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Abstract

Background: This study aimed to investigate integrating radiomics with clinical factors in cranial computed
tomography (CT) to predict ischemic strokes in patients with silent lacunar infarction (SLI).

Methods: Radiomic features were extracted from baseline cranial CT images of patients with SLI. A least absolute shrinkage
and selection operator (LASSO)-Cox regression analysis was used to select significant prognostic factors based on Model”
with clinical factors, Model® with radiomic features, and Model“® with both factors. The Kaplan—Meier method was used to
compare stroke-free survival probabilities. A nomogram and a calibration curve were used for further evaluation.

Results: Radiomic signature (p < 0.01), age (p = 0.09), dyslipidemia (p = 0.03), and multiple infarctions (p =0.02) were
independently associated with future ischemic strokes. Model" had the best accuracy with 6-, 12-, and 18-month areas
under the curve of 0.84, 0.81, and 0.79 for the training cohort and 0.79, 0.88, and 0.75 for the validation cohort, respectively.
Patients with a Model™® score < 0.17 had higher probabilities of stroke-free survival. The prognostic nomogram and
calibration curves of the training and validation cohorts showed acceptable discrimination and calibration capabilities
(concordance index [95% confidence interval]: 0.7864 [0.70-0.86]; 0.7140 [0.59-0.83], respectively).

Conclusions: Radiomic analysis based on baseline CT images may provide a novel approach for predicting future ischemic
strokes in patients with SLI. Older patients and those with dyslipidemia or multiple infarctions are at higher risk for ischemic
stroke and require close monitoring and intensive intervention.
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Background

Advances in imaging technologies and in the popularity
for image acquisition and post-processing have facili-
tated radiologic examinations that are universally used
to diagnose and monitor cerebrovascular diseases.
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However, cranial computed tomography (CT) is rou-
tinely used as the first-line imaging method for stroke as
it is widely available and time- and cost-efficient [1].
Notably, a significant number of patients with lacunar
infarction (LI) who underwent CT to evaluate headache,
trauma, or limb numbness were diagnosed silent lacunar
infarction (SLI), which occurs in individuals without a
history of acute neurological dysfunction attributable to
a lesion. However, despite being clinically silent, SLI is
not a rare event, especially in the aging population [2, 3].
Epidemiologic evidence has shown that, today, the pres-
ence of such an event is associated with a twofold
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increased risk of future stroke [4]. Current circum-
stances are plagued by over-treatment and over-
diagnosis, which may increase potential anxiety and eco-
nomic burden for the patient [5]. However, remaining
unnoticed leads to a blindness of the risk of subsequent
stroke and dementia [4, 6]. Although it is recommended
that prevention strategies [3] adhere to guidelines of the
American Heart Association/American Stroke Associ-
ation [7], these guidelines appear to lack specialized
strategies for high-risk patients. It is unclear whether all
individuals with SLI should be considered at equivalent
risk as those with symptomatic stroke and should there-
fore receive antiplatelet drug therapy, statins, or revascu-
larization therapy. However, if a high-risk of ischemic
stroke can be detected, the patient may be classified into
a future stroke prevention category, and reasonable
stroke prevention therapies would be administered.

The relation between SLI and future stroke risk has also
been investigated in previous studies under the specific
circumstances of increased heart and cerebrovascular risk.
Past studies have shown that high-risk factors such as
aging, dyslipidemia, hypertension, diabetes mellitus, and
carotid artery disease appear to be associated with higher
risk of cardiovascular and cerebrovascular disease in pa-
tients with SLI [7—14]. However, it has remained unclear
whether clinical factors or radiomic features have predict-
ive abilities regarding future strokes. Past studies have em-
phasized that SLI should not be understood as separable
neuroanatomical substrates, and it would probably be sub-
jective and unreasonable to predict future stroke based
only on traditional risk factors [15, 16]. Rather than
searching for putative markers of future stroke, the com-
bined value of clinical factors and neuroimaging informa-
tion for predicting future risk is needed. Therefore,
noninvasive and effective methods are essential in identi-
fying the risk of future stroke in SLI individuals. Radiomic
analysis is an emerging computational tool that exploits
copious quantitative features of medical images, providing
detailed quantitative information regarding imaging
markers that can be applied to modern precision medicine
[17, 18]. Briefly, radiomics comprises several procedures.
First, radiologists and experts segment the regions of in-
terests (ROI) on medical images. Then, based on the ROIs,
the radiomic features, which include the intensity, shape,
and texture, are extracted. The most significant features
are screened out to support the construction of the pre-
diction model. Radiomics has become increasingly im-
portant in cancer diagnosis and treatment [19, 20].
Moreover, studies have indicated that radiomics can
be used in the diagnosis and prognosis of neuro-
logical diseases such as acute ischemic stroke [21, 22]
and multiple sclerosis [23]. These studies have shown
that radiomics may become a promising tool for pre-
dicting future strokes in patients with SLI.
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We hypothesize that radiomic features of the brain re-
flect the heterogeneity of SLI by identifying low- and
high-risk classes and therefore may be able to predict fu-
ture stroke accurately. By identifying high-risk patients,
a more reasonable preventive therapy may be designed
to perform intervention, prevent future stroke, and avoid
unnecessary costs.

Methods

Patients and definition

This retrospective study was approved by the the med-
ical ethics committee of Zhuhai Hospital Affiliated with
Jinan University. Because only medical records and
radiologic images were reviewed, the requirement for in-
formed consent was waived. All patient records and in-
formation were anonymized prior to the analysis. We
used a case-cohort design [24] and included patients
who visited our hospital between February 2013 and De-
cember 2016. From the view of comparability, the ratio
of patients with and without stroke of SLI during the
follow-up was set as 1:1, such that a cohort member
without stroke of SLI at the period of follow-up of their
corresponding case was selected at the ratio of 1:1,
matched by similar clinical situations. Patients may have
arrived at the hospital presenting with clinical symptoms
or signs such as headache, dizziness, weakness, numb-
ness of limbs, or other abnormalities. Given that CT is
the most common imaging technique in everyday use,
and individuals with SLI are often asymptomatic or
present with nonspecific neurological symptoms, the ap-
plication of CT for cerebrovascular disease screening is
the common in most developing countries [5]. As
instructed, the patients underwent CT to determine the
existence of stroke. A total of 2256 participants were in-
cluded in this study; 148 patients were selected for fur-
ther analysis (Additional file 1). The inclusion and
exclusion criteria are presented in Additional file 2.

We defined the diameter of LI to be between 3 and 20
mm [25]. LI was verified by CT because it is the first-
line imaging method used to detect the development of
cerebrovascular disease [1, 26—28]. LI is classified as si-
lent if the patient does not have stroke-like symptoms
resulting from specific lesions [29] but may have trauma,
headache, dizziness, or other symptoms. SLI was
diagnosed in patients who lacked a history of transient
ischemic attack or stroke-like symptoms according to
self-reports, medical records, and radiologic images [30].
To avoid bias, all selected patients did not have ischemic
stroke at baseline to ensure that the observed SLIs were
truly silent.

Follow-up examinations and outcomes
Patients received follow-up examinations every 3, 6, and 12
month until the completion of the study (Additional file 3).
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The minimum follow-up duration was 1 year after baseline
CT or until the development of an ischemic stroke (which-
ever occurred first). Telephone follow-up survey or periodic
re-examination were conducted so that clinical events
could be recorded. Cranial CT or MRI imaging and routine
laboratory tests were performed if a patient experienced
stroke-like syndromes or if a recent stroke was suspected.
Ischemic stroke was considered the only endpoint for this
study. The definition of ischemic stroke was obtained from
the guidelines of the American Heart Association/Ameri-
can Stroke Association [30]. At the end of the follow-up
period, ischemic stroke was defined as a sudden-onset cere-
brovascular event lasting >24 h that clearly resulted in a
new neurological deficit or an increase in an existing deficit.
Additionally, evidence of a recent infarct on a reviewed cra-
nial CT or MRI resulting in neurological dysfunction was
required in lieu of a self-reported history.

Clinical factors

Clinical factors gathered from patients included age, sex,
number of lesions, routine laboratory tests, carotid artery
ultrasound, cardiovascular risk factors, and medical
intervention history, as antithrombotic therapies and sta-
tin strategies were used regularly during the follow-up
period. Cardiovascular risk factors included current
smoking status, alcohol abuse, hypertension, diabetes
mellitus, and dyslipidemia. Carotid artery ultrasound
findings were classified as being either with or without
stenosis and plaque [31].

CT examination

All cranial CT images were derived from two scanners:
SOMATOM Definition and SOMATOM Sensation 16
(Siemens Healthcare, Erlangen, Germany). The scan pa-
rameters of the SOMATOM Definition were as follows:
120 kV; 200 mAs; 0.28 s rotation time; detector collima-
tion, 128 x 0.6 mm; field of view, 360 x 360 mm; matrix,
512 x 512. The scan parameters of the SOMATOM Sen-
sation 16 were as follows: 120 kV; 250 mAs; 0.42 s rota-
tion time; detector collimation, 64 x 0.6 mm; matrix,
512 x 512.

Extraction of Radiomic features

ROIs covering the LI were defined as follows: the whole
hypodensity area consisting of round or ovoid lesions
measuring 3 to 20 mm in the cerebral hemispheric white
matter, basal ganglia, or brain stem. ROI size depended
on the radii and depths of lacunar lesions reflected in
cranial CT images. In cases of multiple lesions, the tar-
get lesions were selected based on their density (those
with a hypodensity had better recognition) and suitabil-
ity for accurate repeat measurements. All slices were
used for segmentation and were manually drawn by two
neuroradiologists. We then loaded the patients’ cranial
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CT images and the corresponding ROIs into the radio-
mic feature extraction software PyRadiomics, which was
implemented wusing Python version 3.6.4 (Python,
Wilmington, DE, USA; https://www.python.org/) [32].
With original images and filtered images, a large panel
of radiomic features quantifying the phenotypic charac-
teristics of medical imaging was extracted according to
the methods of previous studies [32]. Five classes of fea-
tures included shape-based features, intensity-based
first-order features, gray-level co-occurrence matrix
(GLCM) features, gray-level run-length matrix (GLRLM)
features, and gray-level size zone matrix (GLSZM) fea-
tures. Among these, GLCM, GLRLM, and GLSZM fea-
tures were descriptors of CT textures. The detailed
feature extraction methodology and explanations are de-
scribed in Additional file 4.

We assessed the reproducibility and stability of radio-
mic features using an interclass consistency test. Specif-
ically, we randomly selected 30 patients from the 148
enrolled patients (20%), on whose CT images the radi-
ologist had performed the ROI segmentation again. We
then calculated the interclass correlation coefficient
(ICC) between the corresponding feature pairs respect-
ively derived from the original ROIs and those from the
second segmentations [33, 34]. Furthermore, features
with ICC > 0.75, which were considered robust and cred-
ible, were preserved.

Feature selection and signature building

With the use of random, computer-generated numbers,
patients were divided into training and validation co-
horts at a 1:1 ratio. The feature selection procedure was
based on the stability, inter-feature redundancy, and
lesion-based discriminability of each feature. First, we
standardized each feature using the mean and standard
deviation derived from the training cohort. Then, we
performed a least absolute shrinkage and selection oper-
ator (LASSO)—Cox regression analysis to compress the
magnitudes of the features, which can help to screen out
the most significant features and alleviate overfitting
[35]. The minimum redundancy maximum relevance
(mRMR) method was then used to rank the features
[36]. According to the ranking, we implemented the Cox
regression and adopted the forward selection method to
determine the final features and corresponding coeffi-
cients with which we further calculated the radiomic
score and built the radiomic signature.

We built three signatures: radiomic, clinical, and inte-
grative signatures. The radiomic signature was built
based on the radiomic score (Rad score), calculated
using a linear combination of the selected radiomic fea-
tures weighted by their corresponding coefficients. The
coefficients were derived from the Cox regression. The
clinical signature was built according to the clinical
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score, which was calculated using a linear combin-
ation of the selected clinical factors weighted by their
corresponding coefficients. Clinical factors were se-
lected using univariate and multivariate Cox regres-
sion analyses. The integrative signature was built
based on the integrative score, which was calculated
through a linear combination of the Rad score and
selected clinical factors weighted by their correspond-
ing coefficients.

Model construction
For further comparisons, three Cox proportional hazards
models were constructed based on each corresponding
signature: clinical (Model©), radiomic (Model®), or inte-
grative (Model®).

For model comparisons, we measured the concordance
index (C-index) of the three models in the training and
validation cohorts with 1000 bootstrap replications for
each model. These aimed to evaluate the variance of the
C-index and obtain a 95% confidence interval. A C-
index value of 0.5 implies no discriminatory ability, while
a value of 1.0 indicates perfect discrimination [37].

Statistical analysis

Age and the number of lesions were treated as continu-
ous variables, whereas sex, vascular risk factors, and
study endpoint were treated as binary variables. The
Mann—Whitney U test was used to evaluate differences
in patients’ ages (non-normal distribution), while the x>
test was used to assess the distribution of the other char-
acteristics. Significant clinical factors were selected using
univariate and multivariate regression analyses involving
Cox models. All processing such as feature extraction
and model construction were implemented in our train-
ing cohort, and the validation cohort was totally inde-
pendent from the training procedure.

The probabilities of stroke-free survival were com-
pared using the Kaplan—Meier method. We used a log-
rank test to evaluate the differences in Kaplan—Meier
curves for the two groups in each model [38]. Stratified
analyses were performed to explore the potential associ-
ation of the selected signature with stroke-free survival
within each subgroup of patients with significant clinical
factors. Furthermore, a nomogram was built based on
the best model, and discrimination and calibration of the
nomogram for 6-, 12-, and 18-month values were mea-
sured using the concordance index and calibration
curves to compare the expected and observed survival
probabilities, respectively [39].

All statistical tests performed were two-sided, and
p<0.05 was considered statistically significant. The
statistical analysis was performed using Python ver-
sion 3.6.4.
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Results

Patient characteristics

A total of 148 patients were retrospectively included in
this analysis: stroke and stroke-free patients at a 1:1 ra-
tio. Among all patients, the median (range) follow-up
duration was 615 (366-822) days; no difference was
found between the training and validation cohorts,
which had medians of 620 and 603 days and ranges of
365-855 and 371-855days, respectively (p=0.36,
Mann—Whitney U test). No distribution differences
arose between the clinical characteristics or follow-up
data of the two cohorts (Table 1).

Radiomic features

Of the 1209 features extracted from CT images, 844
were confirmed to be robust by the interclass
consistency test (ICC, 0.75-0.99). Of these, 13 features
were selected using the LASSO algorithm. The process
of feature selection is shown in Fig. 1. After forward se-
lection, four features (wavelet-LLH_glszm_SizeZoneNo-
nUniformity, squareroot_firstorder Maximum, wavelet-
LHL_firstorder_Skewness, and logarithm_glcm_Idn)
were finally selected to construct the radiomic signature.
Details and implications of these four features are pro-
vided in Additional file 5.

Signature building and model construction

A multivariate logistic regression analysis identified
the radiomic signature (hazard ratio [HR], 2.31; 95%
confidence interval [CI], 1.59-3.35), dyslipidemia (HR,
491; 95% CI, 1.41-17.19), age (HR, 1.03; 95% CI,
0.99-1.09), and number of lesions (HR, 1.03; 95% CI,
0.98-1.08) as independent predictors. These were
used to construct the signatures and models. The
radiomic, clinical, and integrative signatures were re-
spectively built based on the Rad, clinical, and inte-
grative scores calculated for each patient. The
coefficients of each selected significant factor for the
corresponding calculation and formulas of the three
scores are shown in Additional file 6. To assess dif-
ferences in stroke-free survival (Fig. 2), we selected
the medians of the Rad and integrative score series as
the thresholds (Rad score, 0.46; integrative score,
0.17). The four selected features that were used to
obtain the Rad score and construct the radiomic sig-
nature described distinctions between the images of
stroke and stroke-free patients (Fig. 3). Two of these
(wavelet-LLH_glszm_SizeZoneNonUniformity and loga-
rithm_glem_Idn) slightly emphasized the heterogeneity of
the neighboring voxels in the ROI As the coefficients
of all features were positive, a patient with a more
heterogenous ROI would be at higher risk. Mean-
while, the other two features were related to higher
intensity values (squareroot_firstorder_Maximum) and
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Table 1 Statistical analysis of the clinical characteristics of the training and validation data sets

Characteristics Training cohort (n = 74) Validation cohort (n=74) P-value

Sex 049
Male 40 (54.1) 46 (62.2)
Female 34 (45.9) 28 (37.8)

Age, years 75 [68-82] 77 [72-82] 0.10
< 76years 39 (52.7) 28 (37.8)
2 76 years 35 (47.3) 46 (62.2)

Multiple infarctions 061
Yes 31 (41.9) 27 (36.5)
No 43 (58.1) 47 (63.5)

Smoking status 0.68
Yes 14 (18.9) 16 (21.6)
No 60 (81.1) 58 (784)

Alcohol abuse 0.27
Yes 2(2.7) 6 (8.1)
No 72 (973) 68 (91.9)

Hypertension 0.84
Yes 57 (77.0) 58 (784)
No 17 (23.0) 16 (21.6)

Diabetes mellitus 0.99
Yes 28 (37.8) 33 (446)
No 46 (62.2) 41 (554)

Dyslipidemia 0.29
Yes 57 (77.0) 63 (85.1)
No 17 (23.0) 11 (149

Internal carotid plaque® 0.79
Yes 59 (86.8) 61 (89.7)
No 9(13.2) 7 (103)

Internal carotid stenosis® 036
Yes 4(59) 8(11.8)
No 64 (94.1) 60 (88.2)

Using statin strategies 0.80
Yes 10 (13.5) 9(12.2)
No 64 (86.5) 65 (87.8)

Using antithrombotic therapies 0.77
Yes 11 (74 10 (6.7)
No 63 (42.6) 64 (43.3)

Values are presented as n (%) or median (range)

Internal carotid plaque® and internal carotid stenosis were only collected from 136 patients who had initial carotid artery ultrasound reviews
The differences in the patients’ ages were evaluated using the Mann-Whitney U test

The distribution of the other characteristics was assessed using the x* test

the asymmetrical distribution of the histogram (wavelet-
LHL_firstorder_Skewness), indicating a worse prognosis
with an ROI containing a higher overall intensity level.
Figure 3 demonstrates the aforementioned interpretations
regarding these features. Detailed implications of the four
selected features are illuminated in Additional file 5.

Patients with Rad scores < 0.46 and integrative scores
<0.17 were more likely to survive a future stroke. The
clinical signature had a significant association with
stroke-free survival only in the training cohort but
showed poor separation performance in the validation
cohort (Fig. 2). For the training cohort, the C-indices
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(95% CI) of Model®, Model®, and Model® were 0.6617
(0.57-0.75), 0.7734 (0.69—0.84), and 0.7864 (0.70-0.86),
respectively, and for the validation cohort, they were
0.6911 (0.57-0.81), 0.7066 (0.60-0.81), and 0.7140
(0.59-0.83), respectively. According to the receiver oper-
ating characteristic (ROC) curves (Fig. 4), ModelR had
the best performance, with 6-, 12-, and 18-month areas
under the curve (AUCs) of 0.84, 0.81, and 0.79 for the
training cohort and 0.79, 0.88, and 0.75 for the validation
cohort, respectively (Table 2).

Prognostic Nomogram

Stratified analyses (Fig. 5) showed an association be-
tween the integrative signature and stroke-free survival
in all subgroups. Regarding age (Fig. 5a), the integrative
signature had a significantly stratified younger group (<
76 years) and older group (> 76 years), which were cate-
gorized as low- and high-risk groups, respectively (log-
rank test, p = 0.0006 vs. p = 0.0003, respectively). The in-
tegrative signature divided the subjects into low- and
high-risk groups with respect to the existence of dyslip-
idemia or multiple infarctions (x> test: p = 0.0002 vs. p =
0.0004; p <0.0001 vs. p =0.0263, respectively) (Fig. 5b,
c). A prognostic nomogram was constructed based on
Model“R (Fig. 6a). The calibration curves of the nomo-
gram for the probability of future stroke at 6-, 12-, and
18- months are shown in Fig. 6b.

Discussion

Herein, we aimed to explore a potential approach of pre-
dicting prognosis in patients with SLI. The results of this
study indicated that radiomic features had the ability to
distinguish SLI patients with a high-risk of future stroke.
Moreover, our study showed that the Model“®, which
combined clinical factors and radiomic features, had the
best performance in predicting stroke-free survival.
Therefore, the model may aid in predicting the progno-
sis of patients with SLI.

To date, SLI is significantly associated with an in-
creased risk of symptomatic stroke [4], but it is mainly
used as a subjective and qualitative marker. The radio-
mics approach adopted in this study is more quantitative
and probably feasible for predicting future ischemic
stroke in patients with SLI. The selected features
reflected the size zone volume heterogeneity, high inten-
sity values, asymmetrical histogram distribution, and
image volumes. Given that the coefficients of these fea-
tures were all positive during model construction, a
higher value of any radiomic feature may therefore indi-
cate a worse prognosis.

Increased age is the most widely accepted high-risk
factor for symptomatic stroke as it is strongly associated
with future stroke in both the presence and absence of
SLI [3]. A recent study reported that patients of all ages
with multiple silent brain infarcts had a 2.5-fold higher
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Fig. 4 Six-, 12-, and 18-month ROC curves of Model®, Model“, and Model" in the training cohort (a1, a2, and a3) and validation cohort (b1, b2,
and b3). The graphs suggest that Model™® can more accurately predict SLI. Model“, model based solely on clinical factors; Model®, model based
only on radiomic features; Model“®, model based on both clinical and radiomic factors; SLI, silent lacunar infarction; ROC, receiver
operating characteristic

J

risk of recurrent ischemic stroke [40]. Our results veri-
fied these findings and extended the results to comprise
patients without stroke at baseline to confine our ana-
lysis to truly silent brain infarcts. While we did not verify
the association between statin strategies and endpoints,
we assumed that dyslipidemia lead to a higher risk of fu-
ture strokes in patients with SLI according to the report
of the trial on Stroke Prevention by Aggressive

Table 2 Comparisons of the areas under the curve of the three
prognostic models

Model® Model Model?

Training cohort

6 months 0818 0.653 0.843

12 months 0.784 0.663 0812

18 months 0.799 0641 0.795
Validation cohort

6 months 0.757 0.654 0.786

12 months 0.858 0641 0.878

18 months 0.733 0.572 0.752

Model® model consisting of the radiomic signature, Model“ model consisting of
clinical factors, Model® model consisting of the clinical signature and
radiomic signature

Reduction in Cholesterol Levels [9]. As these data are
limited by the sample size of only 19 patients who regu-
larly used statin strategies, however, this requires further
investigation to examine the mechanisms and their
associations.

Interestingly, in our study, the model built by clinical fac-
tors showed relatively poor performance in the C-index
and AUC values, and the separation performance in
Kaplan—Meier curves was inferior to that of other models.
Meanwhile, the C-indices of Model® in the training and
validation cohorts were the best among the three models.
This provides preliminary evidence that the radiomic signa-
ture is a potential predictor, whereas clinical parameters
make only limited contributions to the Cox model. Not co-
incidentally, radiomic features seemed to be the most
powerful predictor in the radiomic-based model based on
integrative factors for the application of cancers such as in
non-small cell lung cancer and Glioblastoma [41, 42]. How-
ever, it remains difficult to elaborate the physiological inter-
pretation of such a phenomenon immediately. Norrving
et al. reported that SLI was a much more active and dy-
namic process than the simplistic commonly held paradigm
of risk factors corresponding to specific infarct, and then
triggering negative outcomes [15]. Thus, precise



Su et al. BMC Medical Imaging (2020) 20:77 Page 9 of 11

A B C —
1.0+ 1.0 1 I ” 1 H 1 m { 1 1.0 —— Low risk (LesionNum = 1)
I High risk (LesionNum = 1)
[ Tty ~-- Low risk (LesionNum > 1)
. S, -~ High risk (LesionNum > 1)
0.8 0.8 1 + 08 P < 0.0001 (LesionNum = 1)
ooy L i p = 0.0263 (LesionNum > 1)
B ! =
g g . E g !
H 5 L H |
2 2 ‘ i 2 !
e & i
- b 1 1 o I
£oa €04 i T €04 +
& & ' I': @ 1
p = 0.0006 (76 > Age) 0 p = 0.0002 (Dyslipidemia = 0)}, " 1
p = 0.0003 (76 = Age) i p = 0.0004 (D =1) :_ = : E
0.2 0.2 . H I‘. 0.2 b
—— Low risk (76 > Age) — Low risk (Dyslipidemia = 0) ! i -t
—— High risk (76 > Age) —— High risk (D —0 - , '
=== Low risk (76 = Age) === Low risk (Dyslipidemia = 1) : ‘——-'———————————I
=== High risk (76 = Age) === High risk (Dyslipidemia = 1) : :
o0 0 200 400 600 800 1000 1200 1400 o0 0 200 400 600 800 1000 1200 1400 00 ) 200 400 600 800 1000 1200 1400
Time since CT (day) Time since CT (day) Time since CT (day)
Fig. 5 Stratified analyses were performed to evaluate stroke-free survival in three significant clinical characteristic subgroups: (a) age, (b)
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vertical tick marks indicate individual patients whose survival probabilities have been right censored

management of SLI solely on the basis of known clin- This study has several limitations. Its retrospective de-
ical risk factors is challenging. Radiomic features were sign precluded investigation of some factors [29] such as
believed to provide quantitative information of tissue chronic kidney disease, hyperhomocysteinemia, and de-
phenotype, which is complementary to the other diag-  tailed medical interventions. Despite the strong relation-
nostic schemes [43]. It is therefore more likely to be ship between SLI and future stroke, as with atrial
used in various tasks in SLI such as risk assessment, fibrillation (the most common cause of cardioembolism),

detection, and prognosis. data relating SLI to subsequent risks were limited [44].
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Fig. 6 Prognostic nomogram for radiomic, clinical, and integrative scores. (a) Prognostic nomogram. The patient’s integrative score, calculated
based on the integrative signature of the integrative score axis, was identified. A line was then drawn upward toward the point axis to determine
the number of points the patient receives for the integrative score. After repeating the process for the dyslipidemia and age axes, the points
achieved for each of the three factors were added. Finally, the total sum of the points on the total points axis was determined, and a line was
subsequently drawn straight down to derive the patient’s overall probability of 6-, 12-, and 18-month survival. These points depict the probability
of ischemic stroke. (b) Calibration curves of the prognostic nomogram. The curves suggest an acceptable calibration performance for the
predicted (x-axis) and actual 6-, 12-, and 18-month stroke occurrence probabilities (y-axis). The diagonal dotted line represents an ideal estimation.
This shows a good agreement between estimation and actual observation
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For instance, we considered large-artery atherosclerosis
to be a major cause of cerebral infarction and thus ex-
cluded patients with cardioembolic stroke to avoid un-
certainty, which may have introduced selection bias. In
addition, although previous studies focused primarily on
long-term follow-up examinations, older subjects who
enrolled in our study may experience stroke on a short-
term timeline. Therefore, only short-term prognoses
were investigated. We also used only CT-derived radio-
mic features, as CT is usually the first-line method to
detect cerebrovascular diseases. However, MRI is a more
sensitive tool in the diagnosis of LI and may better facili-
tate appropriate medical decisions. Furthermore, it may
have introduced selection bias in the statistical analyses
for the incidence of stroke, as we wanted to ensure that
the patients with SLI were truly silent. The conclusions
drawn herein may therefore be made more robust after
future tests with a larger sample size, multi-center test-
ing, and various imaging modalities.

Conclusion

The results of our study imply that a noninvasive and
convenient radiomic-based model may facilitate the
management of incidentally found SLI. This therefore
has the potential to formulate intensive preventive mea-
sures for the reduction of stroke risk. A radiomic ap-
proach based on cranial CT images may help identify
the high-risk patients. Our model suggests that the risk
of stroke is higher in older patients and patients with
dyslipidemia or multiple infarctions, indicating that in-
tensive measures for these patients are preferred. Further
studies should be conducted to improve the accuracy of
predicting ischemic stroke via imaging modalities and
radiomics analysis.
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