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Genomics of NSCLC patients both affirm
PD-L1 expression and predict their clinical
responses to anti-PD-1 immunotherapy
Kim A. Brogden1*, Deepak Parashar2, Andrea R. Hallier3, Terry Braun3, Fang Qian1,4, Naiyer A. Rizvi5,
Aaron D. Bossler6, Mohammed M. Milhem7, Timothy A. Chan8, Taher Abbasi9 and Shireen Vali9

Abstract

Background: Programmed Death Ligand 1 (PD-L1) is a co-stimulatory and immune checkpoint protein. PD-L1
expression in non-small cell lung cancers (NSCLC) is a hallmark of adaptive resistance and its expression is often
used to predict the outcome of Programmed Death 1 (PD-1) and PD-L1 immunotherapy treatments. However,
clinical benefits do not occur in all patients and new approaches are needed to assist in selecting patients for PD-1
or PD-L1 immunotherapies. Here, we hypothesized that patient tumor cell genomics influenced cell signaling and
expression of PD-L1, chemokines, and immunosuppressive molecules and these profiles could be used to predict
patient clinical responses.

Methods: We used a recent dataset from NSCLC patients treated with pembrolizumab. Deleterious gene mutational
profiles in patient exomes were identified and annotated into a cancer network to create NSCLC patient-specific
predictive computational simulation models. Validation checks were performed on the cancer network, simulation
model predictions, and PD-1 match rates between patient-specific predicted and clinical responses.

Results: Expression profiles of these 24 chemokines and immunosuppressive molecules were used to identify
patients who would or would not respond to PD-1 immunotherapy. PD-L1 expression alone was not sufficient to
predict which patients would or would not respond to PD-1 immunotherapy. Adding chemokine and immunosuppressive
molecule expression profiles allowed patient models to achieve a greater than 85.0% predictive correlation
among predicted and reported patient clinical responses.

Conclusions: Our results suggested that chemokine and immunosuppressive molecule expression profiles can
be used to accurately predict clinical responses thus differentiating among patients who would and would
not benefit from PD-1 or PD-L1 immunotherapies.
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Background
In clinical trials of PD-1 or PD-L1 checkpoint immuno-
therapies, patients with NSCLC separate into groups that
respond or do not respond to immunotherapy treatment
[1–4]. Objective responses for NSCLC in these studies
range from 19.0–23.0%. Patients are selected for immuno-
therapy based on immunohistochemistry (IHC) detection
of PD-L1 reactivity. Positive PD-L1 reactivity in tumors is

considered to be important to predicting the success of
PD-1 and PD-L1 immunotherapy treatments [2, 5].
However, IHC results to detect PD-L1 reactivity can vary
depending upon different IHC platforms, differences in
anti-PD-L1 antibodies, differences in scoring systems, and
differences in positivity cut-off values [4, 6–9]. In the Blue-
print PD-L1 IHC Assay Comparison Project [10], similar
antibody-specific differences were seen. In all, this variabil-
ity presents challenges for using PD-L1 reactivity as a sole
marker for diagnosis and as a marker to predict the success
of PD-1 and PD-L1 immunotherapy treatments.
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More likely, there is a complex profile of molecules
that contributes to the regulation of PD-L1 and to the
subsequent immunosuppressive effects that NSCLC cells
have on immune cells [11]. Chae et al. suggested that
reliable predictive molecules need to be identified that
can be used to select patients who would benefit from
immunotherapy, yet limit the exposure of patients who
would not benefit or have adverse reactions [12]. Multi-
faceted predictive biomarker systems have also been
proposed that contain input on PD-L1 expression, tumor
mutations, and the roles of inflammatory cells to identify
patients that would respond or not respond to immuno-
therapy treatment [13, 14]. For better treatment out-
comes, there is a recognized need to develop additional
methods that can identify a profile of molecules that
contributes to the regulation of PD-L1 expression and
affirms IHC PD-L1 positive reactivity. One approach is
to use the influence of patient cell genomics on tumor
cell signaling to identify the downstream effects on
PD-L1 expression.
In this study, we hypothesized that patient tumor cell

genomics influences cell signaling and the expression of
PD-L1, chemokines, and immunosuppressive molecules.
We also hypothesized that these profiles can be used to
predict patient clinical responses. Rizvi et al. assessed
the mutational profiles that determined sensitivity to
PD-L1 blockade from patients with NSCLC treated with
pembrolizumab [15] and we used the Rizvi et al. dataset
to test our hypothesis. We first assessed the effect of pa-
tient genomics on the expression profile of 24 molecules:
PD-L1, 9 chemokines, and 14 immunosuppressive
molecules. Differences among patient-specific models
reflected the input that their deleterious gene mutation
profiles had on modeled signaling pathways and the ex-
pression of PD-L1, chemokines, and immunosuppressive
molecules. Second, we used the expression profiles of
these 24 chemokines and immunosuppressive molecules
to sort patients into those that would or would not re-
spond to PD-1 immunotherapy. The 9 chemokines were
used to generate an index to predict dendritic cell
infiltration and PD-L1 and the 14 immunosuppressive
molecules were selected as tumor-derived molecules
with a long list of reported immunosuppressive func-
tions (Additional file 1: Table S1). Our results suggest
that patient-specific chemokine and immunosuppressive
molecule expression profiles can be used to accurately
predict clinical responses thus differentiate among
patients who would or would not respond to PD-1
immunotherapy.

Methods
Patient clinical characteristics and mutation profiles
This was a retrospective study and patient data, clinical
characteristics, and exome sequencing information for

each of 34 patients were obtained directly from
Supplement Table 3 of the Rizvi et al study. study [15].
To maintain anonymity, a random string generator was
used to create a new random, 6-character uppercase
alpha numeric string for each patient. This blinded both
the identities of the patients in this study and their link
to the prior published dataset we modeled.
All patients had stage IV NSCLC and were treated at

Memorial Sloan Kettering Cancer Center (n = 29) or the
University of California at Los Angeles (n = 5) on proto-
col NCT01295827. All patients had consented to Institu-
tional Review Board-approved protocols permitting
tissue collection and sequencing by the co-authors in
this study (Naiyer A. Rizvi and Timothy A. Chan). All
patients initiated therapy in 2012–2013 and were treated
at 10 mg/kg every 2–3 weeks. Five patients were treated
at 2 mg/kg every 3 weeks. The overall response rate and
progression-free survival were reported to be similar
across dose and schedules. PD-L1 expression on NSCLC
tumor cells and immune cells by IHC was reported and
scored semi-quantitatively: ≥50.0% membranous staining
was considered strong, 1–49.0% was considered weak,
and < 1.0% was considered negative [15].
Exomes from each NSCLC patient were examined

using FannsDB [16], FATHMM [16], Mutation Assessor
[17], Polyphen [18], PROVEAN [19], and SIFT [20].
Gene mutations deleterious to gene function were
identified (Additional file 2: Table S2). For example,
there were 1192 gene mutations listed for patient
SA97V5 and 36 mutations were deleterious to gene
function (Fig. 1).

Simulation models
A validated cancer network containing a database of
proteins involved in cell signal transduction, metabolism,
and epigenetics obtained from manual review of new
and published research (Additional file 3: Figure S1) was
used to create patient NSCLC-specific predictive
computational simulation models. This approach
modeled protein-protein interactions at each step in a
signaling pathway using ordinary differential equations
(ODE) [21] and to predict specific pathway output [22].
Pathway protein-protein interactions at each specific
node were modeled as Michaelis-Menten equations that
contained the reaction, enzyme, initial concentrations of
protein intermediate reactants, and parameters of the
reaction like Ka, Km, kcat, Vmax, etc. ODE were solved
at each step by the Radau method [23]. To demonstrate
this modeling approach, an annexure section of the
PD-L1 pathway is illustrated showing the step-by-step
details of the protein-protein interactions at each node
in the pathway as an example of the modeling process
that also occured in all of the other pathways
(Additional file 4: Supplementary Materials and Methods
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and Supplement Table 3 of the Rizvi et al study). The
cancer network and the schema for creating these simu-
lation models, predicting molecule responses, and iden-
tifying those patients who would or would not respond
to PD-L1 immunotherapy is shown in Fig. 1.
NSCLC models in the cancer network were created

for each patient. At the initial step, models did not con-
tain patient-specific deleterious gene mutation profiles
and were simulated to reach a homeostatic steady state,
which served as the control baseline for the molecules
of interest. Then patient-specific deleterious gene
mutation profiles were converted into a computational
format and annotated into the NSCLC cancer network,
simulated to induce the patient-specific cancer disease
states, and used to predict the expression of PD-L1,
chemokines, and immunosuppressive molecules. At the
network level, mutations of oncogenes were represented
as gain of function at the activity level and mutations of
tumor suppressor genes were represented as a loss of
function at the activity level unless explicit functionality
of the mutation was known from published studies.
Copy number variations such as amplifications and dele-
tions were represented as over-expression or deletion of
gene function at the expression level. The time required
to achieve a patient-specific network varied depending
upon on the complexity of the patient-specific deleteri-
ous gene mutation profile.
The modeled output contained the expression profiles

of 24 molecules (e.g., PD-L1, 9 chemokines, and 14

immunosuppressive molecules). PD-L1 expression was
reported as percent change calculated as ((D/C)-1)*100. C
was the absolute value of the non-tumorigenic baseline
control (μM) and D was the absolute value of PD-L1 ob-
tained from the patient-specific cancer state network (μM)
[24]. CCL2 [25], CCL3 [26], CCL4 [27], CCL5 [28],
CCL11 [29], CCL20 [30], and CX3CL1 [31] expression
were determined similarly. These chemokines are capable
of trafficking dendritic cells into the tumor microenviron-
ment. Individual chemokine percent expression values
were given weightage and normalized to sum to 1. A
dendritic cell infiltration index was then calculated to be
the sum of each prediction % change * weightage
(Additional file 6: Table S4). Finally, the expression of 14
immunosuppressive molecules thought to facilitate the
ability of cancer cells to escape normal tumor surveillance
was determined (Additional file 1: Table S1).
Patient-specific simulation model predictions were also

assessed using Weka 3, a data mining software program
in Java [32]. Weka 3 contained machine learning
algorithms for data pre-processing; data classification,
regression, clustering, and association rules; and data
visualization. Using the predicted responses in Table 1,
several machine-learning algorithms were implemented
to learn prediction models (Additional file 7: Table S5).

Clinical response projections
Differences among the expression of 14 molecules were
used in a 3-step process to sort patients into those that

Cancer network

PD-L1 expression
• 67.03%

Chemokine expression
(DC infiltration index)
• 23.81%

Immunosuppressive 
biomarker expression
• Range -1.90% to 56.46%

SA97V5 as a 
PD-1 responder

Identify PD-1 
Non-responders

Predicted responses Decision treeSimulation model creation

Mutational profile converted 
to a computational format

Patient SA97V5 exome 
• 1,192 total mutations
• 36 deleterious mutations

a

b

c d

e

Patient SA97V5-specific 
simulation model

f

Model predictions -
Weka 3 validation

PD-1 match rate -
Statistical validation 

Cancer network -
Internal validation 

g

Fig. 1 The schema for creating predictive computational simulation models to predict molecule responses and identify patients that would respond
or not respond to PD-1 immunotherapy treatment using patient SA97V5 as a model example. Exome information from patient SA97V5 (a) contained
1192 total mutations with 36 deleterious mutations. This profile (b) was converted from a mutational profile to a computational format and annotated
into the computational workflow to convert (c) a nontransformed model in the cancer network into (d) a patient SA97V5-specific simulation model.
The patient SA97V5-specific simulation model was used to predict PD-L1 expression (e.g., 67.0% with respect to control), dendritic cell (DC) infiltration
index (e.g., 23.8% with respect to control); and an immunosuppressive molecule expression profile (e.g., range− 1.9% to 56.5% with respect to controls)
(e). Predicted expression responses were all used (f) to sort patients into groups that would respond or not respond to PD-1 immunotherapy treatment.
SA97V5 was identified as a patient who would respond to PD-1 immunotherapy treatment. Numerous validation checks (g) occurred on the cancer
network, the simulation model predictions, and the PD-1 match rates between the predicted responses and the patient clinical responses
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would or would not respond to PD-1 immunotherapy
(Fig. 2). Patients were sorted by their PD-L1 expression
(Step 1), their dendritic cell infiltration index (Steps 2a
and b), and their immunosuppressive molecule expres-
sion (Steps 3a and b).

Signal pathways
Graphic representations of the simulation model net-
works for each patient-specific model and the underlying
network relationships were created as previously
described [24] to identify similarities in patient-specific
signaling pathways and to identify the influence of the
pathway intermediates altered by the patient deleterious
gene mutation profiles.

Simulation model validations
A series of internal control check analyses were used to
validate the cancer network input and output data.
These control checks monitored a) the effects of select
pathway molecule over-expression or knockdown on
pathway predictions, b) the effects of select drugs on
pathway predictions, and c) the effects of activation,
regulation, and cross-talk interactions among pathway
intermediates on pathway predictions.
A cross-validation approach was used to assess the

match scores of the PD-1 predicted responses against

the PD-1 clinical responses in the Rizvi et al. 2015
Discovery dataset vs. the Validation dataset [14]. The
datasets were then pooled and re-partitioned into two
new Training and Test datasets. A similar cross-
validation approach was then used to assess the match
scores of the PD-1 predicted responses vs. the PD-1
clinical responses. Differences between the match rates
of the PD-1 predicted responses and the PD-1 clinical
responses were performed via chi-square test or Fisher’s
exact as previously described [24]. All statistical tests
utilized a 0.05 level of significance.

Results
Simulation models
In this retrospective study, we created 29 of 34 separate
and patient-specific simulation models from the exome
sequencing information for each of the 34 patients listed
in Supplement Table 3 of the Rizvi et al study [15]. In
the Discovery dataset, 13 of 16 patients had sufficient in-
formation to create simulation models and patients
RYRJFL, IYXPLI, and GOFKQI did not (Additional file
2: Table S2). In the Validation dataset, 16 of 18 patients
had sufficient information to create computational simu-
lation models and patients 6NLFT5 and 32I5VC did not
(Additional file 2: Table S2). The 5 patients with insuffi-
cient information were omitted from this study since

Step 1
Non-responders

MG6XF2
3HDJMG
X0152B
195P5D
67K46M
VCMG7N
L11LVL
3DJF3O
IPUAS9

False

If PD-L1 
<29%

Step 2a
Non-responders 

J0T9TJ
ZX7V33

If DC Index 
<20%

True

If DC Index
>60%

Step 3a
Non-responders 

CZH5YD
ZNT6MQ
QIA43T
UC2LIA

If ISM (PD-L1) 
>5%

Step 3b
Responders

SA97V5
L8MTGU
C9TGAJ
P90A0O
26YMUF
RDD2UW
L6ADEL
M9GYO4

True

False False True

Step 2b
Responders 

MJXYP6
DFZLO2

TrueFalse

Start

Fig. 2 A decision tree was used to identify PD-1 drug responder status. At step 1, 9 patients with PD-L1 expression below 29.0% were identified
as PD-1 drug non-responders. The remaining 16 patients (including patient SA97V5) with PD-L1 expression equal to or greater than 29.0% proceeded
to step 2. At Steps 2a and 2b, 2 patients with dendritic cell infiltration index values below 20.0% were identified as non-responders and 2 patients with
index values greater than 60.0% were identified as PD-1 drug responders. Twelve patients with index values greater than 20.0% (including patient
SA97V5), but less than 60.0% proceeded to step 3. At Step 3, 4 patients with immunosuppressive molecule (ISM) values higher than that of their PD-L1
expression with a margin of greater than 5.0%, were identified as non-responders (Step 3a) and 8 patient-specific models with values lower than that
of their PD-L1 expression with a margin of greater than 5.0% were identified as responders (Step 3b, including patient SA97V5). Mismatch patients
GI7AGZ, 2FCOH7, F3FK2W were not listed
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their deleterious gene mutation profiles lacked driver
genes and we were unable to achieve an increase in
tumor phenotypes of proliferation and viability with the
subset of gene aberrations reported. The remaining pa-
tients in the Discovery dataset (n = 13) contained 5 clin-
ical responders and 8 clinical non-responders and the
patients in the Validation dataset (n = 16) contained 6
clinical responders and 10 clinical non-responders (Table
1). Objective responses to PD-1/PD-L1 immunother-
apies are known to vary. For example, objective re-
sponses to PD-1 immunotherapies for NSCLC were
reported to range from 19.0–21.0% and objective re-
sponses to PD-L1 immunotherapies for NSCLC were re-
ported to range from 10.0–23.0% [1, 2]. Hence the
proportion of more non-responders than responders in
this sample size was representative of the responses pre-
viously reported in larger patient populations.

Patient molecule responses
Results reported for patient SA97V5 were used as an ex-
ample to clearly illustrate the process of model creation,
model prediction, and model validation.
Modeled PD-L1 expression ranged from − 8.3% (pa-

tient 67K46M) to 185.5% (patient M9GYO4) (Table 1).
Patient SA97V5 had a PD-L1 expression value of 67.0%.
Modeled chemokine expression was used to create a

dendritic cell infiltration index. This index was a
weighted function of the percentage change of each of
the 9 individual chemokines (Table 1) and ranged from
4.20 (patient 67K46M) to 79.85 (patient DFZLO2).
Patient SA97V5 chemokine expression for CCL2
(28.7%), CCL3 (14.3%), CCL4 (27.2%), CCL5 (13.4%),
CCL7 (38.0%), CCL11 (36.9%), CCL20 (30.6%), CX3CL
(32.9%), and CXCL14 (− 3.3%); formula details; and
calculations for creating the index value of 23.9% are
shown in Additional file 6: Table S4.
Modeled expression profiles for 14 immunosuppres-

sive molecules, including those for patient SA97V5, are
also shown in Table 1.

Clinical response projections
The expression of PD-L1, dendritic cell infiltration
index, and immunosuppressive molecules were used in a
3-step process to sort patients into those that would or
would not respond to PD-1 immunotherapy (Fig. 2).
At step 1, 9 patients with PD-L1 expression below

29.0% were identified as PD-1 drug non-responders
(Figs. 2 and 3a). The remaining 16 patients with PD-L1
expression equal to or greater than 29.0% proceeded to
step 2. Patient SA97V5 had a PD-L1 expression value of
67.0% and proceeded to step 2.
At Step 2, 2 patients with dendritic cell infiltration

index values below 20.0% were identified as non-
responders (Figs. 2 and 3b) and 2 patients with index

values greater than 60.0% were identified as PD-1 drug
responders (Figs. 2 and 3b). One mismatch occurred at
this step. Clinical non-responder GI7AGZ with a
dendritic cell index of 64.9% was misidentified as a PD-1
responder (Fig. 3b). Twelve patients with index values
greater than 20.0%, but less than 60.0% proceeded to
step 3. Patient SA97V5 had a dendritic cell infiltration
index of 23.9% and proceeded to step 3.
At Step 3, 4 patients with immunosuppressive

molecule values higher than that of their PD-L1 expres-
sion with a margin of greater than 5.0% were considered
to be non-responders (Fig. 2, Step 3a) and 8 patient-
specific models with values lower than that of their PD-
L1 expression with a margin of greater than 5.0% were
considered to be responders (Fig. 2, Step 3b). Three mis-
matches occurred at this step. Clinical responder patient
2FCOH7 had an immunosuppressive molecule expression
profile of a non-responder: vascular endothelial growth fac-
tor (VEGF), cytotoxic T-lymphocyte-associated protein 4
(CTLA4), ganglioside GM3 (GM3), and ganglioside GD2
(GD2) were all higher than that of PD-L1 with a margin of
greater than 5.0%. Clinical non-responder patients
F3FK2W and 6QFSVV had immunosuppressive molecule
expression profiles of responders. Patient SA97V5 had all
14 immunosuppressive molecules below the threshold of
PD-L1 and was identified as a PD-1 drug responder (Figs. 2
and 4a) and patient QIA43T had molecules TGFB1 and
IL6 above the threshold of PD-L1 and was identified as a
PD-1 drug non-responder (Figs. 2 and 4b).
Patient-specific model predictions in the Discovery

and Validation datasets were also checked using Weka 3
[32] and SMO support vector machine with a normal-
ized polynomial kernel had the best performance
(Additional file 7: Table S5). The relationship between
PD-L1 expression and predicted TGFB1 expression
using Weka 3 algorithms for all patients in the dataset is
shown in Additional file 8: Figure S2 and similar trends
were seen when comparing the PD-L1 expression level
to the other 13 predicted molecules. Weka 3 correctly
identified 24 out of 29 patients whereas the computa-
tional simulation models correctly identified 25 of 29
patients.

Model validation
In the cross-validation analysis of the match scores be-
tween the Rizvi et al. 2015 Discovery and Validation
datasets, there were no significant differences between
the match scores of non-responders and responders in
the PD-1 clinical response group (38.5% vs. 37.5%; p =
0.9577, Additional file 9: Table S6) and PD-1 predicted
response group (30.8% vs. 56.3%; p = 0.2642, Additional
file 9: Table S6). Even though the Discovery dataset had
a higher match score rate among the PD-1 clinical re-
sponse group and the PD-1 predicted response group
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Fig. 4 Patient-specific simulation models were used to predict the expression of 14 immunosuppressive molecules. At step 3 of the decision tree,
patients with immunosuppressive molecule predictions higher than that of PD-L1 with a margin of greater than 5.0% (bold line), were considered
to be non-responders and patient-specific models with predictions lower than that of PD-L1 with a margin of greater than 5.0% were considered
to be responders. Eight remaining patients were identified as responders and 4 remaining patients were identified as non-responders. Patient
SA97V5 (a) had all 14 molecules below the threshold and was identified as a PD-1 drug responder. Patient QIA43T (b) had 2 molecules above the
threshold and was identified as a PD-1 drug non-responder

Fig. 3 Patient-specific simulation models were used to predict the expression of PD-L1 (a) and at step 1 of the decision tree, 9 patients (black bars) with
predicted PD-L1 expression below 29.0% (bold line) were identified as PD-1 drug non-responders. Patient SA97V5 had a predicted PD-L1 expression of
67.0%. Patient-specific simulation models were used to predict the expression of chemokines used to create a dendritic cell (DC) infiltration index (b). At
step 2a of the decision tree, 2 patients (black bars) with index values greater that 60.0% (bold line) were identified as PD-1 drug responders and 2 patients
(black bars) with index values less than 20.0% (black line) were identified as PD-1 drug non-responders. Patient SA97V5 had a predicted DC infiltration
index of 23.9%
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than the Validation dataset (92.3% vs. 81.2%, respect-
ively), there was no significant difference between the
two datasets (p = 0.6059).
Similarly, in the cross-validation analysis of the match

scores between the Training and Test datasets, there
were no significant differences between the match scores
of non-responders and responders in the PD-1 clinical
response group (38.9% vs. 36.4%; p = 0.9999, Additional
file 9: Table S6) and PD-1 predicted response group
(44.4% vs. 45.5%; p = 0.9577, Additional file 9: Table S6).
In the Training dataset, the PD-1 predicted responses
had an 83.3% match score with the PD-1 clinical re-
sponses and in the Test dataset the PD-1 predicted

responses had a 90.9% match score with the PD-1 clin-
ical responses. Again, there was no significant difference
between the two datasets (p = 0.9999).

Predicted pathway comparisons
Deleterious gene mutations in patients were mapped to
unique and common signaling pathways involved in PD-
L1 expression (Fig. 5). Common pathways were utilized
among a number of patient-specific models. Mutations
in patient C9TGAJ (kirsten rat sarcoma viral oncogene
homolog, KRAS mutation), patient RDD2UW (KRAS
mutation), patient M9GYO4 (mitogen-activated protein
kinase kinase 2, MAP2K2 mutation), and patient

Study ID Pathways involved Study ID Pathways involved

195P5D KRAS-RAF-MEK IPUAS9 EGFR-IGF2 

VCMG7N TP53-ETV4-GLI3 GI7AGZ BRAF-PPP3CA 

C9TGAJ KRAS-RAF-MEK M9GYO4 MAP2K2-ERK 

ZNT6MQ SYK-PDGFRA-MYCN 2FCOH7 KRAS-RAF-MEK 

RDD2UW KRAS-RAF-MEK 3DJF3O TP53-ERBB3-EGFR 

ZX7V33 TP53-SREBF1-PIM3 SA97V5 BCAR1,ANK2,IRS1,CREBBP 

26YMUF RICTOR-ERK L6ADEL TP53-TRAF3 

L11LVL FLT3-SREBF1-TBLX1 P90A0O TP53,NF1,BRAF 

L8MTGU KRAS-RAF-MEK J0T9TJ KRAS-RAF-MEK 

UC2LIA ERBB4-CAMMK2-ANK2 67K46M ESR1-GATA2 

X0152B NCOR-ANK2 MG6XF2 CTNNB1,JAK2,TWIST1 

F3FK2W PIk3CA-KMT2C CZH5YD PLXNB1-MYBL2 

6QFSVV KRAS-RAF-MEK 3HDJMG SLC27A1,DCLREIC,TET2 

MJXYP6 KRAS-RAF-MEK DFZLO2 MAP3K1-ERK 

QIA43T BCAR1-MAP2K3 

Fig. 5 The expression of PD-L1 was influenced via a number of signaling pathways. Activating signals were processed via the ERK signaling pathway
(via EGFR; B-Raf proto-oncogene, serine/threonine kinase, BRAF-V600E; mitogen-activated protein kinase kinase 1/2, MEK1/2; mitogen-activated protein
kinase kinase 1, MAP2K1; MAP2K2; ERK1/2; mitogen-activated protein kinase 3, MAPK3; mitogen-activated protein kinase 1, MAPK1; and
Jun proto-oncogene, c-Jun). Activating signals were processed via the EGFR signaling pathway (via neuroblastoma RAS viral oncogene
homolog, NRAS; phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha, PIK3CA; V-akt murine thymoma viral oncogene
homolog, AKT; mechanistic target of rapamycin, MTOR; and STAT3). Also, activating signals were processed via the interferon gamma (IFNG) pathway (via
IFNG; interferon gamma receptor 1, IFNGR1; signal transducer and activator of transcription 1, STAT1; and interferon regulatory factor 1, IRF1). Pathway
signals converge to activation factors Activator protein 1 (AP1), STAT1, STAT3, and IRF1 leading to transcription of PD-L1 genes. Common pathways were
utilized among a number patient-specific simulation models. Patient C9TGAJ (KRAS mutation), patient RDD2UW (KRAS mutation), patient
M9GYO4 (MAP2K2 mutation), and patient DFZLO2 (MAP3K1 mutation) involved the ERK activation pathway. Patient P90A0O (BRAF1, TP53 mutations)
and patient L8MTGU (KRAS, TP53 mutations) involved the ERK activation and apoptotic pathways
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DFZLO2 (mitogen-activated protein kinase kinase kinase
1, MAP3K1 mutation) altered the extracellular signal-
regulated kinase (ERK) activation pathway. Mutations in
patient P90A0O (B-Raf proto-oncogene 1, BRAF1 muta-
tion and tumor protein p53, TP53 mutation) and patient
L8MTGU (KRAS mutation) altered ERK activation and
apoptotic pathways. Mutations in patient SA97V5
(breast cancer anti-estrogen resistance protein 1, BCAR1
mutation; ankyrin-2, ANK2 mutation; insulin receptor
substrate 1, IRS1 mutation; and cAMP response
element-binding binding protein, CREBBP mutation),
patient 26YMUF (rapamycin-insensitive companion of
TOR, RICTOR mutation and ERK mutation), and
patient L6ADEL (TP53 mutation and TNF receptor-
associated factor, TRAF3 mutation) all had non-KRAS
and non-B-Raf proto-oncogene (BRAF) driven activation
pathways of PD-1 drug responder status.
Models also reinforced the association between PD-L1

expression and the presence of a KRAS mutation (or
high ERK activation). Thus if a patient responder was
found to have a KRAS mutation or positive regulator
around mitogen-activated protein kinase kinase (MEK)
pathway, this may identify a means to regulate PD-L1 by
the MEK mediated pathway. A KRAS/BRAF/MEK re-
lated mutation in the profile leads to stronger expression
of PD-L1 in the profile. Patients 195P5D, J0T9TJ, and
6QFSVV had KRAS mutations but were non-responders
to PD-L1 inhibitor indicating complex and additional
factors and pathways driving PD-L1 expression and
response to the checkpoint inhibitor.

KRAS mutations and PD-L1 expression
To further affirm the association between the presence
of KRAS mutations or KRAS co-mutations and PD-L1
expression, 2 additional datasets [33, 34] were modelled
beyond the Supplement Table 3 of the Rizvi et al study
[15].
KRAS mutations in lung adenocarcinoma were

reported to be associated with co-mutations in TP53.
In modeled simulations of the Dong, et al. dataset
[33], the KRAS+TP53 co-mutation (KP subgroup) was
predicted to increase PD-L1 expression. The KRAS
+TP53 co-mutation had higher levels of predicted
PD-L1 expression than the KRAS mutation and TP53
mutation alone.
KRAS mutations in lung adenocarcinoma were also

reported to be associated with co-mutations in STK11/
LKB1 (the KL subgroup) [34]. In modeled simulations of
the Skoulidis, et al. dataset [34], KRAS+STK11+KEAP1
co-mutation was predicted to reduce PD-L1 expression.
The KRAS+STK11+KEAP1 co-mutation had lower
levels of predicted PD-L1 expression than the KRAS
+TP53 co-mutation.

KRAS mutations in lung adenocarcinoma were re-
ported to be associated with co-mutations in TP53 (KP
subgroup) and CDKN2A/B [34]. In modeled simulations
of the Skoulidis, et al. dataset [34], KRAS+CDKN2A/B
co-mutations (KC subgroup) were predicted to reduce
PD-L1 expression. KRAS+CDKN2A/B co-mutation had
lower levels of predicted PD-L1 expression than the
KRAS+STK11+KEAP1 co-mutation and the KRAS
+TP53 co-mutation.

Discussion
In this retrospective study, we used a recent dataset from
NSCLC patients treated with pembrolizumab and identi-
fied deleterious gene mutational profiles in patient
exomes. We annotated the deleterious gene mutational
profiles into a cancer network to create NSCLC patient-
specific predictive computational simulation models. We
used these models as a tool to identify and validate a pro-
file of 24 chemokines and immunosuppressive molecules
that could accurately affirm expression of PD-L1 and pre-
dict patient clinical responses to PD-1 immunotherapy.
We found that patient tumor cell genomics influenced cell
signaling and altered the expression of PD-L1, 9 chemo-
kines, and 14 immunosuppressive molecules. We also
found that expression profiles of these 24 chemokines and
immunosuppressive molecules could be used to identify
patients who would or would not respond to PD-1
immunotherapy. Adding chemokine and immunosuppres-
sive molecule expression profiles to a predicted PD-L1
profile allowed models to achieve a greater than 85.0%
predictive correlation among predicted and reported
patient clinical responses. This differentiated patients who
would and would not benefit from PD-1 or PD-L1
immunotherapies. To validate our results, we used
retrospective correlation of our simulation models against
patient genomic signatures and clinical outcome data that
was available in the NSCLC cohort of the Rizvi et al. study
[15]. We also used Weka 3 to validate predictions deter-
mined using the predictive computational simulation
models. The Weka 3 results were similar to that generated
via machine-learning methods and the Chi-square test
was used to show no differences among the match rate
results in these datasets. It is important to note that
expanding PD-L1 expression profiles to include 23
additional chemokine and immunosuppressive molecule
expression responses allowed models to achieve a greater
than 85.0% correlation among predicted and reported
patient clinical responses.
The 24 molecules used in this study have immunosup-

pressive properties. The role of PD-L1 in tumor patho-
genesis is well known. Increased expression of PD-L1 on
tumor cells inhibits T-cell proliferation, reduces T-cell
survival, inhibits cytokine release, and promotes T-cell
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apoptosis [3, 35–38]. This leads to T-cell exhaustion and
adaptive tumor immunosuppression [39].
Cytokines also have a role. Cytokine scores were

recently found to be associated with overall survival in
CheckMate 017 and 057 (both for nivolumab and doce-
taxel treated patients) [40]. In this present study, 9 che-
mokines were selected that chemoattractant dendritic
cells [41–43]. In other studies, dendritic cells were
present in NSCLC tumors [42, 44] and dendritic cell in-
filtration was reported to be an independent prognostic
factor for NSCLC [44]. The simulation models here cap-
tured the role of dendritic cells by predicting chemokine
expression in the form of a functional dendritic cell
index (Additional file 6: Table S4).
Fourteen molecules were included that have pleio-

tropic functions including immunosuppressive proper-
ties (Additional file 1: Table S1). IL6, can prevent
dendritic cell maturation, prime tumor-specific T-cells
via signal transducer and activator of transcription 3
(STAT3) signaling, inhibit NF-κB binding activity, and
inhibit C-C chemokine receptor type 7 (CCR7) expres-
sion [45–47]. IL10 can impair dendritic cell function and
protect tumor cells from cytotoxic T-cell-mediated cyto-
toxicity by downregulating transporter-associated with
antigen processing (TAP)1 and TAP2 [48, 49]. TGFβ can
alter immune surveillance of regulatory T-cells. It re-
presses CTL-mediated tumor cytotoxicity by altering the
expression of perforin, granzyme A, granzyme B, Fas lig-
and (FASL), and IFNγ [49–51]. VEGF is a marker of
tumor invasion and metastasis and can inhibit matur-
ation of dendritic cells [44, 52]. IDO, a tryptophan-
metabolizing enzyme that limits tryptophan, inhibits the
proliferation of lymphocytes, and contributes to periph-
eral immunologic tolerance [53–56]. Increased IDO pro-
duction by cancer cells down regulates natural killer
(NK) receptors and induces NK cell apoptosis. It induces
cell cycle arrest, decreases activation, and increases apop-
tosis in cytotoxic T-cells. Tryptophan 2, 3-dioxygenase 2
(TDO2) inhibits tryptophan 2,3-dioxygenase [57]. Prosta-
glandin E2 (PGE2) suppresses NK cell function through
the E2 prostaglandin receptor 4 (EP4) [58]. Lectin,
galactoside-binding, soluble, 9 (LGALS9) mediates T-cell
dysfunction and T-cell senescence [59]. Cluster of Differ-
entiation 47 (CD47) is a negative regulator of dendritic
cells binding to signal regulatory protein (SIRP) on den-
dritic cells and directly repressing dendritic cell phagocyt-
osis, maturation, and production of IFNγ [47]. CTLA4
restrains the adaptive immune response of T-cells towards
tumor-associated antigens [60–62]. Gangliosides GM3
and GD2 induce monocyte apoptosis and impair differen-
tiation to dendritic cells [63].
Using a 24 molecule expression profile allowed computa-

tional models to achieve a greater than 85.0% predictive
correlation. However, this list was not exclusive and

incorporating additional molecules into patient NSCLC-
specific expression profiles may have merit and improve
computational model accuracy. These included Lympho-
cyte activation gene-3 (LAG-3), T cell immunoglobulin-3
(TIM-3), and T cell immunoglobulin and ITIM domain
(TIGIT) co-inhibitory receptors [64]. LAG-3 is a co-
inhibitory receptor upregulated on activated CD4+ T cells,
CD8+ T cells, and subsets of natural killer (NK) cells [64–
66]. It impairs T cell proliferation and cytokine production
and alters NK cell cytotoxicity and cytokine production.
TIM-3 is a cell surface molecule expressed on IFNγ-
producing CD4+ T helper 1 cells, CD8+ T cytotoxic 1 T
cells, NK cells, monocytes, and dendritic cells [64]. TIM-3
dampens the development of protective immunity and
TIM-3 blockade improves cell function. In patients with
NSCLC, co-blockade of the TIM-3 and PD-1 pathways
suppresses tumor growth. TIGIT is another co-inhibitory
receptor expressed on NK cells, T cells, and Treg cells [64].
CD155, CD112, and TIGIT ligands suppress immune re-
sponses through CD155 on dendritic cells. TIGIT is
thought to work with PD-1 and TIM-3 to attenuate T cell
responses and promote T cell dysfunction.
After the NSCLC patient-specific predictive computa-

tional simulation models were created and the profiles
of 24 chemokines and immunosuppressive molecules
were predicted, we created a decision tree to identify
patients who would or would not respond to PD-1 im-
munotherapy. Decision cutoffs were established at 29.0%
PD-L1 expression (Step 1), < 20.0% dendritic cell infiltra-
tion (Step 2a), > 60.0% dendritic cell infiltration (Step 2b),
and immunosuppressive molecule expression as < PD-L1
with a margin of greater than 5.0% (Step 3) (Fig. 2). The
decision tree was robust and had built-in redundancy.
Basing the PD-L1 drug responder status on 3 separate
predicted criteria allowed a responder/non-responder not
identified at one step to be identified at a later step. Also
the thresholds were specific. At 29.0% PD-L1 expression
(Step 1), 9 non-responder patients were identified. De-
creasing the PD-L1 expression cutoff from 29.0% to 25.0%
identified only 6 non-responders. Increasing the PD-L1
expression cutoff from 29.0% to 35.0% identified a number
of false negatives and setting the PD-L1 expression cutoff
at 35.0% identified up to 13 non-responder patients: the
three additional patient responders L8MTGU, P90A0O,
and 26YMUF would be falsely identified as non-
responders.
A diversity of signaling pathways are reported to be in-

volved in the expression and regulation of PD-L1 [67–
69] and these pathways were observed in expression and
regulation of PD-L1 in this study (Fig. 5). Responder pa-
tients had mutations around the rapidly accelerated
fibrosarcoma (RAF)-rat sarcoma (RAS)-ERK pathway in-
cluding KRAS/BRAF and MEK-related mutations that
predicted the profiles to have stronger expression of PD-
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L1. However, the presence of KRAS cannot be the only
criteria for predicting strong expression of PD-L1 and
thus a likely PD-1 drug responder, since there were non-
responder profiles that also had KRAS mutations. We
observed that matched predicted and clinical non-
responder patients 195P5D and J0T9TJ and mismatched
predicted responder and clinical non-responder patient
6QFSVV all had KRAS mutations (Additional file 2:
Table S2, Fig. 5).
Recent studies support the concept that NSCLC is not a

homogeneous disease and at least 3 subtypes of KRAS
mutations involving LKB1 or TP53 can be identified. The
tumors with these mutations have different PD-L1 expres-
sion patterns (higher in KRAS mutations and TP53 muta-
tions) and different sensitivities to immune checkpoint
blockade. Thus the effects of KRAS mutations and KRAS
co-mutations on PD-L1 expression was further assessed
using 2 additional datasets [33, 34] beyond the Supple-
ment Table 3 of the Rizvi et al study [15].
Dong, et al. [33] reported that TP53 and KRAS muta-

tions may predict which patients would or would not
respond to PD-1 immunotherapy. Modeling the dataset in
their study, we predicted that KRAS+TP53 co-mutation
(KP Subgroup) would lead to increased PD-L1 expression.
Skoulidis, et al. [34] reported that KRAS mutations in lung
adenocarcinoma were associated with co-mutations in
STK11/LKB1 (the KL subgroup) [34]. KL tumors had high
rates of KEAP1 mutations with lower PD-L1 expression.
Modeling the dataset in their study, we predicted that
KRAS+STK11+KEAP1 co-mutations (KL Subgroup) also
would lead to reduced PD-L1 expression. We predicted
that KRAS+CDKN2A/B co-mutation (KC Subgroup)
would lead to reduced PD-L1 expression. There was a re-
duction in positive regulation due to reduction in AMPK,
mTOR pathway and also due to KEAP1 loss of function.
There was an increase in the WT TP53 mediated
inhibitory regulation of PD-L1 expression. This was a novel
finding based on network analysis.
Furthermore, PTEN deletion [70], PI3K mutations [71]

and MYC overexpression [72] have also been recently
characterized as oncogenic mechanisms leading to
PD-L1 expression.
The techniques described in this retrospective study

have application. Although the techniques were compli-
cated and need more extensive validation with larger
datasets, their utility in clinical practice is possible.
Profiling of tumors is becoming more main stream for
precision personalized medicine. The approach may not
necessarily be expensive, but in fact provides more utility
to the generated profiling data for most tumor samples.

Conclusions
Patient tumor cell genomics were found to influence cell
signaling with downstream effects on the expression of

24 chemokines and immunosuppressive molecules. This
allowed us to establish patient-specific profiles of these
molecules that could be used to predict patient clinical
responses with greater than 85.0% correlation among
predicted and reported patient clinical responses. Devel-
oping a workflow incorporating immunosuppressive
molecules could a) be used as a potential complemen-
tary assay to affirm IHC results or used as an alternate
assay where IHC in unfeasible, b) affirm patient PD-1
and PD-L1 drug responder status, c) as a method to
determine influencing factors on PD-L1 expression, and
d) as a potential clinical decision support system facili-
tating selection of therapies based on individual patient
mutational profiles. The latter application used shortly
after cancer diagnosis and just before cancer treatment
could generate important patient-specific treatment op-
tions that could assist clinicians in selecting appropriate
mono-therapies or combination therapies.
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Additional file 1: Table S1. Molecules with immunosuppressive
functions used in simulation models to predict PD-1 drug responder status.
(DOCX 55 kb)

Additional file 2: Table S2. Individual mutational profiles of patient
drug responders (n = 11) and nonresponders (n = 18). (DOCX 19 kb)

Additional file 3: Figure S1. A schematic pyramid showing the levels
of information used to develop the validated, cancer network. This
network was created from published reports on cell receptors, signaling
pathways, pathway signaling intermediates, activation factors, transcription
factors, and enzyme kinetics. Information on each pathway node, its
functionality, and its links with other genes, proteins, and pathways was
manually researched, analyzed, curated, and aggregated to construct the
integrated network maze. Every process or reaction was modeled
mathematically using Michaelis Menton kinetics, mass action kinetics, and
variations of these representations using ordinary differential equations
(ODEs). Modeled events included but were not limited to interactions at the
cell surface (e.g., binding of ligands to receptors, etc.), metabolic and cell
signaling (e.g., signal pathway events, cross talk interactions among
pathways, feedback control, etc.), activation and regulation of genes
(e.g., activation links of transcription factors, etc.), intracellular processes such
as proteasomal degradation, endoplasmic reticulum (ER) stress, oxidative
stress, DNA damage and repair pathways, and cell cycle pathways.
Time-dependent changes in signaling pathway fluxes of every biological
reaction modeled utilizing modified ODEs were solved with a proprietary
solver. Models were validated with a series of internal control analysis checks
on predictions. These checks included assessing the effects of pathway
molecule over-expression or knockdown on pathway predictions; effects of
drugs on pathway predictions; and activation, regulation, and cross-talk
interactions among pathway intermediates on pathway predictions.
(DOCX 53 kb)

Additional file 4: Supplementary Materials and Methods. (DOCX 109 kb)

Additional file 5: Table S3. An example of the predictive computational
modeling process. Specific details on an annexure section of the PD-L1
pathway show the step-by-step reactions, mechanisms, and reaction
equations that occur. Such reactions also occurred in all of the other
pathways. (DOCX 102 kb)

Additional file 6: Table S4. Creation of the dendritic cell infiltration
index for the patient SA97V5-specific simulation model. Chemokines
CCL11, CCL20, CCL2, CCL3, CCL4, CCL5, CCL7, CX3CL1, and CXCL14, capable
of trafficking of dendritic cells into the tumor microenvironment, were used
to create the index. Individual chemokine percent expression (with respect
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to non-tumorigenic baseline controls) was predicted and given weightage
so as to normalize the total to 1. The index was then calculated to be the
sum of each prediction % change * weightage. (DOCX 16 kb)

Additional file 7: Table S5. Analysis of the Discovery and Validation
datasets was performed using Weka 3. The first number in each column
represented the number of patient treatment responses correctly
classified by the model. The second number represented the number of
incorrectly classified patient treatment responses. The GOAL row at the
bottom of each column described the number of correctly and
incorrectly classified patients in the simulation models. The Test Set
columns described the output from applying the model trained on the
Discovery set to the Validation set. The “Test and Train” columns
described test set accuracy (test set column) plus the training error
(results obtained by applying the model to the training set, i.e. training
error). (DOCX 19 kb)

Additional file 8: Figure S2. An example of the relationship between
PD-L1 expression and predicted TGFB1 expression using Weka 3 algorithms
for all patients in the dataset. Similar trends were seen when comparing the
PD-L1 expression level to the other 13 predicted molecules. For this, the
number of gene mutations identified for each patient ranged from 2 to 36
with a total of 264 unique genes between all patients. This categorical data
was preprocessed and expanded into a gene vector of length 264 to
represent each of the unique genes. For each gene in the vector, the data
was represented in binary; a 1 was assigned if the patient had a mutation in
this gene, a 0 otherwise. Two datasets, one including gene mutations
(Molecules and Gene Mutations) and one without (Molecules), were both
used to learn prediction models. The Discovery and Validation datasets were
determined based on the split provided to allow for comparable results.
The performance of a subset of these models on the testing and training
sets for both Molecules and Molecules and Gene Mutations datasets are
shown. The SMO support vector machine with a normalized polynomial
kernel had the best performance when applied to the molecule dataset.
This model correctly identified 24 out of 29 patients whereas the simulation
models correctly identified 25 of 29. This was only a difference of one match
between the two prediction methods. Still, several other methods, while
not performing as well overall, were able to identify 9 patients in the test
dataset accurately. This was near the computational simulation model
prediction capability in which 10 patients were successfully identified in the
test dataset. In general, adding the gene mutation data to the molecule
data either maintained or decreased the performance of a model.
(DOCX 4114 kb)

Additional file 9: Table S6. Comparisons of clinical and predicated
responses and match scores. We used a cross-validation approach to assess
the match scores in Table 1 of the PD-1 predicted responses against the
PD-1 clinical responses in the Rizvi et al. 2015 Discovery dataset vs. the
Validation dataset. We then pooled and re-partitioned the dataset into two
new Training and Test datasets. We then used a similar cross-validation
approach to assess the match scores of the PD-1 predicted responses vs.
the PD-1 clinical responses. (DOCX 17 kb)
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