT/CC 0.57(0.38 ~ 0.87) 0.009 0.57(0.37 ~ 0.88) 0.010

Recessive TT/CT + CC 0.68(0.32 ~ 1.41) 0.300 0.66(0.31 ~ 1.39) 0.271

Rs964184

Additive CG/CC 1.31(0.84 ~ 2.03) 0.232 1.40(0.90 ~ 2.18) 0.140

GG/CC 2.24(0.99 ~ 5.09) 0.055 2.38(1.03 ~ 5.53) 0.043

Dominant GG + CG/CC 1.41(0.93 ~ 2.13) 0.111 1.50(0.98 ~ 2.30) 0.060

Recessive GG/CG + CC 2.21(0.91 ~ 4.52) 0.085 2.10(0.93 ~ 4.79) 0.076

Adjusted for waist circumference, the history of hypertension, the intake of meat, degree of education, exercise. The meaning of “/” is “VS”; the meaning of “+”
is “and”
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Elastic net regularisation feature selection for gene-score
and lifestyles.

Interactions between gene polymorphism and other
covariance estimators for the risk of T2DM
Considering that interactions may occur between variables
in the model, we further explored these interactions
Table 3 Associations of gene-score and lifestyles with risk of
type 2 diabetes mellitus

Characters OR 95%CI P

Gene-score 36.51 6.24–213.60 < 0.001

The history of hypertension 3.31 2.01–5.48 < 0.001

The intake of meat 1.50 0.98–2.31 0.06

Waist circumference 1.05 1.02–1.07 < 0.001

Degree of education 0.50 0.30–0.83 0.007

Exercise 0.80 0.66–0.98 0.032

The intake of meat, classified into never eat white meat,1–4 times every week,
5–7 times every week; > 7 times every week; p value < 0.05 was considered
statistically significant
through an extensive literature survey. At the same time,
we had studied the correlation between the kinds of fac-
tors, for example, compared to individuals with lower gen-
etic risk and healthy lifestyle, whether individuals with
similar lifestyle but higher genetic risk have a higher start-
ing risk of developing disease. Table 4 shows the effects of
the interaction between 5 SNPs and hypertension on
T2DM. In rs5805, rs12654264, rs4149336, and rs964184,
compared to subjects without a history of hypertension
carrying the non-risk genotype, those with a history of
hypertension who carried the non-risk or risk allele were
at a higher risk of T2DM (OR = 2.95, 95%CI = 1.38–6.30,
p = 0.005; OR = 4.59, 95%CI = 2.22–9.49, p < 0.001; OR =
15.39, 95%CI = 2.04–116.30, p = 0.008; OR = 22.83,
95%CI = 3.15–165.69, p = 0.002). Although an interaction
between the 5 SNPs and hypertension was not found (p
values of RERI > 0.05), there was a cumulative effect in
each model. For example, in rs5805, within the strata of
TT, people with a history of hypertension had a higher
risk of T2DM than those without a history of
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hypertension (OR = 3.60, 95%CI = 1.84–7.04, p < 0.001); in
rs12654264, within the strata of AT+AA, compared to in
people without a history of hypertension, those with a his-
tory of hypertension were at a higher risk of T2DM (OR =
2.68, 95%CI = 1.58–4.56, p < 0.001); in rs2065412, within
the strata of hypertension, subjects carrying TT genotype
had a higher risk of T2DM than those carrying the CC +
CT genotype (OR = 1.94, 95%CI = 1.08–3.48, p = 0.026); in
rs4149336, within the strata of hypertension, subjects car-
rying the CC genotype had a higher risk of T2DM than
Table 5 Interactions between other lifestyles and hypertension for t

Hypertension(−) Hypertension(+)

case/control(n) OR(95%CI) case/control(n) O

The intake of meat

<3times/week 10/682 46/756

1 4

P

≥3times/week 10/303 27/329

2.25 (0.93 ~ 5.46) 5

P = 0.073 P

OR(95%CI) for
people who eat
much more meat
within strata of
hypertension

2.25 (0.93 ~ 5.46) 2

P = 0.073 P

The frequency of exercise

≥4times/week 3/489 24/319

1 5

P

<4times/week 17/496 49/766

26.98 (7.82 ~ 93.07) 7

P < 0.001 P

OR(95%CI) for
people who eat
much more meat
within strata of
hypertension

26.98 (7.82 ~ 93.07) 1

P < 0.001 P

Dyslipidemia

Dyslipidemia (−) 3/489 24/319

1 1

P

Dyslipidemia (+) 17/496 49/766

5.59 (1.63 ~ 19.19) 1

P = 0.006 P

OR(95%CI) for
dyslipidemia
patients within
strata of
hypertension

5.59 (1.63 ~ 19.19) 0

P = 0.006 P

p-value < 0.05 is considered statistically significant
those carrying TT + CT; within the strata of the CC geno-
type, people with a history of hypertension were at a
higher risk of T2DM (OR = 1.27, 95%CI = 1.00–1.61, p =
0.049; OR = 2.95, 95% CI = 1.53–5.68, p = 0.001) (Table 4).
Table 5 shows the effect of the interaction between

meat intake, exercise frequency, dyslipidemia, and hyper-
tension on T2DM. For meat intake, compared to in
people without hypertension who eat white meat less
than three times per week, those with hypertension who
eat meat were at a higher risk of T2DM regardless of the
he risk of type 2 diabetes mellitus

OR(95%CI) for
hypertension
patients within
strata of other
lifestyles

RERI (95%CI) p

R(95%CI)

.15 (2.08 ~ 8.29) 4.15 (2.08 ~ 8.29)

< 0.001 P < 0.001

0.20 (−2.74 ~ 3.13) 0.896

.60 (2.68 ~ 11.7) 1.35 (0.82 ~ 2.21)

< 0.001 P = 0.234

.49 (1.18 ~ 5.22)

= 0.016

.16 (1.51 ~ 17.67) 5.16 (1.51 ~ 17.67)

= 0.009 P = 0.009

48.38 (−11.90 ~ 108.66) 0.116

9.55 (24.64 ~ 256.97) 2.95 (1.65 ~ 5.27)

< 0.001 P < 0.001

5.42 (8.77 ~ 27.12)

< 0.001

2.26 (3.66 ~ 41.06) 12.26 (3.66 ~ 41.06)

< 0.001 P < 0.001

−6.43 (−17.08 ~ 4.22) 0.237

0.43 (3.23 ~ 33.64) 1.87 (1.06 ~ 3.28)

< 0.001 P = 0.03

.85 (0.51 ~ 1.41)

= 0.529
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number of times per week (OR = 4.15, 95%CI = 2.08–
8.29, p < 0.001; OR = 5.60, 95%CI =2.68–11.7, p < 0.001).
Within the strata of hypertension, people who eat white
meat more than three times per week had a higher risk
of T2DM than people who eat white meat less than
three times per week (OR = 2.49, 95%CI = 1.18–5.22, p =
0.016). For the frequency of exercise, compared to in
those without hypertension who had a good exercise
habit (≥4 times/week), those with hypertension who did
more or less exercises were at a higher risk of T2DM
(OR = 5.16, 95%CI = 1.51–17.67, p = 0.009; OR = 79.55,
95%CI = 24.64–256.97, p < 0.001). Within the strata of
hypertension, people who exercised less than 3 times per
week had a higher risk of T2DM than those who exer-
cised less than 4 times per week; additionally, within the
strata of those who exercised less than 4 times per week,
people with hypertension had a higher risk of T2DM
than people without hypertension (OR = 15.42, 95%CI =
8.77–27.12, p < 0.001; OR = 2.95, 95%CI = 1.65–5.27, p <
0.001). Compared to subjects without dyslipidemia or
hypertension, those who had dyslipidemia only, hyper-
tension only, or two diseases at the same time were at a
higher risk of T2DM (OR = 12.26, 95%CI = 3.66–41.06,
p < 0.001; OR = 5.59, 95%CI = 1.63–19.19, p = 0.006;
OR = 10.43, 95%CI = 3.23–33.64, p < 0.001). Interactions
between the 3 models were not detected (p values of
RERI > 0.05) (Table 5).
Discussion
To construct the model, 133 candidate features were re-
duced to 7 potential predictors by examining the
predictor-outcome association by shrinking the regres-
sion coefficients using the elastic net method. This
method not only is superior to the method of choosing
predictors based on the strength of their univariable as-
sociation with outcome [27–29], but also enables the
panel of selected features to be combined into a model.
Thus, the model, which makes use of easily accessible
metrics, can serve as a more convenient biomarker for
explaining T2DM.
As T2DM is a complex disorder, and several genes

have been implicated in its etiology and evolution. The
identification of risk alleles is useful because if the in-
volved genes and their functions are known, this infor-
mation can be used to develop prevention, treatment,
prognosis prediction, and/or curative methods for the
disease. In the gene-based model, we examined the in-
fluence of genetic polymorphisms in four genes
(SLC12A3, HMGCR, ABCA1, ZPR1) on T2DM through
elastic net screening. Our data demonstrated that
rs5805 in SLC12A3, rs12654264 in HMGCR, rs2065412
and rs414936 in ABCA1, and rs96418 in ZPR1 were
significantly associated with T2DM.
We found that the minor allele (“C”) of rs5805 in
SLC12A3 was associated with a reduced risk of T2DM
in the Chinese population. SLC12A3, located on 16q13,
encodes a thiazide-sensitive Na + Cl– cotransporter that
mediates reabsorption of Na + and Cl– in the renal distal
convoluted tubule and is expressed specifically in the
kidneys [30]. Studies of SLC12A3 suggested that its gen-
etic variants and rare mutations impact the development
of hypertension and T2DM and/or nephropathy in Asian
populations [31–33], which is consistent with the results
of our study.
Our finding that variants in HMGCR were associated

with the risk of diabetes. People carrying the TT geno-
type of rs12654264 are at a reduced risk of T2DM. Past
studies have shown that, HMGCR variants are associated
with obesity or its subphenotypes, such as weight, BMI,
or waist circumference [34–36]. Thus, the mechanism
by which HMGCR variants increase the risk of diabetes
is likely mediated by weight gain.
ABCA1 plays an important role in cholesterol metab-

olism, particularly for HDL-C [37]. Previous investiga-
tions have showed that the ABCA1 gene may influence
cardiovascular risk in the general population [38]. In
addition, the ABCA1 R230C polymorphism may play an
important role in maintaining glucose-mediated insulin
secretion, in turn, leads to a 4-fold increase occurrence
of diabetes [39]. Few studies have examined the role of
ABCA1 polymorphism (rs2065412 and rs414936) in dia-
betes. We found a significantly higher frequency of both
the T allele and genotype in the control group compared
to in patients, indicating that the T allele is a protective
factor against diabetes mellitus.
ZPR1 is located ~ 1.6 kb upstream of the APOA5-A4-

C3-A1 gene complex. We found that rs964184 of ZPR1
was significantly associated with T2DM in Chinese indi-
viduals. This is consistent with the results of a previous
study [40, 41]. rs964184 is in the intron region of ZPR1
at chromosome 11q23.3. ZPR1 is an essential regulatory
protein for cell proliferation and signal transduction and
may have multiple physiological functions [41, 42].
Multiple environmental risk factors, including gender,

personal fitness status, weight, other physical conditions,
and their interactions, can modulate serum lipid profiles,
in addition to the effects of genetic background [13, 43,
44]. In the present study, demographic characteristics
and lifestyle factors of the participants, including waist-
line, education degree, exercise frequency, hypertension,
and meat intake, influenced T2DM. This has been con-
firmed in previous studies [11–13, 43, 44].
Epidemiological experts have suggested that quantita-

tive interactions in the additive model are best suited for
assessing the importance of interactions [26]. RERI, as
well as the p values and 95%CI of RERI, were deter-
mined in this study. The RERI caused by an interaction
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is generally considered as the standard measure of an
additive model interaction in case-control studies. We
explored the interactions of gene-lifestyle factors, gene-
biochemical indicators, and certain lifestyle factors with
the risk of T2DM. Although the interactions between
these indices were not statistically significant, those car-
rying risk alleles of these SNPs who also had a history of
hypertension or dyslipidemia were also at a high risk of
disease.
This study had some limitations. First, our model was

designed to explain the relationship between variables
and disease and not to predict the risk of T2DM, and
thus the model was not tested in new populations. Sec-
ond, most responses related to lifestyles were obtained
through questioning of the patients, and thus, there may
have been recall bias. Finally, the conclusions may only
be applicable to people in southern China. Studies in
multiple regions and different populations using a ran-
domized, large-scale, long-term design are needed.

Conclusions
In conclusion, the model which we built showed that
four SNPs and 5 variance-covariance estimators were as-
sociated with T2DM in people in southern China. These
results will provide a theoretical basis for gene and risk
factor screening to prevent T2DM.
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