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Abstract

Background: To assess the feasibility of using automated capture of Electronic Medical Record (EMR) data to build
predictive models for amyotrophic lateral sclerosis (ALS) outcomes.

Methods: We used an Informatics for Integrating Biology and the Bedside search discovery tool to identify and extract
data from 354 ALS patients from the University of Kansas Medical Center EMR. The completeness and integrity of the
data extraction were verified by manual chart review. A linear mixed model was used to model disease progression.
Cox proportional hazards models were used to investigate the effects of BMI, gender, and age on survival.

Results: Data extracted from the EMR was sufficient to create simple models of disease progression and survival.
Several key variables of interest were unavailable without including a manual chart review. The average ALS Functional
Rating Scale – Revised (ALSFRS-R) baseline score at first clinical visit was 34.08, and average decline was − 0.64 per
month. Median survival was 27months after first visit. Higher baseline ALSFRS-R score and BMI were associated with
improved survival, higher baseline age was associated with decreased survival.

Conclusions: This study serves to show that EMR-captured data can be extracted and used to track outcomes in an
ALS clinic setting, potentially important for post-marketing research of new drugs, or as historical controls for future
studies. However, as automated EMR-based data extraction becomes more widely used there will be a need to
standardize ALS data elements and clinical forms for data capture so data can be pooled across academic centers.
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Background
Amyotrophic Lateral Sclerosis (ALS) is a fatal neuro-de-
generative disease. While over 50 clinical trials have
been conducted over the last two decades, none have
been successful save riluzole and edaravone [1], which at
best offer modest improvements in survival or function
[2]. While many studies may have failed because the
drugs were ineffective, a recurring theme in ALS are
trials which do not meet their primary outcome but
yield indeterminate results [3]. Two major hurdles to
conducting ALS trials are the rarity of ALS (3.9 in every

100,000 people in the US [4]) and the disease’s hetero-
geneity [5], which is a barrier to properly powered
studies.
Methodology for rare-disease clinical trials is an im-

portant area of study for ALS researchers [6]. Enriching
trials with historic controls has become possible due to
the creation of large pooled placebo data sets [7] and is
an approach used for selection of drugs for larger stu-
dies, such as in the lithium and rasagiline study [8–10].
Other benefits to large databases of ALS patients include
constructing predictive models for screening particular
subgroups of patients, which could reduce the hetero-
geneity of disease progression observed in the trial, or
making interim decisions during the conduct of a cli-
nical trial based on predicted and observed disease
progression.
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The wide implementation of Electronic Medical Record
(EMR) systems across the United States, using one of two
commercial systems, and the development automated ab-
straction and de-identification of data, create opportun-
ities to: 1) better understand ALS disease progression and
determinants of survival in the clinical setting; 2) use
clinical data to enrich existing placebo-arm data sets to
improve the power of trials; and 3) leverage this electronic
infrastructure to run clinical trials – including EMR-based
screening, randomization, and data collection. For these
approaches to be worthwhile, we need to be able to
demonstrate the feasibility of automatically extracting the
data required for modelling ALS disease progression and
survival directly from the EMR.
We consider the feasibility of constructing statistical

models built with automatically captured EMR patient
data from our ALS clinic at the University of Kansas
Medical Center (KUMC). This is a key first-step in uti-
lizing the EMR to augment clinical trials.

Methods
Study design
We first determined what specific data was necessary to
build models for ALS disease progression and survival. Var-
iables of interest for such models include, at a minimum,
demographic information (age, race, and gender), survival
information (vital status and date of death), ages of disease
onset and diagnosis [5, 11], site of disease onset (typically
bulbar or limb) [5, 12–14], riluzole use, BMI [5, 15], FVC
[15, 16], and ALS Functional Rating Scale – Revised
(ALSFRS-R) score [13, 17–19]. The ALSFRS-R, which is
the gold-standard for measuring ALS disease progression,
is a clinician-administered series of twelve questions which
concern the ability to perform basic functional activities
such as eating, walking, dressing, and breathing. Each ques-
tion is rated on a 0–4 scale, with the overall score of 48
representing normal function [20].
To determine if these variables could be automatically

extracted from the EMR, we conducted a retrospective
chart review of patients seen at the KUMC ALS Clinic
between summer 2013 and summer 2016. We obtained
this data directly from the EMR using the KUMC
Healthcare Enterprise Repository for Ontological Narra-
tion (HERON), powered by Informatics for Integrating
Biology and the Bedside (i2b2), a discovery tool that al-
lows searches of de-identified EMR data [21–23].
KUMC’s EMR is provided by Epic (EPIC EMR system,
Epic Systems Corporation, Verona, USA, 2015. Using
patient’s medical record numbers, this dataset was then
verified for completeness and accuracy by manual review
of the EMR records. Because we were interested in con-
sidering the efficiency of using automated tools versus
manual review, the number of hours spent performing
the automated review and manual review were tracked.

Study population
The ALS clinic at the University of Kansas Medical
Center (KUMC) serves roughly 4 state regions across
the Midwest (Kansas, Missouri, Oklahoma, Arkansas).
At each visit, patient data collected by the clinician is
entered in the EMR. Using HERON, we first performed
a search using the ICD10 code for motor neuron disease
and at least one visit. This would represent the full pool
of patients seen in clinic over this time frame. Next we
reduced this to patients having at least one ALSFRS-R
score entered into the EMR (Fig. 1). Only patients
seen in the ALS specialty clinic with a known diagno-
sis of motor neuron disease have ALSFRS-R scores in
the EMR.

Fig. 1 Patient inclusion / exclusion in study
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Statistical methods
Analysis of disease progression
Disease progression is measured by patients’ average change
per month in ALSFRS-R score. Each patient’s disease pro-
gression vs. time (as months since first clinical visit, where
the first clinical visit is time 0) was modelled via a linear
mixed model which included random slopes and random
intercepts (these were allowed to correlate); the fixed effects
for the intercept and slope of this model represent the
average baseline ALSFRS-R score and average change in
ALSFRS-R per month for the clinic. Individual estimates of
patient baseline ALSFRS-R score can be obtained by adding
the estimated fixed intercept effect to the patient’s estimated
random intercept effect; similarly the individual estimate of
a patient’s change in ALSFRS-R per month can be estimated
by adding the fixed slope effect to the patient’s estimated
random slope effect. Linearity was assumed from the
literature [14, 24, 25] and verified via diagnostic plots
(Additional file 1). These models were fit using the nlme
package in R [26].

Analysis of survival
Our survival model analyzed time from patients’ first
clinical visit to death (or censoring). Survival data
captured by HERON includes both data from the EMR
and from the Social Security Death Index [27]. Median
survival was estimated by via a Kaplan-Meier approach
with interval given by the log-log transformation. A Cox
Proportional Hazards model was employed to assess the
simultaneous effects of available predictors: BMI, age,
and ALSFRS-R score at first visit, and gender. 72
patients were missing baseline BMI scores and were
excluded from the Cox model. All analyses were done
using R (version 3.2.4) [28].

Results
Accuracy of EMR data
A general search based on ICD10 code identified 572 sub-
jects; 354 patients had at least one ALSFRS-R recorded in
the EMR (62.4%), 352 of which were deemed eligible for
analysis (two were excluded due to nonsensical death
dates) (Fig. 1). Manual review verified ALSFRS-R and
sub-scores as accurate.

Many variables of interest for modeling progression
and survival (time of disease onset, time of disease
diagnosis, and site of disease onset) were only avail-
able by manual chart review, because the EMR did
not yet have a dedicated field to capture such infor-
mation (Table 1). Other variables, though extracted
via HERON, were not useful for analysis due to ex-
treme sparsity (for example, raw FVC was missing
from 59% of records).
The time spent coordinating with the team at HERON

to properly identify and extract variables of interest took
roughly 3 h. The manual review took over 30 h. Once
the variables of interest were properly identified within
the EMR, obtaining the data through HERON became a
matter of minutes rather than hours.

Patient characteristics
Table 2 reports patient characteristics: participants at
KUMC were predominantly male (57%), had an average
age at first clinical visit of 64.1 years, 65% with limb
onset, 63% taking riluzole, with an average ALSFRS-R at
first visit of 34.5.

Statistical results
Analysis of disease progression
The fixed-effect of clinic-level baseline ALSFRS-R score
was 34.08 with 95% interval (33.28, 34.88), with
random-effect standard deviation of 7.08 with 95% inter-
val (6.49, 7.28). The fixed-effect of clinic-level disease
progression (in terms of loss of ALSFRS-R per month)
was 0.64 with 95% interval (0.56, 0.73), with
random-effect standard deviation of 0.56 with 95% inter-
val (0.48, 0.65). See Fig. 2 for graphical representation of
the estimates of disease progression and baseline
ALSFRS-R score by patient.

Analysis of survival
Median survival time from first visit was 27 months
(95% interval (22.7, 33.7)) for KUMC patients, as per
Kaplan-Meier model. The Kaplan-Meier survival curve
(unadjusted for other covariates) is given in Fig. 3. We
observed a large number of censored observations
(69% censored).

Table 1 Specific data automatically extracted from KUMC EMR by HERON, and data that required a manual chart review

Information automatically extracted from the EMR using HERON Information requiring manual chart review

Demographic data Subject age, race, gender, ethnicity Date of disease onset, date of diagnosis,
site of disease onset

Longitudinal data ALSFRS-R and its sub scores, BMI, FVC
(raw and percent-predicted)

Medication history Riluzole use

Survival data Death status, date of death

Karanevich et al. BMC Neurology          (2018) 18:205 Page 3 of 7



Our Cox proportional hazards model found baseline
ALSFRS-R score, baseline age, and baseline BMI as sig-
nificant (p < 0.05) predictors of survival when α = 0.05.
Higher baseline ALSFRS-R and BMI were related with
improved survival, while higher baseline age was asso-
ciated with decreased survival (Table 3).

Discussion
Here we demonstrate the feasibility of using an automated
extraction tool (HERON) to obtain ALS patient data
directly from the KUMC EMR which could be used for
analysis of ALS disease progression and survival. While
data pertaining to demographic, ALSFRS-R, and survival
information was both readily obtainable and accurate,
some key variables (especially disease onset time and rilu-
zole use) were only available via manual EMR review and/
or suffered from large amounts of missing data.
The main advantages to using automatic tools such as

HERON includes that they can drastically reduce the
amount of time needed to accurately capture EMR data
when compared to a manual review of the EMR. This
methodology is generalizable across other research sites:
EPIC is one of the two major EMR record systems in
the US, serving over 50% of patients in the US [29], and
represents a large number of academic centers with ALS
clinics. The automatic extraction tool HERON is
powered by i2b2, which is used by dozens of research in-
stitutions within the US and abroad [30].
Looking towards the future, as EMR data becomes

more complete, other advantages of using this approach
will emerge. Advantages to complete and comprehensive
ALS records in the EMR include allowing clinicians to
track the performance of their patients clinic-wide and
compare these to other ALS clinics, for both research

Table 2 Demographic information of KUMC ALS clinical
patients. Baseline is defined as the time of a patient’s first
recorded ALSFRS-R score at KUMC

KUMC

Number of patients 352

Percent female / Male 43/ 57

Percent Caucasian / Non-Caucasian 89/ 11

Percent limb onset / Bulbar / Other 65/ 27/ 8

Percent using riluzole Yes / No / NA 63/ 35 / 2

Percent survived during follow up 69

Median time from baseline to last record, months (IQR) 7.1 (17.7)

Median age at baseline (IQR) 65.3 (11.2)

Median number of months from onset to baseline (IQR) 19.0 (28.1)

Median baseline FVC percent predicted (IQR) 70.0 (32.5)

Median BMI at baseline (IQR) 26.4 (7.23)

Median number of ALSFRS-R assessments (IQR) 3 (4)

Median baseline ALSFRS-R (SD) 35.5 (10.0)

Fig. 2 The distributions of baseline scores and monthly disease progression as estimated by the linear mixed effects model. These were
calculated from the model by adding the fixed effect of intercept (or slope) to each patient’s estimated random effect of intercept (or slope)
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and quality control purposes. For example, the average
ALSFRS-R decline per month in the KUMC clinic of
0.64 is somewhat high compared to reports from other
clinics, which report monthly ALSFRS-R declines of
between 0.36 to 0.65 [14, 31–33]. Note that this may be
because we were unable to adjust for how long patients’
have had the disease.
Other future advantages include the ability to perform

retrospective studies quickly and efficiently, which could
create support for new therapeutics or improvements to
standards of care. This depends heavily on tracking of
patients’ use of therapeutics in a way that is accessible in
the EMR. EMR data could also be used to augment clin-
ical trial data, being used as either a placebo/ standard
of care arm or as historical controls [34]. This has

become a vital issue for the broader ALS community.
For example, approval of edaravone in the US has raised
many questions about which patients will benefit from
this therapy and for how long. This could be answered
by pooling ALS clinic data. In addition, edaravone has
put a limit on how broadly existing placebo data sets like
PRO-ACT can be used for historical controls in clinical
trials. Contemporary controls captured through auto-
mated EMR data abstraction could be one solution to
this problem [1, 35, 36].
One current criticism of ALS clinical trials is that the

ALS patients who serve in these trials are not representative
of the general population [37], which is likely due to the
rigorous inclusion/exclusion criteria for these trials. One
simple solution to make ALS trials more representative is
to simply modify the inclusion/exclusion criteria – however
the resulting increased patient variability would require very
large studies. Again we see the potential utility of EMR
data: with a more general trial population, we would be free
to use the EMR to augment the control population for
these trials. Networks such as the Northeast or Western
ALS Study Groups [38] could provide placebo or
standard-of-care arms in a variety of designs, and could
make such large-scale studies possible.
The main disadvantage of this approach is the current

lack of completeness of the EMR with respect to critical

Fig. 3 Kaplan-Meier survival curves and 95% confidence interval for KUMC patients. The horizontal line represents the median survival time,
equivalent to where the y-axis is 0.5

Table 3 Hazard ratios from Cox model

Survival Model

Covariate Hazard Ratio 95% CI P-value

Age (at onset) 1.025 (1.004, 1.047) 0.019

Sex (male) 0.732 (0.473, 1.133) 0.161

BMI (baseline) 0.950 (0.909, 0.993) 0.022

ALSFRS-R total (baseline) 0.939 (0.909, 0.970) <0.001

Hazard ratios below one result in improved survival
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ALS data, resulting in incomplete statistical models. To
use the EMR as we propose across multiple academic
centers, the ALS community would need to agree on a
set of common data elements or ALS-related forms to
capture in the EMR. Such agreement could allow com-
mon data dictionaries to be used to allow for automated
data capture not just across academic centers, but across
different EMR platforms (i.e. Epic and Cerner). Further-
more, physicians and their clinic personnel would need
to adhere to these data dictionaries, and then rigorously
enter all the required data for each patient at each visit.
Many efforts have already been made toward developing
these common data sets for ALS: much of the field
already captures the ALSFRS-R, the FVC, and details
about the diagnosis at each visit. In addition several
initiatives are underway to standardize forms across in-
stitutions, with a suite of ALS clinic forms available for
download through Epic Central.
One example of critical information that needs to be

collected in a standardized way is disease onset time.
Because disease duration (which is derived from disease
onset time) is critical for both survival and disease
progression modelling [5, 12, 24, 25, 39], it is necessary
that ALS clinics dedicate a data-capture form for this, as
opposed to entering it as free-text notes/comments
where it is difficult to find systematically. Other critical
variables include usage of approved therapeutics (such
as riluzole or ederavone), time of diagnosis, and location
of symptom onset.

Conclusions
We were able to use automated extraction tools to ac-
curately obtain necessary variables from the EMR with
which to create simple statistical models of both ALS
disease progression and survival time. Key variables that
might offer large improvements to these models (such as
disease onset time or riluzole use) were unavailable via
automatic extraction. In the future, as automated EMR
data abstraction becomes increasingly important for
post-marketing surveillance of FDA approved drugs, or
for use as concurrent controls, the ALS community will
need to adopt common data elements for the EMR. Op-
timal use of the EMR requires disease-specific key vari-
ables, such as disease-onset time for ALS, to be
identifiable and obtainable by data extraction tools as
well as rigorous data entry by clinical staff.

Additional file

Additional file 1: Linearity of 16 randomly selected patients who had >
3 visits. For 16 randomly selected patients with more than three recorded
visits, we show their ALSFRS-R score versus time in months, along with
the fit regression line. This gives the reader a general idea of the linear
decline of the ALSFRS-R seen in patients. (PDF 8 kb)
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