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Abstract

Background: While observational studies show an association between serum lipid levels and cardiovascular
disease (CVD), intervention studies that examine the preventive effects of serum lipid levels on the development of
CKD are lacking.

Methods: To estimate the role of serum lipid levels in the etiology of CKD, we conducted a two-sample mendelian
randomization (MR) study on serum lipid levels. Single nucleotide polymorphisms (SNPs), which were significantly
associated genome-wide with serum lipid levels from the GLGC and CKDGen consortium genome-wide association
study (GWAS), including total cholesterol (TC, n = 187,365), triglyceride (TG, n = 177,861), HDL cholesterol (HDL-C,
n = 187,167), LDL cholesterol (LDL-C, n = 173,082), apolipoprotein A1 (ApoA1, n = 20,687), apolipoprotein B (ApoB,
n = 20,690) and CKD (n = 117,165), were used as instrumental variables. None of the lipid-related SNPs was
associated with CKD (all P > 0.05).

Results: MR analysis genetically predicted the causal effect between TC/HDL-C and CKD. The odds ratio (OR) and
95% confidence interval (CI) of TC within CKD was 0.756 (0.579 to 0.933) (P = 0.002), and HDL-C was 0.85 (0.687 to
1.012) (P = 0.049). No causal effects between TG, LDL-C- ApoA1, ApoB and CKD were observed. Sensitivity analyses
confirmed that TC and HDL-C were significantly associated with CKD.

Conclusions: The findings from this MR study indicate causal effects between TC, HDL-C and CKD. Decreased TC
and elevated HDL-C may reduce the incidence of CKD but need to be further confirmed by using a genetic and
environmental approach.

Keywords: Two-sample mendelian randomization, Genome-wide association study, Serum lipid levels, Chronic
kidney disease, Causation
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Background
Chronic kidney disease (CKD) can be defined as a de-
creased glomerular filtration rate (GFR) (< 60mL/min*1.73
m2) and affects up to 15% of the population around the
world, and the number of cases is increasing [1]. With the
continuous deterioration of renal function, most patients
have to accept dialysis treatment. There are many reasons
for the deterioration of renal function, including dyslipid-
emia [2]. Recently, many studies have found that most pa-
tients with CKD have cardiovascular diseases (CVD) before
they develop end-stage renal disease (ESRD), which is re-
lated to abnormal lipid metabolism [3]. Although there is a
strong association between CKD and serum lipids, this
mechanism has not been fully elucidated.
In epidemiological studies, randomized controlled tri-

als (RCTs) are the most powerful way to demonstrate
the etiology hypothesis. However, RCTs are more de-
manding on research design, and the cost of RCTs is
higher; therefore, it is difficult to implement RCTs. The
application of the Mendelian randomization (MR)
method in epidemiological research provides an eco-
nomical and effective way to solve this problem [4]. The
main principle of this method is that different genotypes
determine different intermediate phenotypes, and Men-
del’s law of independent distribution states that the
intermediate genes are randomly assigned to the gam-
etes of the offspring in the process of gamete formation.
Therefore, when using the model of “genotype-disease
(outcome)” to simulate the model of “intermediate
phenotype (exposure)-disease” to conduct causal correl-
ation research, this approach will not be affected by the
impact of environmental factors, and the causal se-
quence is clear [5]. With these situations, MR research is
regarded as the best alternative to RCTs by most
researchers.
There are several analyses of MR methods, including

two-sample Mendelian randomization (TSMR) [6].
Compared with other methods, TSMR has some advan-
tages. First, with the advent of the post-GWASs era, a
large number of GWAS data have been published, and
the data that we selected are easier to obtain. Second, if
we use the association established by observational re-
search to carry out the research phase of two queues,
when the sample size of the study is expanded, the effi-
ciency of the test can be improved. In addition, the pub-
lished GWAS sample size is usually large, and the
number of instrument variables (IVs) that can be se-
lected is high, which increases the genetic interpretation
of IVs on exposure, can better replace exposure, and is
more conducive to the accuracy and reliability of ana-
lysis results [7]. In our current study, we assumed that
serum lipid levels were associated with the onset of
CKD. Next, we used TSMR to estimate the causal effect
of serum lipid levels on CKD.

Methods
GWAS data
We selected genetic variants associated with serum total
cholesterol (TC, n = 187,365), triglyceride (TG, n = 177,
861), HDL cholesterol (HDL-C, n = 187,167), LDL chol-
esterol (LDL-C, n = 173,082), apolipoprotein A1 (ApoA1,
n = 20,687) and apolipoprotein B (ApoB, n = 20,690)
levels and then extracted the corresponding effect sizes
for CKD using the largest GWAS summary-level dataset
[8, 9]. The data source of this study is based on re-
analyzing previously published GWAS; therefore, there
is no ethical approval. CKD data (n = 117,165) were ac-
quired from the CKDGen consortium (n = 117,165) [10].
CKD was defined as an eGFR based on serum creatinine
(eGFRcrea) lower than 60mL/min/1.73 m2. All datasets
were obtained from large-scale randomized double-blind
trials and population cohort studies based on European
descent. Gender, age and body mass index (BMI) should
be corrected in regression models of serum lipid GWAS
[8, 9], and age and gender were also adjusted in
CKDGen. Because of the potential population stratifica-
tion in our selected datasets, the genome control of each
sample is applied to correct for inconsistent test
statistics.

TSMR design
In our current analysis, the IVs provided by genetic vari-
ants should contain three assumptions as in our previous
research [1, 11] IVs must be strongly associated with ex-
posure [2]; IVs should be without any association with
known confounders; and [3] the IVs we selected must be
conditionally independent of exposure (serum lipid
levels), outcomes (CKD) and confounders. If the IVs
contained the second and third assumptions, it may be
regarded as independent from pleiotropy.

Instrument variables
Initially, IVs should be strongly correlated with exposure
(serum lipid level). Then, the P-value that we selected
should be < 5 × 10− 8 in the relevant GWAS dataset to
ensure the close association between IVs and exposures.
After that step, to ensure independence among selected
IVs, PLINK 1.90 [12] was performed to calculate the
pairwise linkage disequilibrium (LD). If the r2 was
greater than 0.001, these SNPs were excluded from our
research.
We selected these IVs must be conditionally independ-

ent of outcome (CKD), considering the correlated traits
of exposures (serum lipid level), and independent of any
known confounders. For selected IVs, only exposure fac-
tors (serum lipid level) and no other pathways or con-
founding factors can affect the outcome (CKD). This
finding is consistent with the previous two assumptions
[13]. First, we made the corresponding effect estimates
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of these variables on CKD. We should choose the proxy
SNPs that are highly correlated (r2 was greater than 0.8)
based on the SNP Annotation and Proxy (SNAP) search
system for substitution when the selected SNPs cannot
be used in CKD [14]. Next, MR-Egger regression was
performed to calculate the horizontal pleiotropic [15].
Afterwards, we removed any palindromic SNPs for
which the minor allele frequency (MAF) was greater
than 0.3 to ensure that the influence of the SNPs on the
exposures (serum lipid level) corresponded to the same
allele as their influence on CKD [16]. Subsequently, we
employed the GWAS Catalog to check for the associa-
tions between selected IVs and to adjust for potential
confounding. In addition, we calculated the F statistic
with a web application (https://sb452.shinyapps.io/
overlap/) to examine the association of selected IVs with
the exposures [17].

Pleiotropy assessment
MR-Egger regression was employed to calculate the
horizontal pleiotropic pathway between IVs and CKD,
independent of serum lipid level [15]. As an effective
method to detect bias in publication meta-analysis, MR-
Egger regression was derived from Egger regression. The
method can be expressed through the equation αi = βγi +
β0. In this equation, different letters indicate different
meanings. αi represented the effect between IVs and
CKD; γi was employed to estimate the effect between
serum lipid level and IVs; slope β denoted the estimated
causal effect of exposure (serum lipid level) on outcome
(CKD); and intercept β0 represented the estimated aver-
age value of horizontal pleiotropic. When the P-value of
the intercept was greater than 0.05, no horizontal plei-
otropy could be found. In addition, the slope can also be
defined as the estimated pleiotropy-corrected causal ef-
fect. However, if the SNPs we selected in this analysis do
not account for most of the differences in exposure, then
there is a lack of evaluation of this estimate [15].

TSMR analysis
In our current study, inverse variance weighted (IVW)
was used as the key method to calculate the causal effect
between serum lipid level and CKD for TSMR analysis
[18]. The causal effect β was estimated and shown as wi

(αi /γi). In this equation, i refers to the IVs, αi represents
the association effect of IVs on CKD, γi defines the asso-
ciation effect of IVs on serum lipid level, and wi repre-
sents the weights of the causal effect of serum lipid level
on CKD.

Sensitivity analysis
We employed various methods to calculate follow-up
sensitivity, including maximum likelihood, MR Egg,
weight median, penalized weight median, simple mode,

weight mode and robust adjusted profile score (RAPS)
[19]. Compared with IVW, these methods have greater
robustness to individual genetics with strongly outlying
causal estimates and would generate a consistent esti-
mate of the causal effect when valid IVs exceed 50%
[20]. Then, leave-one-out sensitivity analysis was per-
formed to screen out whether the correlation was out of
relationship to be affected by a single SNP. Subse-
quently, we employed TSMR analysis again, leaving out
each SNP, in turn, and the overall analysis including all
SNPs was shown for comparison [21]. All of the analysis
was implemented by the “TwoSampleMR” package in
the R software environment.

Results
IV selection and validation
Seven independent SNPs (P < 5 × 10 − 8, r 2 < 0.001) were
associated with TC, thirteen independent SNPs were

Table 1 Mendelian randomization (MR)-Egger regression
intercepts

Exposure Outcome Intercepts (95% CI) P-val

TC CKD 0.015 (−0.113, 0.066) 0.573

TG CKD −0.008 (− 0.047, 0.019) 0.553

LDL-C CKD −0.032 (− 0.105, 0.037) 0.461

HDL-C CKD −0.041 (− 0.150, 0.056) 0.492

ApoA1 CKD 0.009 (−0.088, 0.049) 0.682

ApoB CKD 0.008 (−0.078, 0.036) 0.733

CKD Chronic kidney disease, TC Total cholesterol, TG Triglyceride, HDL-C High-
density lipoprotein cholesterol, LDL-C Low-density lipoprotein cholesterol, Apo
Apolipoprotein, CI Confidence interval, MR Mendelian randomization; The
significant result (P > 0.05) indicates that the y-intercept of the MR-Egger
regression line is not significantly different from zero and thus no
pleiotropy exists

Table 2 Heterogeneity tests

Type Method Q Q_df Q_pval

TC MR Egger 5.410 5 0.367

Inverse variance weighted 5.803 6 0.445

TG MR Egger 16.062 11 0.138

Inverse variance weighted 16.609 12 0.164

LDL-C MR Egger 1.462 2 0.481

Inverse variance weighted 2.281 3 0.516

HDL-C MR Egger 0.301 2 0.859

Inverse variance weighted 0.997 3 0.801

ApoA1 MR Egger 2.132 5 0.831

Inverse variance weighted 2.320 6 0.887

ApoB MR Egger 13.726 7 0.056

Inverse variance weighted 13.973 8 0.082

TC Total cholesterol, TG Triglyceride, HDL-C High-density lipoprotein
cholesterol; LDL-C Low-density lipoprotein cholesterol, Apo Apolipoprotein, CI
Confidence interval, MR Mendelian randomization; The significant result (P >
0.05) indicates no heterogeneity exists
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Fig. 1 Two-sample mendelian randomization of serum lipid level and the risk of CKD. a TC; b TG; c HDL-C; d LDL-C e ApoA1; f ApoB. Expo.,
exposure; Outc., outcome. CKD: Chronic kidney disease; TC, Total cholesterol; TG, Triglyceride; HDL-C, High-density lipoprotein cholesterol; LDL-C,
Low-density lipoprotein cholesterol; Apo, Apolipoprotein; CI: Confidence interval; MR: Mendelian randomization

Fig. 2 Scatter plots of the estimated SNP effects on serum lipid level (x-axis) plotted against the estimated SNPs effects on the CKD (y-axis). a TC;
b TG; c HDL-C; d LDL-C (e) ApoA1; f ApoB. The slope of the line corresponds to a causal estimate using a different method
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associated with TG, four SNPs were associated with
HDL-C, four SNPs were associated with LDL-C, seven
SNPs were associated with ApoA1 and nine SNPs were
associated with ApoB by independent and LD analyses
(Supplementary Table 1).
Then, we employed the intercept term to calculate

the exposures from MR-Egger regression. Table 1
shows the MR-Egger regression intercepts and indi-
cates that no horizontal pleiotropy exists in the
current TSMR analysis. Table 2 identified the hetero-
geneity tests and found that all the P-values were
greater than 0.05.
Subsequently, we performed F statistics to identify the

strength of the relationship between IVs and exposures.
If F > 10, it should be considered to be strong enough to
mitigate against any bias of the causal IV estimate. The
F statistics for our selected IVs were 107,061.14 for TC,
54722.15 for TG, 173077 for HDL-C, 187162 for LDL-C,
11816.57 for ApoA1 and 9191.11 for ApoB. All the F
statistics values were greater than 10, which indicated
high strength to mitigate against any bias of the causal
IV estimate.

TSMR and sensitivity analysis
The TSMR analysis results are shown in Fig. 1. The odds
ratio (OR) and 95% confidence interval (CI) of TC
within CKD was 0.756 (0.579 to 0.933) (P = 0.002), TG
was 1.021 (0.898 to 1.144) (P = 0.739), HDL-C was 0.85
(0.687 to 1.012) (P = 0.049), LDL-C was 1 (0.747 to
1.253) (P = 0.998), ApoA1 was 0.999 (0.888 to 1.11) (P =
0.98) and ApoB was 0.909 (0.757 to 1.061) (P = 0.217).
These results suggested that this method genetically pre-
dicted the causal effect between TC/HDL-C and CKD.
Figure 2 indicates the association between serum lipid

levels and CKD and shows that there is a positive correl-
ation between a decrease in TC and an increase in HDL-
C and the incidence of CKD. The overall estimates, as
calculated by IVW or MR-Egg, also reveal causal effects
between serum lipid levels and CKD. (Figs. 3 and 4).
Sensitivity analyses using the leave-one-out approach
confirmed the causal effect (Figs. 5 and 6).

Discussion
There is a consensus in previous studies that dyslipid-
emia is an independent risk factor for CVD. With

Fig. 3 Results of the single and multi SNP analyses for the SNP effect of serum lipid level on CKD. a TC; b TG; c HDL-C; d LDL-C (e) ApoA1; f
ApoB. The forest map, where each black dot represented a single SNP as IV, showed the logarithm of the odds the ratio 95% (OR) confidence per
standard deviation under the influence of serum lipid level; the red dot showed the use of IVW results for all SNPs; the horizontal line indicated
the 95% confidence interval
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further research, the contribution of decreased HDL, in-
creased LDL and cholesterol to CVD is more obvious
[22]. At present, studies have only found that dyslipid-
emia is closely related to CKD, but whether serum lipids
can directly lead to CKD has not been determined.
Patients with CKD have dyslipidemia even at early

stages of renal disease and dyslipidemia tends to pro-
gress with deterioration of kidney function. The dyslipid-
emia in CKD is largely due to increased triglyceride
levels, decreased HDL-C and varying levels of LDL-C.
There are many national guidelines for treatment of dys-
lipidemia in the general population as well as those with
CKD and collectively the guidelines advocate for the use
of statins as first line therapy in patients with ASCVD or
at high risk for ASCVD. The guidelines that included
CKD as a specific at-risk population support the use of
statins to reduce ASCVD risk in those with pre-end
stage CKD and in those post renal transplant [23]. As
early as the early 1990s, there was a case report that
there was a relationship between hyperlipidemia and
CKD. After ten years of follow-up, it was found that the
incidence of albuminuria in hypercholesterolemia,
hypertriglyceridemia and low-HDL-C was higher than
that in the normal group, regardless of gender [24]. An-
other large, community-based cross-sectional study in
Japan also found that hyperlipoproteinemia is closely

related to the decline of eGFR [25]. Mendy et al. also
found that the correlation between hypercholesterolemia
and CKD was not related to race or skin color [26].
With further research, evidence obtained in mouse
models has emerged suggesting that renal damage is
caused by serum lipids. The proximal renal tubules are
the most easily damaged sites of dyslipidemia. Serum
lipid accumulation will lead to damage to renal tubules
and aggravation of interstitial fibrosis, which will con-
tribute to a decrease in eGFR [27, 28].
In epidemiology, RCT is the most authoritative

method to prove the etiology hypothesis. However,
RCTs often require a large sample size, a more rigorous
experimental design procedure, a longer follow-up time
and a higher cost, which inhibits researchers from con-
ducting RCTs, thereby limiting the verification of many
hypotheses. In recent years, with the continuous updat-
ing of research methods, MR has been recognized as the
best alternative to RCT [29]. One of the important pro-
cesses of MR is to select IVs, and single nucleotide poly-
morphism is one of the most commonly used IVs. In
addition, there is abundant GWAS research related to
serum lipids, and as the sample size is large enough, it
has considerable credibility for the inference of MR.
In fact, some risk factors related to CKD have been

found by using MR. Jordan et al. found that using

Fig. 4 The details of SNP analyses for the SNP effect of serum lipid level on CKD. a TC; b TG; c HDL-C; d LDL-C (e) ApoA1; f ApoB. Expo.,
exposure; Outc., outcome. CKD: Chronic kidney disease; TC, Total cholesterol; TG, Triglyceride; HDL-C, High-density lipoprotein cholesterol; LDL-C,
Low-density lipoprotein cholesterol; Apo, Apolipoprotein; CI: Confidence interval; MR: Mendelian randomization
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genetics does not support a causal effect of serum urate
level on eGFR level or CKD risk, and reducing SU levels
is unlikely to reduce the risk of CKD development [30].
This finding is not in keeping with our traditional un-
derstanding. Del Greco et al. showed a 1.3% increase in
eGFR per standard deviation increase in iron (95% confi-
dence interval 0.4–2.1%, P = 0.004), which suggests a
protective effect of iron on kidney function in the gen-
eral population [31]. There are also some studies on the
relationship between serum lipids and CKD, but there
are some differences with our research focus. Lanktree
et al. found that higher HDL cholesterol concentration
was causally associated with better kidney function, and
there was no association between genetically altered
LDL cholesterol or triglyceride concentration and kidney
function [32]. But serum HDL and CKD mortality show
a U-shaped curve, with elevated HDL reducing the
mortality rate of CKD within a certain range, while
persistently elevated HDL significantly increases the
risk of death from CKD [33]. In the conclusion of
HDL-C, it is the same as our current research. Com-
pared with the studies by this researcher, we used

IVW to make a direct inference and used a variety of
methods to verify this conclusion. At the same time,
we made a judgment on the level of the horizontal
pleiotropic pathway and sensitivity, avoiding the inter-
ference of false negatives with the conclusion. Liu
et al. [34] also found that HDL-C is related to the
pathogenesis of CKD, while TC, TG and LDL-C are
not. Compared with the studies conducted by these
researchers, there are some differences in the selected
GWAS results in our current study, and we paid
more attention to the correlation between the change
range and trend of serum lipids and the incidence of
CKD to guide the clinical diagnosis and treatment.
There were several limitations in our studies. First, as

we can only download the data collected from the web-
site for analysis, in this case, we cannot obtain the clin-
ical result value of each individual in the original data;
therefore, we cannot perform further analysis according
to the subtype of CKD. Second, different standards of
quality control in individual-level GWAS may affect our
results. Third, these results only consider the causal rela-
tionship between serum lipid levels and CKD. In fact,

Fig. 5 Sensitivity analyses using the leave-one-out approach on the association of serum lipid level on CKD. a TC; b TG; c HDL-C; d LDL-C (e)
ApoA1; f ApoB. Each black dot represents an IVW method for estimating causal the effect of the line serum lipid level on the CKD does not
exclude a case where a particular SNP caused a significant change in the overall results
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the pathogenesis of CKD is a highly complex process,
and other pathogenic factors need to be evaluated. The
results of this study provide a new vision for the clinical
understanding of the relationship between serum lipid
levels and CKD and provide a theoretical basis for clin-
ical decision-making.

Conclusion
By performing TSMR analysis, we identified that serum
TC and HDL-C are causally associated with CKD risk.
Decreased TC and elevated HDL-C may reduce the inci-
dence of CKD. However, additional human and animal
studies are still needed to further confirm these results
by using a genetic and environmental approach.
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