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Abstract 

Background: To investigate the effect of using a Rician nonlocal means (NLM) filter on quantification of diffusion 
tensor (DT)- and diffusion kurtosis (DK)-derived metrics in various anatomical regions of the human brain and the 
spinal cord, when combined with a constrained linear least squares (CLLS) approach.

Methods: Prospective brain data from 9 healthy subjects and retrospective spinal cord data from 5 healthy subjects 
from a 3 T MRI scanner were included in the study. Prior to tensor estimation, registered diffusion weighted images 
were denoised by an optimized blockwise NLM filter with CLLS. Mean kurtosis (MK), radial kurtosis (RK), axial kurtosis 
(AK), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD) and fractional anisotropy (FA), were determined 
in anatomical structures of the brain and the spinal cord. DTI and DKI metrics, signal-to-noise ratio (SNR) and Chi-
square values were quantified in distinct anatomical regions for all subjects, with and without Rician denoising.

Results: The averaged SNR significantly increased with Rician denoising by a factor of 2 while the averaged Chi-
square values significantly decreased up to 61% in the brain and up to 43% in the spinal cord after Rician NLM filter-
ing. In the brain, the mean MK varied from 0.70 (putamen) to 1.27 (internal capsule) while AK and RK varied from 0.58 
(corpus callosum) to 0.92 (cingulum) and from 0.70 (putamen) to 1.98 (corpus callosum), respectively. In the spinal 
cord, FA varied from 0.78 in lateral column to 0.81 in dorsal column while MD varied from 0.91 × 10−3  mm2/s (lateral) 
to 0.93 × 10−3  mm2/s (dorsal). RD varied from 0.34 × 10−3  mm2/s (dorsal) to 0.38 × 10−3  mm2/s (lateral) and AD varied 
from 1.96 × 10−3  mm2/s (lateral) to 2.11 × 10−3  mm2/s (dorsal).

Conclusions: Our results show a Rician denoising NLM filter incorporated with CLLS significantly increases SNR and 
reduces estimation errors of DT- and KT-derived metrics, providing the reliable metrics estimation with adequate SNR levels.
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Background
Diffusion magnetic resonance imaging (dMRI) is widely 

applied imaging modality allowing to characterize the 
microstructural properties of brain tissues. Among vari-
ous kinds of dMRI methods, diffusion tensor imaging 
(DTI) has been the most commonly used [1–11]. While 
DTI focuses on the study of white matter (WM) structure 
providing important information about the tissue anisot-
ropy, diffusion kurtosis imaging (DKI), an extension of 
DTI provides complementary information especially for 
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analysis of microstructure in gray matter (GM) by prob-
ing non-Gaussian diffusion properties [12–16]. In recent 
years, the interest for DKI has been continuously grow-
ing and mean kurtosis (MK), a principal metric of the 
diffusional non-Gaussianity has demonstrated improved 
sensitivity in measuring developmental [16–18] and 
pathological [15, 19] changes in neural tissues of both 
animal and human over conventional DTI. However, one 
of the challenges in DKI measurement which reduces its 
practical usage in clinical research is a use of multiple 
and higher diffusion-weighting (b-values) as compared 
to a conventional DTI. This results in a low signal-to-
noise ratio (SNR) of which the effect plays a large role in 
yielding the erroneous tensor estimation due to the bias 
induced by Rician nature of random noise [20, 21]. The 
low SNR can also affect the accuracy of diffusion tensor 
properties such as trace and fractional anisotropy (FA) 
[11, 22, 23]. Especially, the application of DTI in the spi-
nal cord suffers from the low SNR [24, 25] in addition to 
other challenges such as the small size of the cord, physi-
ological motion, local field inhomogeneity and suscepti-
bility artefacts [26–29].

To date, various denoising methods have been devel-
oped to improve the quality of DW images, such as 
the Gaussian filter [30, 31], anisotropic diffusion filter 
[32–34], linear minimum mean squared error filter [21], 
random matrix theory [35], multi-shell position-ori-
entation-adaptive smoothing [36] and nonlocal means 
(NLM) filter [37, 38]. In particular, NLM filter has been 
suggested to significantly improve MR data quality by 
reducing Rician noise [20, 39–41] and implemented to 
DTI [42–44] and DKI [45] in the human brain. Moreo-
ver, NLM filter has shown to provide efficiency of noise 
removal while the fine structures and details of images 
are well preserved [40, 46–51]. Despite considerable 
research effort in identifying the best denoising algorithm 
among the existing algorithms for DKI [45, 46, 52] as well 
as DTI [21, 37, 45, 48, 53], the standard denoising meth-
odology for DKI post-processing part is still to be estab-
lished, which makes DKI more difficult to use clinically. 
In order to translate DKI as a clinical tool, it is required 
to evaluate the direct impact of correcting such bias on 
regional DKI values associated with SNR in the healthy 
brain. A few studies investigated inter-subject variabil-
ity of DKI metrics in the brain of healthy subjects with-
out including noise bias corrections [54, 55]. To the best 
of our knowledge, only one study [56] investigated the 
influence of noise correction by data processing related 
to inter-subject variability of DKI metrics, however the 
reported diffusion metrics are limited to mean diffusivity 
(MD), FA and MK. In DTI of spinal cord, previous stud-
ies suggested various correction methods to boost SNR 
[25, 57–61], however the impact of Rician noise filtering 

in DTI of the human spinal cord has not been reported 
yet.

In this study, we evaluate the effect of using the Rician 
NLM filtering in combination with constrained linear 
least squares (CLLS), one of the least-squares (LS) fitting 
algorithms commonly used in DTI and DKI studies [13, 
62, 63] of the human brain and spinal cord. In particu-
lar, we present here diffusivity and kurtosis measures in 
different anatomical regions of the healthy human vol-
unteers. Additionally, error measures are quantitatively 
compared between each DT- and KT-metric with and 
without implementing a Rician NLM filter (CLLS-R and 
CLLS, respectively).

Methods
Subjects
For brain scans, 9 healthy volunteers (5 male, 4 females; 
mean age = 24; ± standard deviation = 2  years) were 
recruited through local advertisements. The exclusion 
criteria for healthy controls were subjects who suffer 
from any neurological/psychological conditions and any 
physical disabilities. All participants were studied after 
signed, informed consent. The study was approved by the 
local Institutional Review Board. Additionally, the previ-
ously obtained spinal cord data including five healthy vol-
unteers (1 male, 4 female; mean age = 32 ± 7  years) [64] 
were retrospectively used in the present study for Rician 
denoising filtering.

Data acquisition
All MRI scans were performed on a Philips 3  T MRI 
Achieva scanner (Philips Healthcare, Best, The Nether-
lands). Brain scans were carried out with a body coil exci-
tation and an 8-channel SENSE head coil for reception. 
For DKI data, four averaged minimally weighted  (b0) and 
32 non-collinear diffusion-encoding directions with two 
b-values (1000 and 2000 s/mm2) were acquired using sin-
gle-shot EPI sequence as similar to previous studies [65, 
66]. The imaging parameters were: TR/TE = 2000/69 ms, 
FOV = 224 × 224  mm2, acquisition matrix = 88 × 88, 
reconstructed resolution = 2 × 2  mm2, fold-over direc-
tion = AP, EPI factor = 47, 44 axial slices with 3  mm 
thickness and no inter-slice gap to cover the whole brain, 
SENSE factor = 2, 3/4 partial Fourier encoding, 2 aver-
ages and total scan time = 19  min. 38  s. The number of 
averages for DWIs was optimized to sustain the rea-
sonable SNR while compromising scan time and six 
sequential observations of the DWIs with 1 average were 
obtained in the additional scans for computing the SNR. 
For anatomical reference, three-dimensional  T1-weighted 
images were also acquired using 3D-MPRAGE sequence 
with the following parameters: TR/TE = 7.0/3.2  ms, 
TI = 800–818  ms, FOV = 224 × 224 × 167  mm3, 
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acquisition matrix = 224 × 224, reconstruction resolu-
tion = 1 × 1  mm2, 167 sagittal slices with 1  mm thick-
ness and no inter-slice gap to cover the whole brain, 1 
average and total scan time = 10  min. 41  s. Acquisition 
parameters for spinal cord DTI data can be found from 
the previous study [64] which included four averaged 
minimally weighted  (b0) and 15 diffusion-weighted vol-
umes (b-value = 500 s/mm2) using single-shot echo-pla-
nar-imaging (EPI) sequence. Two imaging stacks in axial 
plane covered upper (C1 to C3) and lower (C4 to C6) 
portions of the cervical spinal cord (slice thickness = 2.5 
and 5 mm, respectively).

Data postprocessing
Data were analysed using a custom-written program 
in Matlab (Mathworks, Natick, MA) and the DKE soft-
ware (https ://www.nitrc .org/proje cts/dke/) [52]. Detailed 
data postprocessing procedures for DKI are illustrated 
in Fig.  1. All DWIs were co-registered to the initial  b0 
image using a 6-degree-of-freedom, rigid body transfor-
mation procedure supplied in automated image registra-
tion (AIR) [67] in order to reduce the impact of motion 
artefact and eddy current distortion. Each gradient direc-
tion was revised with respect to transformation matrix 
after registration. Prior to tensor estimation, registered 
DWIs were denoised by an optimized blockwise NLM 
filter consisting of a blockwise implementation with 
automatic tuning of the smoothing parameter and block 
selection as described elsewhere [39, 40]. The numerical 
value for SNR in regions of interest (ROIs) for baseline 
image (b = 0) was computed by the signal statistics in a 

difference image as described in Farrell et al. [68]. DT and 
KT were estimated using CLLS algorithm suggested by 
Tabesh et al. [52] based on the definition of all DT- and 
KT-metrics [10, 14, 52].

ROI‑based measurements
For brain images, 6 ROIs including putamen (PUT; aver-
aged area size = 985  mm2), globus pallidus (GP; averaged 
area size = 525  mm2), corpus callosum (CC; averaged 
area size = 2497  mm2), internal capsule (IC; averaged 
area size = 1643  mm2), external capsule (EC; averaged 
area size = 1241  mm2) and cingulum (Cg; averaged area 
size = 678  mm2) were manually drawn in a FA map and 
a color-coded map using ImageJ (National Institutes of 
Health, Bethesda, MD) by a trained rater (Z.Z.) referenc-
ing to the standard human brain atlas (Fig.  2) [69]. All 
6 ROIs were then transferred to the rest of the DT- and 
KT-derived maps in order to compute the average and 
error measures within the ROIs for each subject. Chi-
square value (χ2) was calculated by computing the dif-
ference between the observed and estimated signals to 
estimate the goodness of fitting. Later, another trained 
rater (W.Q.) independently placed ROIs on all datasets to 
ensure the indices were reliable across raters.

For spinal cord images, 6 slices matching C1 to C6 lev-
els of the spinal cord in a FA map per each subject, were 
selected around mid-level of two intervertebral discs to 
minimize susceptibility artefact typically caused near 
the disc-tissue boundaries. In each chosen slice, 3 ROIs 
were manually placed in the lateral left and right, and 
dorsal columns (Fig.  4a), a couple of pixels away from 

Fig. 1 Data processing pipeline

https://www.nitrc.org/projects/dke/
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the boundaries of GM/WM and WM/cerebrospinal 
fluid (CSF) to avoid partial volume effect using ImageJ 
(National Institutes of Health, Bethesda, MD, USA). The 
area size of 1.563  mm2 for each ROI was consistent across 
all subjects. These ROIs were then transferred to the rest 
of the DTI-derived maps including mean FA, MD, radial 
diffusivity (RD) and axial diffusivity (AD), in order to 
compute the average of DTI-indices within the ROIs for 
each subject. χ2 was calculated in a voxel-by-voxel basis 
to evaluate the goodness of denoising performance. SNR 
and DTI-derived metrics were recalculated without the 
prior-denoising process and using the same ROIs that 
were previously defined for comparison.

Statistical analysis
To evaluate the inter-rater reliability, the intraclass cor-
relation coefficient (ICC) was computed to assess reliabil-
ity of mean values measured by two raters for each ROI 
as described by Shrout and Fleiss [70]. Averaged SNR 
values of  b0 images and ROI-based diffusion and kurto-
sis metrics were compared between CLLS and CLLS-R 
by paired Mann–Whitney U test. All statistical analyses 
were performed using commercially available software 
(SPSS, Chicago, IL, USA). P-values of 0.05 were consid-
ered to be significant.

Results
In a single  b0 image of the brain, SNR ranged from 10.85 
(GP) to 20.50 (EC) with CLLS (without Rician NLM fil-
tering) and from 25.25 (CC) to 74.38 (EC) with CLLS-R 
(with Rician NLM filtering) (Table  1). SNR significantly 
increased in all 6 ROIs using CLLS-R (244%, 177%, 62%, 
162%, 263% and 125% for PUT, GP, CC, IC, EC and Cg, 

Fig. 2 Location of ROIs on the FA and color-coded maps of the brain. Abbreviations PUT, putamen; GP, globus pallidus; CC, corpus callosum; IC, 
internal capsule; EC, external capsule; Cg, cingulum

Table 1 Comparison of  averaged SNR ± standard 
deviation of   b0 images in  the  brain of  healthy volunteers 
(n = 9) measured using CLLS and  CLLS-R. Paired Mann–
Whitney U test was used in the comparison between CLLS 
and CLLS-R

SNR, signal-to-noise ratio; PUT, putamen; GP, globus pallidus; CC, corpus 
callosum; IC, internal capsule; EC, external capsule; Cg, cingulum

CLLS CLLS‑R p

PUT 17.65 ± 0.73 60.75 ± 6.27  < 0.05

GP 10.85 ± 0.62 30.02 ± 4.81  < 0.05

CC 15.61 ± 1.19 25.25 ± 2.54  < 0.05

IC 15.78 ± 0.28 41.30 ± 3.88  < 0.05

EC 20.50 ± 1.14 74.38 ± 4.39  < 0.05

Cg 19.56 ± 2.23 44.04 ± 4.42  < 0.05
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respectively with p < 0.05 for all ROIs) as compared to 
CLLS. In upper spinal cord levels C1–C3 (2.5  mm slice 
thickness), SNR ranged from 9.77 (Lateral) to 10.66 (Dor-
sal) with CLLS and from 16.32 (Lateral) to 21.97 (Dorsal) 
with CLLS-R (Table 2). In lower spinal cord levels C4–C6 
(5 mm slice thickness), SNR ranged from 23.02 (Dorsal) 
to 23.73 (Lateral) with CLLS and from 45.21 (Dorsal) to 
49.23 (Lateral) with CLLS-R (Table 2). In C1–C3, mean 
SNR significantly increased by 67.09% and 106.11% for 
lateral and dorsal respectively (p < 0.001 for both col-
umns). Similarly, significant increase of mean SNR by 
107.50% and 96.38% was observed for lateral and dorsal 
respectively in C4–C6 (p < 0.001 for both columns).

The χ2 maps in the brain of a representative subject (25, 
male) (Fig.  3a) and group differences (Fig.  3b) demon-
strate that χ2 values estimated by CLLS-R are decreased 
in deep GM, WM and overall cortical GM as compared 
to those by CLLS. Group comparison averaged across 9 
subjects at each ROI shows that mean χ2 values signifi-
cantly decreased in all 6 regions of brain using CLLS-R 
as compared to CLLS (32—61% with p < 0.05). Similarly, 
the averaged χ2 values of the spinal cord over 5 healthy 
subjects significantly decreased by maximum 43% with 
Rician denoising as compared those without Rician 
denoising in all 3 columns throughout C1–C6 (p < 0.001) 
(Fig. 4B). In the representative DT- and KT-derived brain 
maps, KT-derived metrics (MK, axial kurtosis (AK) and 
radial kurtosis (RK)) show visual difference between 
CLLS and CLLS-R (Fig. 5). Kurtosis maps (AK and RK) 
using CLLS-R illustrate significant decrease in a num-
ber of erroneous pixels as compared to those using CLLS 
while moderate improvement is noticeable in MK maps 
(Fig. 5).

All the KT-derived metrics (MK, RK, and AK), 
together with the DT-derived metrics (FA, MD, AD, 
and RD) by CLLS-R averaged across all subjects at 
each ROI are listed in Table 3. In the brain, MK varied 
from 0.70 to 1.27 with the lowest MK value obtained 
in PUT and highest in IC while RK varied from 0.70 
(PUT) to 1.98 (CC). AK varied from 0.58 in the CC to 
0.92 in Cg. FA varied from 0.12 to 0.65, with the low-
est FA value obtained in the PUT and highest in CC 
while MD varied from 0.75 × 10−3  mm2/s (PUT) to 

1.04 × 10−3  mm2/s (CC). RD varied from 0.50 × 10−3 
 mm2/s in IC to 0.71 × 10−3  mm2/s in PUT and AD 
varied from 0.85 × 10−3  mm2/s in PUT to 1.95 × 10−3 
 mm2/s in CC. ICC of DT- and KT-indices measured 
in various ROIs by two raters ranged from 0.744 to 
0.999 (Table 4). In the spinal cord, FA varied from 0.78 
in lateral column to 0.81 in dorsal column while MD 
varied from 0.91 × 10−3  mm2/s (lateral) to 0.93 × 10−3 
 mm2/s (dorsal). RD varied from 0.34 × 10−3  mm2/s 
(dorsal) to 0.38 × 10−3  mm2/s (lateral) and AD var-
ied from 1.96 × 10−3  mm2/s (lateral) to 2.11 × 10−3 
 mm2/s (dorsal). DT- and KT-derived metrics esti-
mated using CLLS-R were significantly different from 
those by CLLS in most of examined anatomical regions 

Table 2 Mean ± standard deviation of  averaged SNR of   b0 images in  5 healthy volunteers in  lateral & dorsal columns 
before and after denoising

The right and left lateral columns have been averaged together for this analysis. Paired Mann–Whitney U test was used in the comparison between CLLS and CLLS-R

Up (C1‑C3) Low (C4‑C6)

CLLS CLLS‑R p CLLS CLLS‑R p

Lateral 9.77 ± 0.47 16.32 ± 3.72  < 0.001 23.73 ± 1.24 49.23 ± 5.33  < 0.001

Dorsal 10.66 ± 0.71 21.97 ± 3.77  < 0.001 23.02 ± 0.56 45.21 ± 7.03  < 0.001

a

b

Fig. 3 a Representative 4 neighbouring axial slices of χ2 maps in a 
healthy subject (25 years old, male) using CLLS and CLLS-R. b Group 
differences of the χ2 measurement at each brain region between 
before- (CLLS) and after-Rician denoising (CLLS-R). Significant 
differences between groups are indicated by *p < 0.05. Abbreviations 
PUT, putamen; GP, globus pallidus; CC, corpus callosum; IC, internal 
capsule; EC, external capsule; Cg, cingulum
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(Additional File 1: Supporting Information Table  S1). 
The mean FA values using CLLS-R were significantly 
decreased in all 6 regions (3–11% with p < 0.05) com-
pared to CLLS. Similar results were found for AD with 
exception of the PUT, CC and Cg. Meanwhile MD, RD, 
RK and MK values were significantly increased with 
exception of the PUT, IC and EC for MD and PUT for 
RD, CC and Cg for RK and PUT for MK. Additionally, 
the ROI-based mean χ2 values showed that CLLS-R sig-
nificantly reduced χ2 values over all ROIs compared to 
CLLS (32—61% with p < 0.05).

DISCUSSION
Despite great deal of effort in comparing various denois-
ing algorithms for DKI in previous studies [45, 46, 52] 
and inter-subject variability of DKI metrics in brain of 
healthy subjects [54, 55], the direct impact of Rician noise 
correction on DKI data has not been sufficiently stud-
ied, especially related to improvement on SNR and error 
measures in various anatomical regions. In this study, we 
evaluate the influence of the Rician NLM filter in com-
bination with CLLS algorithm on the brain DKI and the 
spinal cord DTI data. Rician NLM filter in combination 

with CLLS algorithm has the potential to be useful in 
clinical research because it is easy and efficient to imple-
ment. To the best of our knowledge, this is the first study 
to assess the influence of combining the NLM filter with 
CLLS in DTI of the spinal cord and DKI in the brain and 
to report ROI-based changes in SNR and the associated 
error estimates. To compare diffusional measures using 
different processing methods (CLLS and CLLS-R), we 
obtained whole brain DKI data from 9 healthy volunteers 
and compared mean DT- and KT-derived indices using 
CLLS and CLLS-R. Rician NLM filter was also applied to 
the previously acquired spinal cord data retrospectively 
[64].

Measurement of SNR
SNR assessment is important for reliable quantifica-
tion of diffusional metrics [71]. When SNR is low, Rician 
noise does not only cause random fluctuations but also 
a signal dependent bias to the data, which may lead to 
difficulty in postprocessing such as tensor calculation. 
However, SNR levels are not routinely reported although 
previous reports suggest that low SNR causes a bias in FA 
which may vary with numerous other technical factors 
such as the region of brain being studied, field strength, 
hardware and software [68, 72, 73]. As a first step to 
evaluate the influence of Rician denoising, we have meas-
ured SNR in various anatomical areas of the brain and 
the spinal cord with and without Rician denoising. Our 
results show that Rician NLM filtering yields the sig-
nificant increase of SNR in the brain DKI and the spinal 
cord DTI data (Table 1 and 2). The ROI-based SNR val-
ues with noise correction in our study are consistent with 
the previous study by Seo et al. [74] which has reported 
SNR thresholds 20 in the CC and 70 in the PUT for bias-
free estimation of tensor metrics. It should be noted that 
those SNR values from the literatures were obtained from 
different acquisition protocols. Thus, when comparing 
those values with literature values, care should be taken 
to ensure the similarity of protocol chosen for compari-
son. For instance, the eddy current and off-resonance 
effects in a DWI sequence may substantially vary with 
b-value and diffusion gradient direction. Additionally, 
the spatial noise distribution can be varied by coil geom-
etry, phase-encoding direction and acceleration factor of 
parallel imaging [38, 75, 76] which also need to be taken 
into account for. In our study, it is also observed that 
the degree of SNR improvement relates to the underly-
ing structures. For instance, the CC has the smallest SNR 
increase among other regions, which might be attributed 
to the previous findings that the noise within accelerated 
images is nonhomogeneous with higher signal periph-
erally and noise centrally when parallel imaging is used 
[77–79]. As the levels and spatial distributions of noise 

a

b

Fig. 4 a Location of anatomically defined ROIs on the FA map of 
the spinal cord. ROIs were selected in the ventro-lateral (red) and 
dorsal (green) column of the cervical spinal cord, to include most 
descending and ascending tracts, respectively. b The before-and-after 
plots for mean χ2 values at each ROI from 6 spinal cord levels (C1-C6) 
of all 5 healthy volunteers (30 pairs). All pairs show significant 
differences between before- (CLLS) and after-Rician denoising 
(CLLS-R) (p < 0.001). Abbreviations LR, lateral right; LL, lateral left; Dor, 
dorsal
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are not an equal across the DW image, it is expected that 
various anatomical areas with different SNR require-
ments have diverse range of SNR increase rate.

While denoising DTI with low SNR addressing the 
strong influence of Rician bias in the brain has been 
well presented by different studies [48, 80, 81], Rician 
NLM denoising has not been established in the spinal 
cord DTI where most of previous studies have focused 

on data acquisition or motion correction methods 
to improve SNR [25, 27, 58, 82]. The mean SNR val-
ues without Rician denoising in C1-C3 in our study 
are within a range of values from a multi-centre study 
reported by Samson et al. (6.74 – 10.9) [27]. However, 
our mean SNR values significantly increased in both 
lateral and dorsal areas of the spinal cord levels C1-C6 
after a Rician denoising (Table 2). Our results indicate 

Fig. 5 Representative 3 axial slices of mean kurtosis (MK), axial kurtosis (AK) and radial kurtosis (RK) maps calculated using CLLS and CLLS-R. Scale 
bars represent dimensionless range of KT-derived metrics

Table 3 ROI-based mean ± standard deviation of DT- and KT-indices averaged across all subjects at each ROI in the brain 
and the spinal cord using CLLS-R

PUT, putamen; GP, globus pallidus; CC, corpus callosum; IC, internal capsule; EC, external capsule; Cg, cingulum; LR, lateral right; LL, lateral left; Dor, dorsal

MK RK AK MD  (10–3  mm2/s) FA RD  (10–3  mm2/s) AD  (10–3  mm2/s)

Brain

PUT 0.70 ± 0.04 0.70 ± 0.04 0.72 ± 0.04 0.75 ± 0.03 0.12 ± 0.02 0.71 ± 0.02 0.85 ± 0.04

GP 1.03 ± 0.06 1.13 ± 0.09 0.89 ± 0.08 0.78 ± 0.04 0.26 ± 0.02 0.68 ± 0.03 0.99 ± 0.06

CC 1.09 ± 0.04 1.98 ± 0.10 0.58 ± 0.02 1.04 ± 0.05 0.65 ± 0.02 0.58 ± 0.05 1.95 ± 0.07

IC 1.27 ± 0.01 1.94 ± 0.05 0.71 ± 0.03 0.82 ± 0.02 0.59 ± 0.02 0.50 ± 0.02 1.44 ± 0.05

EC 0.88 ± 0.04 1.14 ± 0.06 0.72 ± 0.03 0.82 ± 0.02 0.32 ± 0.03 0.68 ± 0.02 1.11 ± 0.05

Cg 0.99 ± 0.03 1.51 ± 0.16 0.92 ± 0.02 0.86 ± 0.03 0.42 ± 0.04 0.65 ± 0.04 1.29 ± 0.07

Spinal Cord

LR − − − 0.91 ± 0.05 0.78 ± 0.09 0.38 ± 0.06 1.96 ± 0.05

LL – − − 0.93 ± 0.07 0.79 ± 0.08 0.38 ± 0.05 2.01 ± 0.09

Dor – − − 0.93 ± 0.04 0.81 ± 0.07 0.34 ± 0.03 2.11 ± 0.08
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that a simple noise correction method in the spinal 
cord such as Rician denoising being used in our study 
increases SNR (Table 2) and thereby can reduce error 
estimates (Fig.  4b). This is not surprising given the 
improved quantification of dMRI in the brain, however 
worth reporting for the growing need of the spinal 
cord DTI in the clinical research despite more intrinsic 
challenges in the spinal cord as compared to the brain.

Estimation errors
Significantly reduced number of erroneous pixels 
(black holes) was observed in AK, RK and MK using 
CLLS-R as compared to CLLS in the brain (Fig. 5). In 
particular, clear difference is observed in cortical GM, 
where the voxel values with the erroneously estimated 
tensor are lower using CLLS as compared to CLLS-R 
(Fig.  3a). Note that voxels with extreme (negative or 
zero tensor) values were excluded from the computa-
tion. Even after all of extremely erroneous voxels were 
removed, the ROI-based mean χ2 values significantly 
decreased over all ROIs when estimated using CLLS-R 
compared to CLLS in all examined anatomical regions 
(Fig.  3b), suggesting the impact of Rician denoising 
step towards KT estimation in the brain. Additionally, 
the mean χ2 values in the spinal cord show that Rician 
NLM filtering significantly reduced error estimates in 
both lateral and dorsal columns (Fig.  4b). Reduced χ2 
values both in the brain and the spinal cord, imply that 
accuracy of tensor estimation is significantly improved 
with Rician NLM filtering (Figs. 3b and 4b).

Regional values of DT‑ and KT‑derived metrics
Currently, a few reports in the literature are available 
for comparison with our results [54–56, 83, 84]. Table 5 
provides an overview of those works in the literature 
that include values of parameter estimates. While CLLS 
estimation led to overestimated DT-derived metrics, 
especially in FA (Additional File 1: Supporting Informa-
tion Table  S1), which is a common problem in human 
DTI studies [68, 85, 90], the DT- and KT-derived metrics 
using CLLS-R are consistent with some of the previously 
reported values (Table  3). Nevertheless, it is observed 
that the discrepancy in diffusional metrics values exists 
amongst various studies in the literature. There are a 
few factors that may explain discrepancy between stud-
ies, from data acquisition to postprocessing perspective. 
In DTI, it has been well known that low SNR causes a 
bias in DT-derived metrics, leading to overestimation of 
FA [68, 72, 73]. When SNR is low, Rician noise does not 
only cause random fluctuations but also a signal depend-
ent bias to the data, which may lead to difficulty in post-
processing such as tensor calculation. Therefore bias-free 
measurements require adequate SNR [85] and DTI stud-
ies often report SNR values to assure the reliability of the 
estimated metrics. However, SNR levels are not routinely 
reported in DKI, resulting in the challenges of compar-
ing results between studies. Therefore it is desirable to 
ensure the DT- and KT-derived indices are estimated 
with adequate SNR levels before the comparison between 
studies. Our results show that the mean MK varied from 
0.70 (PUT) to 1.27 (IC) while AK and RK varied from 
0.58 (CC) to 0.92 (Cg) and from 0.70 (PUT) to 1.98 (CC), 
respectively, with a range of SNR levels (from 25.25 in CC 
to 60.75 in PUT) in various anatomical structures of the 
brain. Additionally, inter-subject differences substantially 

Table 4 Intraclass correlation coefficient of DT- and KT-indices measured in various ROIs by two  ratersa

PUT, putamen; GP, globus pallidus; CC, corpus callosum; IC, internal capsule; EC, external capsule; Cg, cingulum; GM, gray matter; WM, white matter
a The p value is < 0.001 for all metrics in all ROIs
b GM includes PUT and GP
c WM includes CC, IC, EC and Cg

MK RK AK MD FA RD AD

PUT 0.911 0.749 0.959 0.971 0.856 0.985 0.947

GP 0.893 0.914 0.893 0.956 0.768 0.930 0.905

GMb 0.992 0.991 0.968 0.967 0.988 0.963 0.980

CC 0.949 0.974 0.962 0.896 0.906 0.906 0.876

IC 0.857 0.910 0.792 0.974 0.744 0.892 0.884

EC 0.910 0.823 0.968 0.987 0.926 0.911 0.978

Cg 0.938 0.971 0.834 0.995 0.982 0.992 0.977

WMc 0.997 0.995 0.991 0.992 0.996 0.985 0.998

All ROIs 0.996 0.997 0.988 0.994 0.998 0.990 0.999
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contribute the within-group variability [86], and may 
partially explain discrepancy between studies. In particu-
lar, various choice of ROIs among studies (i.e. selection 
of structure from only contiguous voxels with the high-
est values to the entire structure) hampers comparisons 
between studies. For instance, the difference of FA in the 
genu of the CC between 0.44 in [55] and 0.80 in [54], may 
be largely due to the ROI used for measurement. There-
fore it is important to ensure the DT- and KT-derived 
indices are reliable across raters within-group, as ROI-
based measurement often required rater decisions which 
may have impacted ROI placement between observers. 
Our results show that ICC values are near 1 for various 
ROIs over all metrics, indicating high reliability of ROI-
based measurement performed in the brain. It should be 
also noted that regional variability of DTI values between 
publications may relate to age differences within-group 
aside from selection of ROIs, acquisition parameters 
and SNR. Considerable inter-subject variability of DTI 
parameters has been shown in previous studies that 

mostly reported the age dependence of DTI metrics [87–
89]. Our subjects were young adults (mean age 24 ± 2) 
and this may contribute on variability of diffusion met-
rics as compared to those in the literature.

In the spinal cord, there are numerous reports in the 
literature available for comparison with our results. 
In order to ensure the similarity of the acquisition 
sequences and parameters, here we focus on compar-
ing our DT-derived values with those by Qian et al. [64] 
(a study that our raw data were originally obtained) 
and Samson et  al. [27] (a multi-centre study with the 
compatible acquisition protocols as ours). Our FA val-
ues with Rician denoising are found to be significantly 
lower than those previous reported by Qian et  al. 
(0.81–0.84; p < 0.05) while our MD, AD and RD val-
ues with Rician denoising are not significantly differ-
ent from those from the same study [64]. This suggests 
that Rician NLM filtering might reduce overestimation 
of FA in the spinal cord, which is common observed in 
DTI of the brain [68, 85, 90], by decreasing estimation 

Table 5 Regional values in the healthy brain from the literature

PUT, putamen; GP, globus pallidus; CC, corpus callosum; IC, internal capsule; ALIC, anterior limb of IC; PLIC, posterior limb of IC; EC, external capsule; Cg, cingulum

Region References Number of directions (DIR), 
b‑values (ms/μm2)

Voxel size  (mm3) MK RK MD  (mm2/s) FA RD  (mm2/s)

PUT [54] 15 DIR, 5 b-values (0, 500, 1000, 
2500, 2750)

2 × 2 × 2 0.67 ± 0.08 0.61 ± 0.08 0.79 ± 0.03 0.15 ± 0.02 0.73 ± 0.03

PUT [55] 50 DIR, 3 b-values (0, 1000, 2000) 1.9 × 1.9 × 5 0.77 ± 0.01 0.85 ± 0.01 1.72 ± 0.01 0.16 ± 0.01 1.57 ± 0.03

GP [54] 15 DIR, 5 b-values (0, 500, 1000, 
2500, 2750)

2 × 2 × 2 1.06 ± 0.08 1.05 ± 0.10 0.86 ± 0.08 0.27 ± 0.04 0.74 ± 0.06

GP (Left)
GP (Right)

[56] 60 DIR, 3 b-values (0, 1000, 2800) 2.2 × 2.2 × 2.2 1.76 ± 0.15
1.85 ± 0.17

– – – –

CC (genu) [54] 15 DIR, 5 b-values (0, 500, 1000, 
2500, 2750)

2 × 2 × 2 1.06 ± 0.11 2.07 ± 0.45 0.93 ± 0.06 0.80 ± 0.04 0.36 ± 0.07

CC (genu) [55] 50 DIR, 3 b-values (0, 1000, 2000) 1.9 × 1.9 × 5 0.90 ± 0.05 0.90 ± 0.07 1.82 ± 0.08 0.70 ± 0.05 1.04 ± 0.07

CC (genu) [83] 64 DIR, 3 b-values (0, 1000, 2000) 2.5 × 2.5 × 2.5 0.94 ± 0.07 – 1.38 ± 0.12 0.44 ± 0.04 –

CC (splenium) [54] 15 DIR, 5 b-values (0, 500, 1000, 
2500, 2750)

2 × 2 × 2 1.32 ± 0.09 2.72 ± 0.41 0.89 ± 0.09 0.83 ± 0.03 0.31 ± 0.07

CC (splenium) [55] 50 DIR, 3 b-values (0, 1000, 2000) 1.9 × 1.9 × 5 1.07 ± 0.08 1.05 ± 0.07 1.70 ± 0.06 0.76 ± 0.04 0.87 ± 0.03

CC (splenium) [83] 64 DIR, 3 b-values (0, 1000, 2000) 2.5 × 2.5 × 2.5 1.14 ± 0.09 – 1.17 ± 0.10 0.54 ± 0.05 –

IC [84] 15 DIR, 6 b-values (0, 500, 1000, 
1500, 2000, 2500)

2 × 2 × 2 1.05 ± 0.08 0.84 ± 0.03 – – –

IC (Left)
IC (Right)

[56] 60 DIR, 3 b-values (0, 1000, 2800) 2.2 × 2.2 × 2.2 1.45 ± 0.06
1.49 ± 0.07

– – – –

ALIC [54] 15 DIR, 5 b-values (0, 500, 1000, 
2500, 2750)

2 × 2 × 2 1.04 ± 0.10 1.60 ± 0.28 0.87 ± 0.05 0.60 ± 0.04 0.53 ± 0.05

PLIC [54] 15 DIR, 5 b-values (0, 500, 1000, 
2500, 2750)

2 × 2 × 2 1.23 ± 0.09 2.04 ± 0.23 0.89 ± 0.09 0.71 ± 0.04 0.45 ± 0.07

EC [54] 15 DIR, 5 b-values (0, 500, 1000, 
2500, 2750)

2 × 2 × 2 0.81 ± 0.05 1.02 ± 0.09 0.90 ± 0.05 0.41 ± 0.03 0.70 ± 0.04

EC [55] 50 DIR, 3 b-values (0, 1000, 2000) 1.9 × 1.9 × 5 0.85 ± 0.01 0.93 ± 0.05 1.73 ± 0.19 0.38 ± 0.03 1.28 ± 0.03

Cg [54] 15 DIR, 5 b-values (0, 500, 1000, 
2500, 2750)

2 × 2 × 2 1.07 ± 0.07 1.85 ± 0.26 0.86 ± 0.07 0.66 ± 0.06 0.48 ± 0.08

Cg [55] 50 DIR, 3 b-values (0, 1000, 2000) 1.9 × 1.9 × 5 0.94 ± 0.03 0.96 ± 0.07 1.64 ± 0.05 0.55 ± 0.05 1.08 ± 0.05
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error. Our column specific measurements of MD are at 
the lower end of the previously reported range of 0.93–
1.29  mm2/ms by Samson et al. [27] while FA measure-
ments are higher than the range measured by the same 
study (0.59–0.63). Our RD values are lower than the 
range measured by Samson et  al. (0.68–0.84  mm2/ms) 
[27] while AD values are at the higher end of the previ-
ously reported range of 1.43–2.22  mm2/ms by the same 
study. Overall, DTI metrics are likely to be within simi-
lar ranges, however difference among protocols and 
the associated SNR in each study must be taken into 
account when comparing between those DTI metrics.

Consideration for clinical applications
It is worth noting that the DKI data acquisition took 
around 20 min per person, because we obtained whole 
brain DKI data with 2 averages in order to evalu-
ate quality of different processing methods through a 
whole brain with reasonable SNR. Our results showed 
significant decrease of χ2 values, indicating quality of 
DKI-derived maps improved through a whole brain 
within reasonable scan time when CLLS-R estimation 
was performed. Thus, by reducing the number of slices 
carefully selected for areas of interest, neurology- or 
neuroscience-related application studies should be 
feasible, which would last a clinically acceptable time 
frame (less than 10  min). Additionally, Rician NLM 
denoising in combination with CLLS can be readily 
implemented as it is based on a LSE algorithm avail-
able through existing commercial programs. Therefore, 
practical use of the combined Rician denoising method 
is widely expected in characterizing microarchitectural 
integrity of normal and pathological states.

Conclusions
We have demonstrated that a  Rician denoising fil-
ter incorporated with CLLS (CLLS-R) significantly 
increases SNR while reducing estimation errors. Our 
results suggest that the combined postprocessing 
method may provide the capability to more reliably 
quantify tissue properties both in the brain and the 
spinal cord with adequate SNR levels while it is easy 
to implement. Future studies are warranted towards 
investigating clinical and neuroscientific applications 
using this method.
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