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Abstract

decreased amyloidogenic amyloid precursor protein.

incubated with 1 uM or 10 pM simvastatin.

cultured Alzheimer's disease cybrid cells.

Background: Alzheimer's disease (AD) is associated with vascular risk factors; brain ischemia facilitates the
pathogenesis of AD. Recent studies have suggested that the reduction of AD risk with statin was achieved by

Methods: We used mitochondrial transgenic neuronal cell (cybrid) models to investigate changes in the levels of
intracellular hypoxia inducible factor Ta (HIF-1a) and B-site amyloid precursor protein cleaving enzyme (BACE) in the
presence of simvastatin. Sporadic AD (SAD) and age-matched control (CTL) cybrids were exposed to 2 % O, and

Results: There was no significant difference between cell survival by 1 or 10 pM simvastatin in both SAD and CTL
cybrids. In the presence of 1 uM simvastatin, intracellular levels of HIF-1a and BACE decreased by 40-70 % in SAD, but
not CTL cybrids. However, 10 uM simvastatin increased HIF-1a and BACE expression in both cybrid models.

Conclusion: Our results suggest demonstrate differential dose-dependent effects of simvastatin on HIF-1a and BACE in
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Background

Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder that affects memory function; it is character-
ized by the formation of senile plaques composed of beta
amyloid (AP) [1]. Vascular risk factors such as hyperten-
sion and diabetes mellitus have an established association
with AD, and over 30 % of AD patients show evidence of
cerebral infarcts [2, 3]. Brain ischemia contributes to the
pathogenesis of AD [2, 3], and the molecular link between
hypoxia and AP production is well established. Hypoxia
increases expression of [-site amyloid precursor protein
cleaving enzyme (BACE) via induction of hypoxia indu-
cible factor 1a (HIF-1a), resulting in increased [-secretase
activity and AP production [4-6].
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Statins (HMG-CoA reductase inhibitor) have some util-
ity in stroke prevention and studies have shown that statin
administration can reduce the incidence of and improve
functional outcomes after ischemic stroke [7]. The neuro-
protective properties of statins have been demonstrated in
models of cerebral ischemia [8]. Beyond their originally
defined role in lowering cholesterol, statins have been
used to manage neurodegenerative disorders such as vas-
cular dementia and AD [9], because they can improve vas-
cular integrity. Statins also alter HIF-la related gene
expression by modulating DNA-binding activity [10];
HIF-1a is essential to the cellular and systemic response
to hypoxia [11]. Epidemiologists have found up to a 70 %
decreased risk of AD in people taking statins [12] and sev-
eral studies have shown that statins reduce the production
of AP [13, 14]. The effects of statin differed according to
dose; low-dose simvastatin decreases AP production with-
out increment of A release [15].
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Cytoplasmic hybrid (cybrid) cell models have been
used to demonstrate the role of dysfunctional mitochon-
dria in AD pathogenesis. Studies using this technique
have shown that Sporadic AD (SAD) cybrids have in-
creased intracellular and/or extracellular AP levels that
induce apoptotic neuronal death [16]. SAD cybrids also
show increased accumulation of oxidative stress markers
such as trans-4-hydroxy-2-nonenal adducts [17], which
play an integral role in cellular toxicity. Cybrids are thus
a good model for the study of mechanisms involved in
cellular pathology. We used cybrids to investigate the
changes in intracellular HIF-1a and BACE levels in the
presence of simvastatin under hypoxic conditions.

Methods

Cell culture experiments

Mitochondrial transgenic neuronal cells (cybrids) of
SAD and age-matched controls (CTL) were used to in-
vestigate the effect of simvastatin on HIF-1a and BACE
expression under hypoxic conditions. We used estab-
lished Alzheimer’s disease cybrid models that were
created by transferring mitochondria from a living AD
patient and age-matched control donor into the mito-
chondrial DNA (mtDNA) free human neuroblastoma
(SH-SY5Y) cells [16]. The cybrid cells obtained from the
University of Virginia. The resulting cell lines differed
only in the source of mtDNA that repopulated the cells,
but otherwise had identical nuclear genetic and environ-
mental backgrounds, allowing for the in vitro elucidation
of mitochondrial genomic differences [17].

In vitro hypoxia and simvastatin treatment

Cultures were maintained in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 10 % fetal bovine
serum (FBS), 100 U penicillin, and 0.1 mg/mL strepto-
mycin at 37 °C under 5 % CO,/95 % O, until reaching
70 % confluence. After starving the cells with DMEM
containing 0.2 % EBS for 24 h, the cultures were placed
in normoxic or hypoxic conditions with 1 uM or 10 uM
simvastatin throughout the course of the experiments
(0-12 h) [15]. Simvastatin was obtained from Chong
Kun Dang Pharmaceutical Co., Ltd. (Seoul, South
Korea). Treatments were performed in triplicate, and ex-
periments were repeated three times.

All hypoxic ischemia experiments were performed
with cultures incubated in a humidified hypoxic cham-
ber. To induce hypoxia, the cultures were incubated in
93 % N»/5 % CO5/2 % O, at 37 °C.

Cell viability assay

Cell viability was determined by MTT (3-[4,5-dimethyl-
thiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay. A
stock solution of MTT (5 mg/mL in phosphate-buffered
saline, pH 7.4) was freshly prepared, and the cells were
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incubated for 4 h at a final concentration of 1 mg/mL.
The samples on each plate were read on an ELISA
reader with a reference wavelength of 570 nm. The re-
sults are expressed as a percentage of absorbance at
490 nm directly proportional to the number of living
cells following experimental hypoxia.

HIF and BACE immunoassay

For immunoblot analysis, cells cultured on 100 mm plates
were washed with 4 °C phosphate-buffered saline (PBS)
and collected by centrifugation. The cells were homoge-
nized in lysis buffer [100 mmol/L NaCl, 10 mmol/L Tris
(pH 7.5), 1 mmol/L EDTA] with freshly prepared protease
inhibitors (1 mM phenylmethylsulfonyl fluoride). Protein
concentrations were determined using the Bradford
method (Bio-Rad, Richmond, CA). Protein extracts
(40 pg) were separated by 10 % sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and transferred to a
nitrocellulose membrane. The membranes were blocked
in 5 % nonfat skim milk in TBS (0.15 M NaCl, 25 mM
Tris—HCI, 25 mM Tris) for 2 h, and then incubated at a
1:500 dilution overnight at 4 °C with anti-BACE (rabbit
polyclonal antibodies, Millipore corporation) or anti-
HIF-1a (mouse monoclonal antibodies, BD bioscience)
antibodies. After washing 3 times in TBST (TBS + 0.5 %
Tween-20), the membrane was incubated with second-
ary antibody (anti-rabbit or anti-mouse) for 1 h at room
temperature. Immunoreactive bands were detected by
enhanced chemiluminescence with Kodak film. All ex-
periments were repeated three times.

Statistical analysis

Graphical data represent the means (+ SE) of at least three
independent experiments. Luminograms are representa-
tive of at least three experiments with similar results. Stat-
istical analysis was performed by Students t-test when
appropriate. A P value of 0.05 was considered statistically
significant in all cases.

Ethics

All the experiments were conducted at Seoul National
University Bundang Hospital and the study was ap-
proved by the local ethics committee of the Seoul
National University Bundang Hospital.

Results

Simvastatin did not reduce hypoxia- induced cell deaths
We analyzed the effect of simvastatin on cell viability under
hypoxia. CTL and SAD cells showed reduced cell viability
over 12 h hypoxic conditions (2 % O,). Between 0 h and
3 h, viability was reduced to 50 % of the control level, and
after 12 h, 70 % of the cells were dead. After treatment with
simvastatin (1 pM and 10 uM), there was no difference in
survival between the SAD and CTL cybrids (Fig. 1).
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Fig. 1 The effect of simvastatin on cell survival. Cells were incubated with 1 or 10 uM simvastatin under hypoxia. Cell viability was measured by MTT
assay. (a, b, ¢, d) Cell survival decreased over time. There were no significant difference between cell survival in both SAD and CTL cybrids (p > 0.05).
X-axis represents hypoxia duration; Y-axis represents mean percentage (+ SE) of cell survival comparing to the 0 time point. All experiments were
repeated three times

Low-dose simvastatin decreased HIF-1a and BACE
expression in SAD cybrids
In order to determine the effect of simvastatin on HIF-1a
mediated BACE expression, we used immunoassay.
Hypoxia increased expression of HIF-1la and BACE in
both CTL and SAD cybrids (Figs. 2 and 3). HIF-1«
levels increased rapidly for the first 6 h, and began to
decrease at 12 h. BACE levels gradually increased
throughout the 12 h period. After treatment with 1 uM
simvastatin, HIF-1a and BACE levels decreased in the
SAD cybrids (Fig. 2a, 2b). HIF-1a levels decreased by
70 % (3 h), 40 % (6 h), and 40 % (12 h) with 1 pM sim-
vastatin (*P < 0.05) (Fig. 2a). BACE levels decreased at
12 h (40 %), but there was little change at 3 h (<10 %)
and 6 h (10 %) (Fig. 2b). The reduction in HIF-la ex-
pression was prominent at 3 h, and the reduction in
BACE expression was pronounced at 12 h.

In CTL cybrids, treatment with 1 uM simvastatin did
not significantly affect HIF-la and BACE expression
(Fig. 2c, 2d).

High-dose simvastatin increased HIF-1a and BACE
expression in SAD and CTL cybrids

Treatment with 10 pM simvastatin increased expression of
HIF-1a and BACE (Fig. 3). HIF-1a levels increased by up
to 10 % (3—12 h) in SAD cybrids and 110-130 % (3—12 h)
in CTL cybrids. The increase in HIF-1a expression was sig-
nificant at 6 h and 12 h in CTL cybrids, but the change was
smaller in SAD cybrids. BACE levels increased by 20—-40 %
(3-12 h) in SAD cybrids, and 20-40 % (3-12 h) in CTL
cybrids. BACE expression significantly increased at 6 h and
12 h in SAD cybrids, and at 3 h in CTL cybrids (*p < 0.05).

Discussion

This study investigated the changes in HIF-1a and BACE
levels in the presence of simvastatin under hypoxic condi-
tions in AD cybrid cells. In SAD cybrids, HIF-1a and
BACE levels decreased by 40-70 % with low-dose simva-
statin; however, high-dose simvastatin increased the ex-
pression of HIF-1a and BACE up to 130 %. AP is derived
from B-amyloid precursor protein by proteolytic cleavage
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Fig. 2 The effect of low-dose simvastatin on HIF-1a and BACE expression. Cells were incubated with 0 and 1 uM simvastatin under hypoxia. Intracellular
HIF-1a and BACE levels were measured by western blotting. a In SAD cybrids, HIF-1a was significantly decreased at 3 h, 6 h, and 12 h in the presence of
1 UM simvastatin (*P < 0.05). b In SAD cybrids, BACE significantly decreased at 12 h in the presence of 1 uM simvastatin (*P < 0.05). ¢, d In CTL cybrids,

1 UM simvastatin did not influence HIF-1a and BACE expression. X-axis represents hypoxia duration; Y-axis represents percentage value from the
immunoassay versus the 0 time point. All experiments were repeated three times
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from [-secretase via induction of BACE [4-6]. Increased
BACE activity and elevated insoluble A peptide have
been shown in brain tissue of patients with AD, suggesting
that abnormal BACE activity contributes to AD pathogen-
esis [5]. Stroke or ischemia gives rise to hypoxic condi-
tions known to increase the incidence of AD and hypoxia
increases transcription of BACE via overexpression of
HIF-1a [3, 5]. In this study, low-dose simvastatin reduced
HIF-1a mediated BACE production from hypoxic injury
in SAD cybrids, but not in high-dose.

Other studies have shown the dose-dependent effects
of statin on biochemical markers. High-dose simvastatin
(10 pM) increased AP release from HEK cells, but low-
dose simvastatin (1 uM) showed little difference [15].
One study demonstrated the dose-dependent effect of
atorvastatin on endothelial cell migration and angiogen-
esis [18]. Low-dose statin promotes migration of mature

endothelial cells and progenitor cells that contribute to
vasculogenesis. However, high-dose statins block angio-
genesis and migration by inducing endothelial cell apop-
tosis. In cortical neuronal cells, low-dose simvastatin
(100 nmol) protects against cytotoxcity by enhancing
expression of Bcl-2 mRNA [19]. Pre-incubation with
low-dose simvastatin reduces AP peptide-induced cell
death in cortical and cerebellar neurons [20]. If in vitro
experiments correctly reflect pathophysiological events
that take place in the human brain, chronic low-dose
statin administration may be therapeutically beneficial.
Cholesterol is an important factor in the regulation of
AP production. High-dose statins inhibit cholesterol syn-
thesis, and low cellular cholesterol levels reduce AP se-
cretion [13, 14]. Low-dose statins preferentially inhibit
isoprenoid biosynthesis [21, 22] and inhibition of p-
secretase dimerization by low isoprenoid reduces A
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and BACE. Cells were incubated with 0 and 10 uM simvastatin under hypoxia.
Intracellular HIF-1a and BACE levels were measured by western blotting. a In SAD cybrids, 10 uM simvastatin did not influence HIF-1a. b In SAD
cybrids, BACE significantly increased at 6 h and 12 h in the presence of 10 uM simvastatin (*P < 0.05). ¢ In CTL, HIF-1a significantly increased at
3'h,6h,and 12 hin the presence of 10 uM simvastatin (*P < 0.05). d In CTL, BACE significantly increased at 3 h in the presence of 10 uM
simvastatin (*P < 0.05). X-axis represents hypoxia duration; Y-axis represents represents percent values from the immunoassay versus the 0
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production [15, 23]. Statins also modulate the DNA-
binding activity of HIF-la and simvastatin attenuates
HIF-1a expression in vascular smooth muscle cells
[10, 23].

Several groups have reported the benefit of statins in the
treatment of AD. In patients with mild AD, high-dose
simvastatin (80 mg/day) treatment reduced AP levels in
the cerebrospinal fluid (CSF) [24]. In addition, 20 mg sim-
vastatin reduced CSF levels of amyloid precursor protein
in patients with AD [25]. Lovastatin (10-60 mg/day) pro-
duced a dose-dependent decrease in serum A in patients
with elevated levels of low-density lipoprotein cholesterol
[26]. These studies showed the benefit of statin treatment
in reducing AP production in humans, but differences

between the types and doses of statin have not been satis-
factorily defined.

Patients with AD are susceptible to chronic hypoxia
[2, 27]. Disrupted perfusion is present in the early phases
of AD [2]; consequently, a reduction of oxygen delivery
to the brain promotes mitochondrial dysfunction and
apoptosis [17]. As expected, SAD cybrids derived from
AD patients are also susceptible to chronic hypoxia. We
used a cybrid cell model to evaluate mitochondrial dys-
function in AD patients under hypoxic conditions. Mito-
chondrial dysfunction in the presence of oxidative stress
is intimately involved with AD pathophysiology. The
mitochondrial electron chain acts as an oxygen sensor,
releasing reactive oxygen species in response to hypoxia,
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thereby promoting oxidative stress, leading to cell death
[28]. Mitochondrial dysfunction is observed in the plate-
lets and lymphocytes of AD patients and their postmor-
tem brain tissue [29].

Several studies have shown that statin activity on AP
production is mediated by BACE [15, 22, 30]. In vitro and
in vivo studies have shown that overexpression of BACE
elevates AP production [31, 32]. This up-regulation of
BACE and hypoxic stress are thought to have pathogenic
relevance to neurodegeneration and dementia. Although
we did not directly measure AP, BACE activity is esti-
mated as an indirect biological marker of Ap production.

Conclusions

This study was designed to determine the effects of simva-
statin on the expression of HIF-1a and BACE in cybrid
cells as possible important mediators of amyloid precursor
protein processing. We demonstrated a dose-dependent
differential response of simvastatin on HIF-1la and BACE
expression. While low-dose simvastatin reduced the ex-
pression of HIF-la and BACE under hypoxia in SAD
cybrids, high-dose simvastatin increased the expression of
both markers. Thus, our studies suggest the potential util-
ity of therapeutic low-dose simvastatin regimen to control
HIF-1la and BACE expression, which may prevent beta
amyloid production. Additional translational studies in
transgenic mice are required to demonstrate beneficial ef-
fects of simvastatin on amyloid load and reversal of behav-
ioral deficits prior to clinical studies in AD patients.
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