lida et al. BMC Cancer (2018) 18:1054
https://doi.org/10.1186/s12885-018-4977-2

BMC Cancer

RESEARCH ARTICLE Open Access

Predominance of triple wild-type and IGF2R ® e
mutations in mucosal melanomas

Yuuki lida'", Matthew P. Salomon'", Keisuke Hata', Kevin Tran', Shuichi Ohe', Chester F. Griffiths?, Sandy C. Hsu®,
Nellie Nelson® and Dave S. B. Hoon'"

Abstract

Background: Primary mucosal melanoma (MM) is a rare subtype of melanoma that arises from melanocytes in the
mucosa. MM has not been well profiled for mutations and its etiology is not well understood, rendering current
treatment strategies unsuccessful. Hence, we investigated mutational landscape for MM to understand its etiology
and to clarify mutations that are potentially relevant for MM treatment.

Methods: Forty one MM and 48 cutaneous melanoma (CM) tissues were profiled for mutations using targeted deep
next-generation sequencing (NGS) for 89 cancer-related genes. A total of 997 mutations within exons were analyzed

immunohistochemistry.

for their mutational spectrum and prevalence of mutation, and 685 non-synonymous variants were investigated to
identify mutations in individual genes and pathways. PD-L1 expression from 21 MM and 18 CM were assessed by

Results: Mutational spectrum analysis revealed a lower frequency of UV-induced DNA damage in MM than in CM

(p =0.001), while tobacco exposure was indicated as a potential etiologic factor for MM. In accordance with low UV
damage signatures, MM demonstrated an overall lower number of mutations compared to CM (6.5 mutations/Mb vs
14.8 mutations/Mb, p =0.001), and less PD-L1 expression (p = 0.003). Compared to CM, which showed frequent
mutations in known driver genes (BRAF 50.0%, NRAS 29.2%), MM displayed lower mutation frequencies (BRAF; 12.2%,
p <0.001, NRAS; 17.1%), and was significantly more enriched for triple wild-type (no mutations in BRAF, RAS, or NFI,
70.7% vs 25.0%, p < 0.001), IGF2R mutation (31.7% vs 6.3%, p = 0.002), and KIT mutation (9.8% vs 0%, p =0.042).

Of clinical relevance, presence of DCC mutations was significantly associated with poorer overall survival in MM
(log-rank test, p = 0.02). Furthermore, mutational spectrum analysis distinguished primary anorectal MM from CM
metastasized to the bowel (spectrum analysis p < 0.001, number of mutations p = 0.002).

Conclusions: These findings demonstrated a potential etiologic factor and driver mutation for MM and strongly
suggested that MM initiation or progression involves distinct molecular-mechanisms from CM. This study also
identified mutational signatures that are clinically relevant for MM treatment.
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Background

Primary mucosal melanoma (MM) is a rare subtype of
melanoma which accounts for approximately 1% of
melanoma and arises from melanocytes in mucosal
tissue of different anatomical sites, such as the head &
neck, gastrointestinal tract, or genitourinary tracts [1-3].
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Compared to cutaneous melanoma (CM), MM is
relatively asymptomatic or lacks early clinical visibility,
which is important for early detection of CM, thus it is
often diagnosed at more advanced stages and therefore,
exhibiting poor prognosis. The treatment of MM
remains subjective because of the rareness of the cancer
and lack of randomized controlled trials [1-3]. Epidemi-
ologic studies have indicated potential risk factors for
MM, such as tobacco exposure, HIV infection, or
chronic inflammation [4], however precise roles of these
factors on MM remain unknown.
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In a recent study [5], CM was stratified into four
molecular subtypes: BRAF mutated, RAS mutated
(NRAS/KRAS/HRAS), NFI mutated (a regulator of RAS
pathway [6]), and triple wild-type (Triple-WT, a sub-
group that lacks above mutations) using the Cancer
Genome Atlas (TCGA) database. Molecular targeted
therapies, such as BRAF inhibitors or MEK inhibitors,
are applicable for CM treatment based on these genetic
subtypes [7]. However, mutational patterns in MM have
been profiled for only a few genes, such as BRAF, NRAS,
and KIT, which are mostly targeted for specific hotspots
or limited regions within the genes [1, 3, 8]. Our know-
ledge about the cancer-related gene mutations in MM,
particularly in all exonic regions, is still limited and war-
rants further investigation into the mutational landscape
to understand the etiology of the disease and better
treatment strategies for MM.

To date, the majority of genomic studies aimed to
identify somatic mutations in melanoma have focused
mainly on CM and have only include a small number of
MM samples (i.e. [9, 10]). Therefore, to better investi-
gate the etiology of MM and to clarify mutations that
are potentially relevant for MM treatment, we utilized
targeted next-generation sequencing (NGS), which en-
abled us to screen all exons on multiple cancer-related
genes with high coverage [11-14] in a large collection of
MM. Here, we analyzed the mutational landscape be-
tween 41 MM and 48 CM specimens using our custom
panel of 89 genes frequently mutated in cancer.

Methods

Patients and specimen collection

The study involved clinically and surgically defined
tumors that comprised of 41 MM and 48 CM from the
John Wayne Cancer Institute (JWCI) tissue bank arch-
ive. All surgeries were performed at Saint John’s Health
Center (SJHC), and specimens were identified by experi-
enced melanoma surgical pathologists at SJHC, Dept. of
Surgical Pathology. Detailed characteristics of specimens
are shown in Additional file 1: Table S1. In MM patients,
metastases from CM were ruled out as they had no
medical history or evidence of CM or uveal melanoma.
This study followed the principles in the Declaration of
Helsinki. All human specimens and clinical information
for this study, including informed consent, were
obtained according to the protocol guidelines approved
by the SJHC/JWCI Western Institutional Review Board.

DNA extraction

Frozen tissues (n = 62) were homogenized with a sonica-
tor and filtered using QIAshredder (QIAGEN, Valencia,
CA), and DNA was extracted using the ZR-Duet DNA/
RNA MiniPrep (Zymo Research, Irvine, CA), according
to the manufacturer’s protocol. DNA extraction from
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formalin-fixed paraffin-embedded (FFPE) specimens
(n =27) was performed using ZR FFPE DNA MiniPrep
(Zymo Research), as previously described [15]. DNA was
quantified using UV spectrophotometer (BioTek,
Winooski, VT) and Quant-iT PicoGreen dsDNA Assay
Kit (ThermoFisher Scientific, Carlsbad, CA). For
specimens contaminated with strong melanin content,
OneStep PCR Inhibitor Removal Kit (Zymo research)
was used for melanin removal. For tumor purity, we
assessed frozen tissues that were dissected by a surgical
pathologist from the original tumor surgery whereby a
representative tissue was made into a FFPE tumor block.
The majority (>90%) of the cells in the frozen tissues
were melanoma cells. For FFPE tumor block analysis, we
assessed H&E stained slides and performed micro-dis-
section of melanoma tumor cells.

Custom target enrichment and NGS

An Agilent Haloplex custom target enrichment kit that
captured all exons in 89 genes related to melanoma and
tumors from mucous membranes [5, 16—19] was
designed using the Agilent SureDesign software (Agilent
Technologies, Santa Clara, CA). The genes on the panel
are listed in Additional file 2: Table S2. Target-enriched
libraries were constructed from genomic DNA (3 pg),
following an instruction from HaloPlex Target Enrich-
ment for [llumina Kit (Agilent Technologies) [13]. Only
library fragments within 175 to 625 bp were considered
for the final quantification, normalization, and pooling.
The final multiplexed Haloplex custom target library
pool was sequenced on the Illumina HiSeq 2500
(lumina, San Diego, CA) on rapid mode using
paired-end 100 bp reads. Overall, the panel showed high
coverage rates (median 349x) for all the target regions.

Variant calling and data analysis

Raw genomic sequence reads were mapped to the 1000
Genomes (b37) built of the human genome reference
using BWA-MEM (version 0.7.5a) with default settings
[20]. The resulting alignments were further processed
using GATK (version 2.8-1) following the GATK Best
Practices recommendations [21-23]. Single nucleotide
variants were identified using MuTect version 1.1.4 [24].
MuTect was run using default parameters in the High
Confidence mode along with dbSNP (version 137) and
COSMIC (version 67) databases on tumor only samples.
Only SNVs that were classified as “KEEP” by MuTect were
used for downstream analysis. Genomic annotations were
performed using the ANNOVAR annotation pipeline [25].
In order to remove potential germline variants from our
set of variants, we further filtered the variants using
SnpSift [26]. Only variants that had a population fre-
quency below 1%, mutation allele frequency > 10%, and
coverage of >20X were used for further analysis. The final
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mutation call set had a mean depth of coverage of ~274X.
Mutation spectrum and signatures analyses were done
using the Bioconductor packages SomaticSignatures [27]
and deconstructSigs [28], respectively. A total of 997 mu-
tations that were located within exonic regions were ana-
lyzed for mutation spectrum and prevalence of mutations,
and 685 non-synonymous mutations were investigated for
identification of MM associated genes and pathways.
MAPK pathway, one of the most biologically and clinically
important pathways in melanoma [5], was considered to
be mutated when there was at least one non-synonymous
mutation in BRAF, HRAS, KRAS, MAPK2KI1, NFI or
NRAS.

Immunohistochemistry (IHC)

IHC was performed as previously described [29, 30],
using anti-PD-L1 rabbit monoclonal antibody (1:100
dilution, #ab205921; Abcam). After the antigen retrieval
step, the sections were incubated in 10 g/L trichloroiso-
cyanuric acid (176,125; Sigma-Aldrich) solution for
30 min at room temperature to bleach the melanin [31].
Photographs were obtained using a Nikon Eclipse Ti
microscope and NIS elements software (Nikon). Total of
39 specimens (21 MM and 18 CM) were available for im-
munohistochemistry. The expression of PD-L1 was quan-
tified using an H score system, which considers both the
intensity and percentage of positive cells [32]. Intensity of
PD-L1 on tumor cell membrane was determined between
0 (no staining), 1 (weak), 2 (moderate), and 3 (strong). The
score was calculated using the following formula; 1 x (% of
1+ cells) + 2 x (% of 2+ cells) + 3 x (% of 3+ cells) [32] .

Data access

Raw genomic sequence data obtained in this study can
be accessed from NCBI SRA under Bioproject number
PRINA379027.

Pan cancer mutation analysis

TCGA mutation frequency data was downloaded using
the RTCGAToolbox Bioconductor package for run date
“20,150,821” [33].

Statistical analysis

Continuous variables were assessed using Student’s ¢ test
or Wilcoxon rank-sum test, and categorical variables
were assessed using x> test or Fisher’s exact tests. FDR
corrected p-value < 0.05 was considered to perform mul-
tiple test for 96 substitutions. Overall survival (OS) was
analyzed based on the time since being diagnosed with
melanoma using the Kaplan-Meier method and log-rank
test. All statistical analyses were performed with JMP,
version 11.0 (SAS Institute Inc., Cary, NC) or R (https://
www.R-project.org), and a two-sided p-value < 0.05 was
regarded as statistically significant.
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Results

Mutation spectrum analysis revealed a potential risk
factor for MM

UV exposure is a major mutagenic factor that drives
malignant transformation of melanocytes into CM [34].
However, MM is generally not exposed to UV due to its
anatomical locations [1, 3, 8]. Epidemiologic studies have
indicated potential risk factors for MM, including
tobacco use for oral MM [4, 35]; however, no definitive
risk factor has been identified. To investigate the
involvement of UV or tobacco exposure in MM, we
performed a mutational spectrum analysis for a total of
997 mutations on exons in 89 genes. Within six different
substitutions, C>T substitutions, were the most pre-
dominant substitution type in both MM and CM
(Fig. 1a). Importantly, the C>T substitutions were sig-
nificantly less in MM (57.8%) than CM (64.8%, Fig. 1a,
X test, p =0.002). Despite the lower frequency of C>T
substitutions in MM, they were still the most pre-
dominant substitution type in MM. Other factors,
such as aging, induce C>T substitutions and there-
fore are the most prevalent substitutions in many
cancers [16, 36], including other mucosal origin
tumors such as gastric adenocarcinoma and colorectal
cancer (CRC) [16, 19] and are not highly specific to
UV damage [16, 36].

To further analyze the mutational spectrum in MM,
information on the nucleotides immediately 5" and 3’
to each mutated base (i.e. tri-nucleotide context) were
incorporated into our analysis, making 96 possible
substitutions [36, 37]. Eleven substitutions types,
mostly C>T substitutions, significantly differed between
MM and CM (Fig. 1b, t-test, FDR corrected p < 0.05). We
categorized these 96 substitutions into 30 different
signatures defined by the COSMIC (Catalogue of somatic
mutations in cancer, http://cancer.sanger.ac.uk/cosmic/
signatures, see methods) database. These 30 different
signatures propose specific etiologies or mutational
mechanisms that lead to specific signatures. As
expected, the UV damage signature (signature 7) was
less enriched in MM (Fig. 1c, Wilcoxon, p =0.001),
consisted with the C>T mutational spectrum analysis
above. Besides the UV damage signature, eight MM
specimens (19.5%) presented signatures for tobacco
exposure (signature 4 and 29). Of the eight MM that
displayed the tobacco related mutation signature, 5
were head & neck (29% of 17 head & neck cases), 1
was genital (10%), and 2 were anorectal (14%). While
patient smoking history was not available for the indi-
viduals included in this study and while the precise
mechanisms of how tobacco exposure might drive
MM remains unknown, this mutational spectrum
analysis suggests smoking is a potential pathogenic
factor in MM.
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Fig. 1 Mutational spectrum analysis for MM and CM. MM presented a distinct mutational spectrum compared to CM. a Bar plots showing
the frequency of six substitutions in MM (n=41) and CM (n=48). b & ¢ Bar plots showing the frequency of (b) 96 substitutions and (c)
30 mutational signatures from COSMIC in MM and CM. Error bars represent means + standard deviation (*p <0.05, **p <0.01)
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Tumor mutation burden and PD-L1 expression are less
in MM

Due to lower exposure of mutagenic UV light in MM
(Fig. 1la, c), we speculated that mutations are less
prevalent in MM than CM. CM, which exhibits the
highest tumor mutation burden among different
cancer types [36], demonstrated 14.8 mutations/Mb
(median, 11.5 mutations per sample) in our cohort,
while the number of mutations was significantly less
in MM (median 6.5 mutations/Mb (5.0 mutations per
sample), Fig. 2a, Wilcoxon, p =0.001). We further
investigated PD-L1 expression in both types, since
PD-L1 expression is positively associated with tumor
mutation burden [38] and predicts clinical benefit
from immunotherapies in different tumors, including
CM [39-41]. In accordance with low tumor mutation
burden, PD-L1 expression was significantly less in
MM compared to CM (Fig. 2b, Wilcoxon, p =0.003),
suggesting that immune checkpoint inhibitors, such
as nivolumab or pembrolizumab, should be carefully
considered to apply to MM patients.

IGF2R and KIT mutations are prevalent in MM

To investigate mutations of potential driver genes in
MM, we analyzed 685 non-synonymous variants and
evaluated prevalence of mutations in each gene. Pre-
vious studies have demonstrated that CM has a high
prevalence of driver gene mutations, such as BRAF
mutations or NRAS mutations [5, 7], while these
driver mutations are less frequent in MM [3, 8]. In
our cohort, mutations in BRAF, a major driver gene
in CM [5], was significantly less frequent in MM than
CM (12.2% vs 50%, Tables 1, 2, Fisher’s exact test,
p <0.001). Within BRAF mutations, 75% and 87% of
were located in the BRAFY®® hotspot mutation in
our CM cohort and in the TCGA cohort [5], respect-
ively. In contrast, the BRAF'®°° hotspot mutation was
not present in MM. Frequency of NRAS mutations,
another major driver mutation in CM, was also lower
in MM (17.1%) than CM (29.2%) (Table 1). Moreover,
other driver mutations (KRAS mutations 2.4%, HRAS
mutations 2.4%, TP53 mutations 7.3%) were not
prevalent in MM.
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Fig. 2 Tumor mutation burden and PD-L1 expression in MM and CM. MM presented lower tumor mutation burden and PD-L1 expression
compared to CM. a Number of mutations per sample was assessed by mutational spectrum analysis. Box plots showing the number of mutations
per specimen in MM (n =41) and CM (n =48). b PD-L1 expression was analyzed for MM and CM by immunohistochemistry. Box plots showing
the PD-L1 expression (H score) in MM (n =21) and CM (n =18) (**p < 0.01)

Although MM exhibited less mutations in common

Table 1 Frequently mutated genes in MM and CM
a 4 J driver genes for CM, we identified mutations in two

MM (n=41) M (n=48) genes that were significantly more frequent in MM than
GENE % GENE % CM (Table 2). Mutations in IGF2R, which is involved in
IGF2R 317 FAT4 >42  the insulin-like growth factor (IGF) pathway [42], was
KMT2A 220 BRAF 500  the most frequent mutation in MM (31.7%) and was
ATM 17.1 DCC 417 significantly more prevalent than CM (6.3%, Table 2,
NRAS 171 NRAS 295  Fisher’s exact test, p =0.002, Fig. 3a). Notably, the
N 146 KVTOA ,so frequency of IGF2R mutations were higher than other
cancer types from TCGA database (Fig. 3b). In accordance
TE12 146 ATM 20 with previous reports [3, 8, 43], KIT mutations were also
ACTLGA 122 NF1 208 sjgnificantly more frequent in MM (9.8% vs 0%, Fisher’s
APC 122 BRCA2 208  exact test, p =0.042) (Table 2). Overall, MM showed
BRAF 12.2 MET 208
BRCA2 122 TSC2 18.8
Table 2 Differentially mutated genes between MM and CM
DCC 122 ARIDTA 188
GENE MM % CM % p-value
TSC2 122 ATR 188 (n=41 (n=48) (Fisher's exact tests)
FAT4 9.8 MTOR 18.8 IGF2R 31.7 6.3 0.002
KIT 98 EPHA3 188 KIT 98 00 0042
LRP5 9.8 FZD10 16.7 BRAF 12.2 50.0 <0.001
RET 98 TET2 146 FAT4 98 542 <0007
TCF7L2 9.8 APC 146 DCC 122 417 0.002

LTK 14.6 EPHA3 24 18.8 0.018
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TCGA cohort

mutated genes that are distinct from CM and was signifi-
cantly more frequent in /GF2R and KIT mutations.

Predominance of triple-WT in MM

We further classified the 89 samples into the four
molecular subtypes, BRAF mutated (47% in melanoma
TCGA), RAS mutated (NRAS/KRAS/HRAS mutations,
29%), NFI mutated (9%), and Triple-WT (subgroup
lacking above mutations, 15%), proposed by the recent
TCGA melanoma cohort [5]. Notably, MM showed sig-
nificantly higher prevalence of the Triple-WT subtype
than CM (70.7% vs 25.0%, Fisher’s exact test, p < 0.001).
In accordance with the high prevalence of Triple-WT in
MM, mutations in the MAPK pathway (mutations in
any of the following genes; BRAF, HRAS, KRAS,
MAPK2K1, NFI or NRAS) was significantly less frequent
in MM than CM (36.6% vs 81.3%, Fisher’s exact test,
p <0.001). To further characterize the Triple-WT in
MM, we compared Triple-WT (n =29) and non-Tri-
ple-WT (n =12) in MM. Despite the difference in driver
gene mutations between Triple-WT and non-Triple-WT,
there was no significant difference in their UV damage
signatures (C>T substitutions, x> test, p =0.35;

signature 7, Wilcoxon, p =0.39). Accordingly, the num-
ber of mutations were similar in both types (median 6.5
mutations/MB (5.0 mutations per sample) for both
types, Wilcoxon, p =0.78). Furthermore, there was
no significant difference in overall survival (OS; log
rank test, p =0.43). Despite the similarity in the
above mutational landscapes between Triple-WT and
non-Triple-WT in MM, prevalence of Triple-WT
was different between anatomical subtypes of MM. Divid-
ing the MM into three major anatomic groups, genital
(n = 10), head & neck (n = 17), and anorectal (n = 14) mel-
anoma, frequencies of Triple-WT were 90.0%, 70.6% and
57.1%, respectively, suggesting distinct genetic background
underlining MM anatomic subtypes.

DCC mutation is a potential prognostic marker for MM

We further investigated any potential prognostic
markers for MM. DCC mutations were observed only in
five patients from MM (12.2%) and was less prevalent in
MM than in CM (Table 2). However, the presence of
DCC mutations was significantly associated with poor
OS in MM (Fig. 4, log-rank test, p =0.02). In contrast,
although DCC mutations were significantly more
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frequent in CM than MM (41.7% vs 12.2%), DCC muta-
tions in CM was not associated with patients’ prognosis
(log-rank test, p =0.87). These results suggest the
potential of DCC mutations as a potential prognostic
marker in MM.

Mutational spectrum analysis distinguishes primary
anorectal MM from CM metastasized to the bowel
Melanomas in the anorectal region, primary anorectal
MM or CM that has metastasized to the bowel, are rare
diseases [44], and distinguishing these two types is occa-
sionally challenging due to similarity in their anatomical
sites [45]. Definite diagnosis for these types is clinically
important, since CM has been well investigated for dif-
ferent treatment strategies, such as molecular targeted
therapies or immunotherapies [7, 40, 41]. MM demon-
strated a distinct mutational spectrum and tumor muta-
tion burden from CM (Fig. 1la, c¢), thus we speculated
that targeted NGS would enable us to distinguish
between these types. Similar to Fig. 1a, CM metastasized
to the bowel (n =10) displayed significantly higher
prevalence of C > T substitutions compared to anorectal
MM (n = 14) (Fig. 5a, 76.2% vs 47.9%, X* test, p < 0.001).
Accordingly, mutations were significantly more frequent
in CM metastasized to the bowel than in anorectal MM
(Fig. 5b, median 15.5 mutations/Mb (12 mutations per
sample) vs 5.2 mutations/Mb (4 mutations per sample),
Wilcoxon test, p =0.002). Overall, mutational analyses
were able to distinguish primary anorectal MM from
CM metastasized to the bowel.

Discussion

This study identified distinct mutational landscapes
between MM and CM, particularly the signature for
UV-induced DNA damage, and revealed that common
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driver gene mutations for CM were less frequent in
MM. Although malignant transformation of melanocytes
into CM is highly related to UV damage, and BRAF or
NRAS mutations are involved in the progression of CM
[5, 34], our study strongly suggested that MM likely has
distinct mechanisms involved in its initiation and
progression pathways. This is presumably from tobacco
exposure or mutation in IGF2R and KIT, and thus MM
may require different treatment strategies from CM.

Triple-WT comprises 15% of CM, as was previously
identified in the melanoma TCGA cohort [5]. This
subtype lacks hotspot BRAF, RAS, or NF1 mutations
which are important driver genes for CM. Triple-WT
in CM has unique molecular characteristics such as
amplifications of KIT, PDGFRA, VEGFR2, MDM2, or
TERT, as well as an enrichment of complex structural
rearrangements like fusion of driver genes [5]. Compared
to CM, MM was highly associated with Triple-WT
(70.7%). Despite the distinct characteristics between
Triple-WT and non-Triple-WT, we observed no signifi-
cant difference in mutational spectrum, tumor mutation
burden, or prognosis between Triple-WT and non-Tri-
ple-WT in MM. Further genetic and epigenetic
landscapes need to be elucidated to comprehensively
investigate biological and clinical relevance of Triple-W'T
in MM.

In addition to Triple-WT, our study provides several
important implications for the treatment of MM, par-
ticularly related to mutations in /GF2R and DCC genes.
MM was significantly associated with /GF2R mutations,
which are relatively low in other cancer types from
TCGA database (Fig. 3b), indicating the unique genetic
background of MM. Notably, none of the /GF2R muta-
tions were recurrent at a single locus, signifying the
importance of screening all exons within the gene panel.
IGF2R is a multifunctional receptor and is involved in
the IGF pathway [42]. The IGF pathway is triggered by
IGF ligands (insulin, IGF1, or IGF2) binding to their
receptors (insulin receptor or IGF1R) [46]. Stimulation
of the pathway contributes to carcinogenesis or tumor
progression in different tumors, including melanoma
[40, 46—48]. IGF2R also has a high affinity for IGF
ligands, particularly IGF2; however, the receptor lacks an
intracellular tyrosine kinase domain that is essential for
the activation of the IGF pathway, thus, the receptor acts
as a “decoy” of the IGF pathway and is recognized as a
tumor suppressor gene [42, 46, 47]. Although deregula-
tion of IGF pathway through amplification or overex-
pression of IGF2 is involved in another mucosal-origin
tumor, CRC [17], clinical relevance of IGF2R mutations
is still controversial [42]. Inhibitors targeting the IGF
pathway, such as anti-IGFIR antibodies in ongoing
clinical trials [49], are potential candidates for MM
treatment.
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DCC mutations is another candidate that is potentially
relevant for MM treatment. DCC codes netrin-1
receptor, which prevents apoptosis by binding to
netrin-1. However, netrin-1 shortage induces cleavage
of DCC at its intracellular domain and promotes
apoptosis; thus, DCC is considered as a tumor sup-
pressor [50-52]. Although the significance of DCC in
melanoma remains unknown, mutations could lead to
deregulation of DCC, possibly affecting the prognosis
of MM. Interestingly, DCC mutations were more
prevalent in CM; however, it was significantly associ-
ated with poor prognosis in MM, but not in CM.
These results imply distinct biological significance of
DCC mutations in MM and CM.

In addition to molecular targeted therapies applic-
able for individual mutations, immune checkpoint in-
hibitors that target CTLA-4 (cytotoxic T lymphocyte
antigen 4), PD-1 (Programmed death 1), or PD-L1
(Programmed death ligand 1) demonstrates great promise
for treatment of different tumors, including CM [39-41].
Particularly, drugs that block PD-1 (nivolumab or
pembrolizumab) lead to significant improvement in CM
treatment [40, 41]. MM also demonstrates higher
response to nivolumab compared to ipilimumab (CTLA-4
inhibitor) [53]. PD-L1 expression, which is positively

associated with tumor mutation burden [38], is clinic-
ally important as it predicts a better response to
anti-PD-1 therapy in CM [40, 41]. In this study, MM
demonstrated significantly lower tumor mutation bur-
den compared to CM, and accordingly, lower expres-
sion of PD-L1 (Fig. 2a, b). These results indicated a
relatively lower response to immune checkpoint
inhibitors in MM compared to CM, as was suggested
in a previous study [53]. Interestingly, seven MM
specimens and three MM specimens demonstrated
higher tumor mutation burden or PD-L1 expression
than CM, respectively (Fig. 2a, b, higher than median
in CM cohort). The clinical relevance of high tumor
mutation burden or PD-L1 expression in MM on im-
mune checkpoint blockades still remains unknown,
thus further investigation would reveal their potential
as a predictor of response to immune checkpoint
inhibitors.

Analyses on mutational spectrum and tumor muta-
tion burden significantly differentiated primary anal
MM from CM metastasized to the bowel. Although
both melanoma types arise from melanocytes and
grow in a similar mucosal microenvironment, the
difference during their initiation, particularly the
involvement of UV exposure, may lead to a distinct
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mutational landscape. Medical history or evidence of
primary CM facilitates a definitive diagnosis between
these types, however distinguishing these two types is
occasionally challenging [45]. Targeted NGS potentially
facilitates a definitive diagnosis of anal melanoma, leading
to relevant therapies for either CM or MM.

Conclusions

This study revealed potential mutagenic factor and driver
mutations involved in MM. We identified DCC mutations
as a potential prognostic marker in MM. Targeted NGS
facilitates a definitive diagnosis of MM in anorectal
regions. Although CM is highly associated with UV expos-
ure and BRAF/NRAS mutations, low association to these
signatures in MM strongly suggests that MM has distinct
mechanisms involved in its initiation and progression,
necessitating unique treatment strategies separate from
CM treatment based on its molecular profile.
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