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Abstract

Background: We previously observed that T-bet+ tumor-infiltrating T lymphocytes (T-bet+ TILs) in primary breast
tumors were associated with adverse clinicopathological features, yet favorable clinical outcome. We identified
BRD4 (Bromodomain-Containing Protein 4), a member of the Bromodomain and Extra Terminal domain (BET)
family, as a gene that distinguished T-bet+/high and T-bet−/low tumors. In clinical studies, BET inhibitors have been
shown to suppress inflammation in various cancers, suggesting a potential link between BRD4 and immune
infiltration in cancer. Hence, we examined the BRD4 expression and clinicopathological features of breast cancer.

Methods: The cohort consisted of a prospectively ascertained consecutive series of women with axillary node-
negative breast cancer with long follow-up. Gene expression microarray data were used to detect mRNAs differentially
expressed between T-bet+/high (n = 6) and T-bet−/low (n = 41) tumors. Tissue microarrays (TMAs) constructed from
tumors of 612 women were used to quantify expression of BRD4 by immunohistochemistry, which was analyzed for its
association with T-bet+ TILs, Jagged1, clinicopathological features, and disease-free survival.

Results: Microarray analysis indicated that BRD4 mRNA expression was up to 44-fold higher in T-bet+/high tumors
compared to T-bet−/low tumors (p = 5.38E-05). Immunohistochemical expression of BRD4 in cancer cells was also
shown to be associated with T-bet+ TILs (p = 0.0415) as well as with Jagged1 mRNA and protein expression (p = 0.
0171, 0.0010 respectively). BRD4 expression correlated with larger tumor size (p = 0.0049), pre-menopausal status (p = 0.
0018), and high Ki-67 proliferative index (p = 0.0009). Women with high tumoral BRD4 expression in the absence of T-
bet+ TILs exhibited a significantly poorer outcome (log rank test p = 0.0165) relative to other subgroups.

Conclusions: The association of BRD4 expression with T-bet+ TILs, and T-bet+ TIL-dependent disease-free survival
suggests a potential link between BRD4-mediated tumor development and tumor immune surveillance, possibly
through BRD4’s regulation of Jagged1 signaling pathways. Further understanding BRD4’s role in different immune
contexts may help to identify an appropriate subset of breast cancer patients who may benefit from BET inhibitors
without the risk of diminishing the anti-tumoral immune activity.
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Background
BRD4 (Bromodomain-Containing Protein 4) is a tran-
scriptional epigenetic regulator that plays a crucial role in
cancer and inflammatory diseases [1]. It is a member of
the BET (Bromodomain and Extra Terminal domain) fam-
ily that utilizes tandem bromodomains to recognize spe-
cific acetylated lysine residues in the N-terminal tails of
histone proteins [2]. Upon interaction with chromatin,
BRD4 has been shown to promote acetylation-dependent
assembly of transcriptional regulator complexes that acti-
vate various transcriptional programs, such as those in-
volved in cell proliferation and cell cycle control [3, 4].
Small molecule inhibitors that specifically target BET

proteins have been demonstrated to interfere with ex-
pression of genes involved in cell growth and apoptosis
evasion. Therapeutic benefits of the BET inhibitors have
been observed in B-cell lymphoma [5] and acute myeloid
leukemia [6, 7], as well as in lung [8], prostate [9], pan-
creatic [10], colorectal [11] and breast cancers [12].
Interestingly, BET inhibitors have also been shown to
have an anti-inflammatory effect in the treatment of
various inflammatory diseases and cancer [1, 13, 14],
suggesting that BRD4 may have an active role in sup-
porting inflammation.
Numerous studies have shown BRD4 to be important

in the promotion of NF-kB-mediated transcription of in-
flammatory genes [15–17], whose functions in cancer
initiation and progression have shown to be manifold
and complex [18, 19]. Considering the clinical benefits
of cancer immunotherapies that have been demonstrated
through blockades of immune inhibitory pathways and
stimulation of immune effector functions in tumors, in-
vestigating the potential link between BRD4 and im-
mune infiltration in cancer may present a novel insight
into the regulatory role of BRD4 in tumor immune
surveillance.
Breast cancer is a complex and heterogeneous disease.

Despite improvements in disease classification using
tumor-related prognostic markers, a large disparity of clin-
ical outcomes continues to be seen. This reflects the limi-
tation of utilizing intrinsic tumoral characteristics as the
sole determining factors of disease progression. An in-
creasing number of studies have demonstrated that the
components of tumor microenvironment, including im-
mune infiltration, interact dynamically with the tumor,
and influence clinical outcome. Particularly, infiltration by
T lymphocytes has been shown to be associated with a
good prognosis in breast cancer patients, and higher re-
sponse rate to neoadjuvant therapy [20–27].
In two independent cohorts of women with familial

breast cancer [28] and axillary node-negative (ANN)
breast cancer [29], we have observed that T-bet+
tumor-infiltrating T lymphocytes (T-bet+ TILs) were asso-
ciated with adverse clinicopathological features such as

large tumor size, high grade, mutant p53, ER negativity,
CK5 positivity, EGFR positivity, and basal molecular sub-
type [29, 30]. Despite being associated with an aggressive
tumor phenotype, patients with a high level of T-bet+
TILs in their tumors had a favorable clinical outcome [29,
30]. T-bet is an immune-specific member of the T box
family of transcription factors that is essential for differen-
tiation of type 1 helper (Th1) T lymphocytes, as well as
production of IFNy in CD4+ Th1 T lymphocytes and CD8
+ cytotoxic T lymphocytes – subsets of immune cells that
promote anti-tumoral inflammatory response [31, 32].
To examine how T-bet+ TILs may be associated with

tumor development, we further investigated gene ex-
pression differences associated with T-bet+ TILs, and
assessed their clinicopathological implications. Here we
show that tumoral BRD4 expression is associated with
T-bet+ TILs, relatively aggressive clinicopathological fea-
tures, and a poor disease-free outcome in breast cancer.

Methods
Patient cohort
The patient cohort was composed of a prospectively ascer-
tained consecutive series of women with axillary
lymph-node negative (ANN) breast cancer, who were en-
rolled at eight Toronto hospitals from September 1987 to
October 1996 as previously described [30, 33]. The clini-
copathological features of the cohort have been reported
previously [34], and disease-free survival (DFS) and overall
survival (OS) data have also been collected with minimum
follow-up time of 56 months after surgery and median
follow-up time of 100 months. Written informed consent
was obtained from all study participants. Approval of the
study protocol was obtained from the Research Ethics
Board of Mount Sinai Hospital (#01–0313-U) and the
University Health Network (#02–0881-C).

Definition of intrinsic subtypes
Molecular subtypes for tumors were defined based on
previous publications [35–37]. HER2 subtype consisted
of tumors positive for HER2 overexpression. Luminal
subtype included tumors that were negative for HER2
overexpression and positive for ER. Basal subtype in-
cluded tumors that were negative for HER2 overexpres-
sion and ER, and positive for CK5 and/or EGFR. The
luminal subtype was subsequently distinguished into lu-
minal A and luminal B based on PgR, p53 status and
Ki-67 labeling index. Tumors with a Ki-67 labeling index
of ≥14% and were negative for PgR or positive for mu-
tant p53 were assigned to the luminal B subgroup [37].

Quantitation of T-bet+ TILs using tissue microarrays
Tissue microarrays (TMAs) constructed from
formalin-fixed, paraffin-embedded (FFPE) tumor blocks
were examined by an expert breast pathologist (AMM) to
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quantitate for T-bet+ TILs and other immunohistochemical
markers as described previously [29].

Gene expression
Data from gene expression microarray profiling performed
previously in our laboratory were statistically analyzed.
The mRNA expression profiling was conducted on 19 k
arrays (18,981 cDNA/EST clones) manufactured by the
University Health Network Microarray Center at the On-
tario Cancer Institute (https://www.pmgenomics.ca/ar-
rays/index.htm). Tumor and reference cDNAs (5μg) were
indirectly labeled using aminoallyl nucleotide analogs with
Cy3 and Cy5 fluorescent tags respectively. Of the 137
flash-frozen ANN tumors analyzed for mRNA expression,
47 tumors had available IHC data for T-bet+ TILs, in
which six were T-bet+/high and 41 were T-bet−/low. Su-
pervised statistical analyses and hierarchical clustering
were conducted on the gene clones using BRB ArrayTools
software (http://linus.nci.nih.gov/BRB-ArrayTools.html).

Immunohistochemical staining and analysis of BRD4
Immunohistochemical (IHC) staining was performed to
examine BRD4 protein expression and localization using
polyclonal anti-human BRD4 (HPA061646, Sigma Al-
drich) published on the public protein database, The Hu-
man Protein Atlas project (https://www.proteinatlas.org/
ENSG00000141867-BRD4/antibody). After optimizing the
BRD4 antibody for IHC staining on a series of control
normal and breast tumor tissues, the BRD4 protein ex-
pression was assessed on the TMAs from the previously
described cohort of women with ANN breast cancer [30,
33, 34]. The automated BenchMark XT system (Ventana
Medical Systems, Inc., Tucson, AZ) was used to perform
the IHC staining. The slides were pre-treated with CC1
(Tris-based EDTA buffer, pH 8.0) (Ventana), and incu-
bated with the BRD4 antibody at a 1:300 dilution.
Complete pathological report and the level of T-bet+ TILs
were available for each tumor in this study.
Immunohistochemically-stained sections were exam-

ined for nuclear BRD4 expression, and quantitated using
the Allred scoring method [38] by a pathologist with
subspecialty training in breast pathology (FT). The score
consisted of two components: 1) the average intensity of
BRD4 staining (negative: 0; weak: 1; medium: 2; and
strong: 3), and 2) the percentage of BRD4-stained nuclei
(none: 0; < 1%: 1; 1–10%: 2; 11–33%: 3; 34–66%: 4; and
67–100%: 5). The sum of the two component scores is
the overall score with possible values of 0 or 2–8. Due
to the lack of validated cut-offs for BRD4 in breast can-
cer, an arbitrary cut-off score of 6 was decided by asses-
sing nuclear BRD4 expression levels in breast cancer
cases that were available in The Human Protein Atlas
project.

Statistical analysis
Genes were ranked based on the fold-difference in expres-
sion between T-bet+/high and T-bet−/low tumors as deter-
mined by SAM (Significance Analysis of Microarrays)
moderated t-test. Chi square test and Fisher exact test were
used to analyze the BRD4 marker associations with T-bet
TILs, Jagged1, clinicopathologic variables, IHC markers
(markers used to define intrinsic subtype), and intrinsic
subtype. Clinicopathological variables used in the analyses
were selected based on previous studies performed in this
cohort [33, 34, 37, 39]. The association of DFS with BRD4
and T-bet marker statuses was examined with log rank test
and presented as Kaplan-Meier survival curves.
A P value significance criterion of < 0.05 was applied

for the tests. Statistical analyses of associations were per-
formed using SAS 9.1 software (SAS Institute, Inc.). Sur-
vival curves were plotted using R statistical software,
version 2.15.0 (http://r-project.org/).

Results
Association of BRD4 mRNA expression in breast cancer
with T-bet+ TILs
The mRNA expression differences associated with T-bet+
TIL status were examined by interrogating gene expres-
sion microarray data that consisted of 6 T-bet+/high and
41 T-bet−/low breast tumors (Supplementary Material 1
and 2). The top 100 differentially expressed mRNAs (p <
0.005) were ranked by Significance of Microarray (SAM),
and are presented in a heat map (Fig. 1). One of the top
differentially expressed genes associated with T-bet+ TILs
(Supplementary Material 3) chosen for further study was
BRD4 (p = 5.38E-05, FDR = 43.6%), a gene of interest for
its potential immune modulatory role in tumors via pro-
motion of NF-kB-mediated inflammation. BRD4 expres-
sion in T-bet+/high tumors was up to 44-fold higher than
that in T-bet−/low tumors.

Protein expression and localization of tumoral BRD4
Immunohistochemistry was performed on TMAs to
examine the differential protein expression of BRD4
(Fig. 2). Tumoral BRD4 expression that was assigned an
Allred score of 6 or higher was considered to be BRD4
positive in this study. Overall, BRD4 positivity was ob-
served in 76.6% of tumors (n = 469/612).

Association between tumoral BRD4, T-bet+ TILs, and
Jagged1
A number of studies have indicated BRD4 to be an up-
stream regulator of Jagged1 – a ligand that has been
shown to participate in various signaling pathways with
effects on both intrinsic tumorigenic functions and im-
mune functions. Therefore, we have examined Jagged1
mRNA and protein expression that previously had been
quantitated by in situ hybridization (ISH) and IHC
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Fig. 1 Heat map of top 100 differentially-expressed genes between T-bet+/high (blue) tumors and T-bet−/low tumors (purple)

Lee et al. BMC Cancer  (2018) 18:750 Page 4 of 11



respectively in the ANN cohort [40]. BRD4 positive tu-
mors were associated with T-bet+ TILs (p = 0.0415)
(Table 1), as well as with Jagged1 mRNA (p = 0.0171)
(Table 2) and protein (p = 0.0010) (Table 3) expression.
Moreover, Jagged1 mRNA-positive tumors were associ-
ated with T-bet+ TILs (p = 0.0091) (Table 4).

Tumoral BRD4 expression and clinicopathologic and
molecular parameters
Tumors exhibiting high levels of BRD4 expression (BRD4
+/high) were more likely to be larger (p = 0.0049), and
were associated with pre-menopausal status (p = 0.0018)
(Table 5). BRD4+/high tumors were also associated with a
high proliferative index as determined by Ki-67 expression
(p = 0.0009) (Table 6).

Complete data to generate molecular subtypes was
available for 375 tumors (Table 7). Molecular subtypes
did not differ significantly between BRD4+/high and
BRD4−/low tumors. However, a trend towards an overall
difference among the subtypes was observed.

Prognostic relevance of tumoral BRD4 expression in the
context of T-bet+ TILs
Disease-free survival (DFS) among all four subgroups
(T-bet+/high, BRD4+/high; T-bet+/high, BRD4−/low;
T-bet−/low, BRD4+/high; T-bet−/low, BRD4−/low) was
analyzed. While the overall difference of DFS among the
four groups was not significant, T-bet−/low, BRD4+/high
trended towards higher recurrence rate than other
groups (log rank test p = 0.0967) (Fig. 3).
Based on this observation, DFS between the T-bet−/low,

BRD4+/high group and the combination of other groups was

Fig. 2 Immunohistochemical intensity of BRD4 in breast tumor TMAs: Negative = 0, Weak = 1, Medium/Moderate = 2, Strong = 3

Table 1 Association of tumoral BRD4 expression with T-bet+ TILs

Marker† BRD4/low % BRD4/high % P-
value*(n = 143) (n = 469)

Number Number

Tbet+

Low 78 54.5 317 67.6 0.0415

High 2 1.4 34 7.2

ND‡ 63 44.1 118 25.2

‡Unknown, not done or missing
*from Fisher’s exact test; ND groups were not used in testing

Table 2 Association of tumoral BRD4 expression with Jagged1
mRNA expression

Marker BRD4/low % BRD4/high % P-
value*(n = 127) (n = 392)

Number Number

Jagged1 mRNA Low 58 45.7 133 33.9 0.0171

High 69 54.3 259 66.1

*from Chi-Square test

Lee et al. BMC Cancer  (2018) 18:750 Page 5 of 11



statistically compared, in which patients with T-bet−/low,
BRD4+/high tumors were shown to have a significantly a
poorer DFS (log rank test p = 0.0165) (Fig. 4). Compared to
the other subgroups combined, the T-bet−/low, BRD4+/high
group was associated with reduced DFS in univariate analysis
(LR test p = 0.0207, RR= 2.55, 95% CI, 1.15–5.62) (Table 8).
This association was retained in multivariate analysis that in-
cluded traditional clinicopathological parameters and HER2
(LR test p = 0.0103, RR= 2.91, 95% CI, 1.29–6.59) (Table 8).

Discussion
In this prospectively accrued cohort of women with ANN
breast cancer, we examined the relationship between
BRD4 and T-bet+ TILs, and evaluated associations of
BRD4 expression with Jagged1, clinicopathological
features, and clinical outcomes.
We have demonstrated that BRD4 positivity (Allred

score of 6 or higher) is significantly associated with
T-bet+ TILs, which are a subset of T cells that we have
previously determined to be associated with a good out-
come in breast cancer patients, despite being associated
with adverse clinicopathological features. This suggests a
potential link between BRD4-associated tumor progres-
sion and the inflammatory lymphocytic infiltrate in
breast tumors. BRD4 has been implicated in a number
of studies for its role in promoting inflammation [13, 14,
41] notably via activating NF-kB-regulated pathways in
cancer cells [17]. NF-kB is a major transcription factor
involved in regulating immune and inflammatory re-
sponses, and in influencing cancer progression [42, 43].
In particular, NF-kB is crucial in mediating the synthesis
of proinflammatory cytokines, such as TNF-α, IL-1,
IL-6, and IL-8 [44], which suggests that BRD4 may be

Table 3 Association of tumoral BRD4 expression with Jagged1
protein expression

Marker BRD4/low % BRD4/high % P-value*

(n = 110) (n = 366)

Number Number

Jagged1 protein Low 71 64.5 171 46.7 0.0010

High 39 35.5 195 53.3

*from Chi-Square test

Table 4 Association of tumoral Jagged1 mRNA expression with
T-bet+ TILs

Marker Jagged1/low % Jagged1/high % P-value*

(n = 157) (n = 241)

Number Number

Tbet+

Low 151 96.2 214 88.8 0.0091

High 6 3.8 27 11.2

*from Chi-Square test

Table 5 Association of tumoral BRD4 expression with
clinicopathologic parameters
Characteristic BRD4/low % BRD4/high % P-value**

(n = 143) (n = 469)

Number Number

Number of Recurrences 16 11.2 68 14.5

Menopausal status

Pre 30 21.0 172 36.7 0.0018

Peri 6 4.2 22 4.7

Post 106 74.1 274 58.4

ND‡ 1 0.7 1 0.2

Lymphatic Invasion

Yes 19 13.3 56 12.0 0.6592

No 123 86.0 411 87.6

ND‡ 1 0.7 2 0.4

Tumor Size

< =0.5 cm 3 2.1 6 1.3 0.0049

> 0.5 to 1 cm 26 18.2 37 7.9

> 1 to 2 cm 64 44.8 213 45.4

> 2 to 5 cm 45 31.5 193 41.2

> 5 cm 4 2.8 19 4.1

ND‡ 1 0.7 1 0.2

Estrogen receptor

Positive 87 60.8 302 64.4 0.1249

Negative/Equivocal 28 19.6 108 23.0

ND‡ 28 19.6 59 12.6

Progesterone receptor

Positive 80 55.9 267 56.9 0.0935

Negative/Equivocal 35 24.5 143 30.5

ND‡ 28 19.6 59 12.6

Histological grade

1a 49 34.3 142 30.3 0.1497

2 53 37.1 157 33.5

3 25 17.5 127 27.1

ND‡ 16 11.2 43 9.2

Adjuvant treatment

Hormonal 70 49.0 193 41.2 0.2223

Chemotherapy 16 11.2 82 17.5

Both 4 2.8 13 2.8

None 52 36.4 180 38.4

ND‡ 1 0.7 1 0.2

Age (years)

Mean 58.25 55.14

SD 10.13 11.86

Minimum 33.51 25.49

Maximum 73.82 75.82

‡Unknown, not done or missing
**Chi-square test; ND groups were not used in testing
aIncludes mucinous, lobular and tubular subtypes
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an upstream regulator of inflammatory immune re-
sponse in tumors. Consequently, BRD4 inhibitors, such
as JQ1 and I-BET, have been demonstrated to be effect-
ive suppressors of inflammation in treating various can-
cers and inflammatory diseases [13, 14, 41].
Furthermore, BRD4 was associated with pre-menopausal

status, large tumor size, and high Ki-67 expression, which
are characteristics that are generally associated with a basal
subtype. Multiple studies have demonstrated that prognosis
of basal breast cancer is positively associated with expres-
sion of immune response genes [45–48]. Although no sig-
nificant overall difference among intrinsic subtypes was

Table 6 Association of tumoral BRD4 expression with IHC
markers

Marker† BRD4/low % BRD4/high % P-value**

(n = 143)a (n = 469)a

Number Number

Her2

Negative 129 92.8 414 93.2 0.8587

Positive 10 7.2 30 6.8

ER

Negative 35 29.2 109 28.1 0.8196

Positive 85 70.8 279 71.9

PR

Negative 59 49.6 167 42.2 0.1533

Positive 60 50.4 229 57.8

EGFR

Negative 117 96.7 376 93.3 0.1931

Positive 4 3.3 27 6.7

CK5

Negative 105 85.4 341 80.4 0.2137

Positive 18 14.6 83 19.6

Ki67

< 14% 64 54.7 144 37.4 0.0009

> =14% 53 45.3 241 62.6

**from Chi-Square or Fisher’s exact test
aIHC marker data are not available for some tumors

Table 7 Association of tumoral BRD4 expression with intrinsic
subtypes

Subgroup BRD4/low BRD4/high P-value**

(n = 143)a (n = 469)a

Number % Number %

Basal 11 13.6 55 18.7 0.068

Her2 8 9.9 25 8.5

Luminal A 57 70.4 168 57.1

Luminal B 5 6.1 46 15.7

**from Chi-Square test
aSubtype data are not available for some tumors due to unavailable IHC
markers data

Fig. 3 Kaplan-Meier disease-free survival of ANN patients based on
BRD4 and T-bet TIL statuses: The first number in the parenthesis
denotes the number of patients, and the second number denotes
the number of recurrences in the corresponding group

Fig. 4 Kaplan-Meier disease-free survival of BRD4+/high, T-bet−/low
ANN patients (Red) in comparison to the rest of the subgroups (i.e.
T-bet−/low, BRD4−/low; T-bet+/high, BRD4+/high; T-bet+/high,
BRD4−/low) (Green): The first number in the parenthesis denotes the
number of patients, and the second number denotes the number of
recurrences in the corresponding group
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observed between BRD4+/high and BRD4−/low tumors,
the association of BRD4 expression with features related to
the basal subtype reinforces the idea that the association of
BRD4 with immunogenic tumors is potentially through its
pro-inflammatory functions.
Women with T-bet−/low, BRD4+/high tumors had

worse disease-free survival in comparison to the other
women. One explanation may lay in the paradoxical roles
of inflammation in cancer that is dependent on the im-
mune composition of the tumor. The poor clinical out-
come associated with the BRD4+/high group in the
absence of T-bet+ TILs suggests that BRD4 may promote
tumor progression through upregulation of chronic in-
flammatory pathways marked by the production of proin-
flammatory cytokines such as IL-1α, IL-1β, and IL-6. On
the other hand, the relatively favorable outcome that is as-
sociated with T-bet+/high tumors despite having high
BRD4 expression may indicate a dynamic immune inter-
play, in which the BRD4-mediated production of proin-
flammatory cytokines in the presence of tumor-specific
T-bet+ TILs may reinforce an anti-tumor immune re-
sponse. The context-specific role of inflammation in
tumor development has been previously demonstrated in

mouse models of myeloma and B-cell lymphoma [49]. In
the latter study, increased local levels of both proinflam-
matory cytokines (IL-1α, IL-1β and IL-6) and
Th1-associated cytokines (INFγ, IL-2 and IL-12) were
shown to be consistently correlated with a successful
tumor immune response mounted by tumor-specific
CD4+ T cells. Hence, in a T-bet+ TIL-mediated tumor
microenvironment, BRD4-mediated NF-kB activation, and
subsequent proinflammatory cytokine production may
contribute to tumor suppression as the pro-inflammatory
cytokines have shown to be important in recruiting circu-
lating leukocytes and activating CD4+ T cell functions.
Another explanation may lay in BRD4’s role in the up-

regulation of Jagged1 expression [2], which was observed
to be associated with BRD4 positivity and T-bet+ TILs
in this study. Jagged1 is one of the canonical ligands for
the Notch receptor family [50, 51] that serves a multifa-
ceted and highly context-dependent function in regular
tissue development and cancer progression. The binding
of Jagged1 to Notch1 or Notch3 receptors initiates their
activation that involves proteolysis by γ-secretase and re-
lease of Notch intracellular domain (NICD). NICD
translocates to the nucleus and associates with a

Table 8 Results of DFS analysis by Cox proportional hazards model

Prognostic Factor Univariate Multivariate

RR 95% CI P-value RR 95% CI P-value

T-bet//BRD4 combinations

T-bet-/BRD4+ vs.Other 2.55 1.15 5.62 0.0207 2.91 1.29 6.59 0.0103

Her2

Positive vs. Negative 1.21 0.44 3.36 0.7129 0.51 0.17 1.52 0.2271

Menopausal status

Pre/Peri vs. Post) 1.08 0.63 1.85 0.7678 0.70 0.25 1.91 0.4806

ER

Negative/Equi vs. ND/Positive 1.42 0.79 2.53 0.2393 1.36 0.68 2.73 0.3825

Tumor Size

2–5 cm vs. < 2 cm 2.42 1.39 4.23 0.0018 1.88 1.01 3.50 0.0476

> 5 cm vs. < 2 cm 1.78 0.53 6.05 0.3525 1.33 0.38 4.64 0.6516

Histologic grade

Grade2–3 vs. Grade1/Subtypea 4.23 1.68 10.67 0.0023 3.64 1.41 9.44 0.0078

ND vs. Grade1/Subtypea 4.34 1.37 13.81 0.0129 4.41 1.34 14.54 0.0147

Lymphatic invasion

Present vs. Absent 3.61 2.05 6.33 <.0001 3.96 2.12 7.38 <.0001

Age at diagnosis, yrs

Linear 0.90 0.70 1.15 0.3858 0.81 0.52 1.25 0.3387

Quadratic 0.90 0.73 1.10 0.2879 0.93 0.75 1.15 0.4801

Adjuvant treatment

Hormonal vs. None 0.53 0.30 0.93 0.0274 0.51 0.27 0.99 0.046

Chemotherapy vs. None 0.99 0.52 1.88 0.9676 0.53 0.24 1.19 0.1239
aIncludes mucinous, lobular and tubular subtypes
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transcription complex to regulate expression of target
genes. In tumors, the paracrine Jagged1-Notch inter-
action between cancer cells has been shown to promote
proliferation, epithelial-mesenchymal transition, angio-
genesis, and metastasis [51]. A recent study demon-
strated that BRD4 was the upstream regulator of Jagged1
expression and Notch1 signaling, and played an import-
ant role in sustaining breast cancer migration and inva-
sion [2]. In patients, BRD4 and Jagged1 expression has
been shown to correlate with the presence of distant me-
tastases [2].
Based on the positive associations observed between

BRD4 expression, Jagged1 expression, and T-bet+ TILs,
Jagged1, through BRD4 regulation, may also be import-
ant in mediating tumor-immune cell interaction.
Jagged1-mediated activation of Notch signaling has been
shown to promote persistence of immature myeloid cells
[52] and immunosuppressive IL-10 production [53],
which are characteristics possessed by myeloid-deprived
suppressor cells (MDSCs). A recent study by Sierra et al.
has shown that humanized anti-Jagged1/2 suppressed
tumor growth, decreased the accumulation and tolero-
genic activity of MDSCs in tumors, and inhibited the ex-
pression of immunosuppressive factors, iNOS and
arginase, which in turn, promoted CD8+ T cell infiltra-
tion into tumors, and improved the in vivo efficacy of
T-cell based immunotherapy [54]. Hence, BRD4+/high
tumors in the absence of T-bet+ TILs may exhibit
BRD4-mediated upregulation of Jagged1 that may induce
Jagged-1-Notch1-mediated accumulation and activation
of MDSCs, and suppress the infiltration and anti-tumor
activity of T-bet+ T cells.
In the presence of T-bet+ TILs, however, Jagged1 may

promote anti-tumoral immune response as its expres-
sion has shown to be vital in co-stimulation and regula-
tion of Th1 cells through binding of their cell surface
receptor, CD46 (membrane cofactor protein, MCP) [55].
The latter study has shown that disturbance of
Jagged1-CD46 crosstalk impeded IFNγ secretion in Th1
cells, and CD4+ T cells from patients with Jagged1 mu-
tation (Alagille Syndrome) or CD46 deficiency failed to
mount appropriate Th1 responses in vitro and in vivo.
This finding, in addition to the positive association be-
tween Jagged1 and T-bet+ TILs observed in this study,
suggests that in BRD4+/high, T-bet+/high tumors,
BRD4-mediated upregulation of Jagged1 may reinforce
the anti-tumoral activity of T-bet+ TILs, and facilitate
disease-free survival of patients with breast cancer.

Conclusion
Tumoral BRD4 expression in breast cancer is significantly
associated with T-bet+ TILs, clinicopathological features,
and a poor disease-free survival in the absence of T-bet+
TILs. On the other hand, the favorable clinical outcome

associated with BRD4 expression in tumors with high
levels of T-bet+ TILs may reinforce the T-bet+ TIL-driven
tumor immune surveillance. The context-specific associ-
ation of BRD4 expression with disease-free survival based
on the presence of T-bet+ TILs suggests that while the
anti-inflammatory treatments against cancer, such as BET
inhibitors, may be beneficial in reducing chronic inflam-
mation, they may also reduce the tumor-suppressive,
T-bet+ TIL-mediated inflammatory immune response.
Hence, deeper understanding of BRD4’s immune modula-
tory roles in different immune contexts may be important
in accurately administering BET inhibitors to patients
without the risk of dampening the ongoing anti-tumor im-
mune response.
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