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Abstract

Background: Although vaccination is one of the main countermeasures against influenza epidemic, it is highly
essential to make informed prevention decisions to guarantee that limited vaccination resources are allocated to
the places where they are most needed. Hence, one of the fundamental steps for decision making in influenza
prevention is to characterize its spatio-temporal trend, especially on the key problem about how influenza transmits
among adjacent places and how much impact the influenza of one place could have on its neighbors. To solve this
problem while avoiding too much additional time-consuming work on data collection, this study proposed a new
concept of spatio-temporal route as well as its estimation methods to construct the influenza transmission network.

Methods: The influenza-like illness (ILI) data of Sichuan province in 21 cities was collected from 2010 to 2016. A
joint pattern based on the dynamic Bayesian network (DBN) model and the vector autoregressive moving average
(VARMA) model was utilized to estimate the spatio-temporal routes, which were applied to the two stages of
learning process respectively, namely structure learning and parameter learning. In structure learning, the first-order
conditional dependencies approximation algorithm was used to generate the DBN, which could visualize the
spatio-temporal routes of influenza among adjacent cities and infer which cities have impacts on others in
influenza transmission. In parameter learning, the VARMA model was adopted to estimate the strength of these
impacts. Finally, all the estimated spatio-temporal routes were put together to form the final influenza transmission
network.

Results: The results showed that the period of influenza transmission cycle was longer in Western Sichuan and
Chengdu Plain than that in Northeastern Sichuan, and there would be potential spatio-temporal routes of influenza
from bordering provinces or municipalities into Sichuan province. Furthermore, this study also pointed out several
estimated spatio-temporal routes with relatively high strength of associations, which could serve as clues of hot
spot areas detection for influenza surveillance.
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Conclusions: This study proposed a new framework for exploring the potentially stable spatio-temporal routes
between different places and measuring specific the sizes of transmission effects. It could help making timely and
reliable prediction of the spatio-temporal trend of infectious diseases, and further determining the possible key
areas of the next epidemic by considering their neighbors’ incidence and the transmission relationships.

Keywords: Influenza, Spatial transmission network, Dynamic Bayesian network, Vector autoregressive moving
average model, Spatio-temporal route

Background
Influenza is an acute respiratory infection caused by in-
fluenza viruses [1]. According to the globally estimated
disease burden attributed to the influenza, it is estimated
there are about 1 billion seasonal influenza cases per
year on average, among which three million cases are
serious, resulting in 250,000 to 500,000 deaths [2].
Although vaccination is one of the main countermeasures

against influenza epidemic [3, 4], some drawbacks still exist.
For example, various influenza virus strains are prone to
undergo antigen drift and antigen conversion, which often
makes vaccine-induced immunity wane over the course of a
season. Besides, there exists a natural process of decreasing
trend of antibody titers after vaccination [5], suggesting
people need to be vaccinated periodically, leading to a huge
burden to low-and-middle income countries. Therefore, to
compensate for the huge cost by prevention strategies, it is
quite necessary to make informed prevention decisions to
guarantee that limited resources are allocated to the places
where they are most needed [6]. One of the fundamental
steps for decision making in influenza prevention is to
characterize its spatio-temporal trend, especially on the key
problem about how influenza transmits among adjacent
places and how much impact the influenza of one place
could have on its neighbors. To solve such problems, Fu
et al. [7] developed complex networks with population con-
tact data to predict the epidemic trend in a mathematical
way. Recently, Pei et al. [8] utilized accessible human mobil-
ity data and a metapopulation model for predicting the
spatial transmission of influenza in the United States. In
addition, another study has utilized birds migration network
to predict the trajectory of avian influenza [9]. Those
methods require personal contact data including person
mobility data, traffic data, avian mobility data and so on.
However, there will be some obstacles on the availability of
those data, and collecting those data will be too time-
consuming to make rapid strategies of influenza prevention.
To overcome these obstacles of previous researches, this

study proposed a new concept called spatio-temporal
route to display the potential transmission directions of in-
fluenza and to measure the sizes of those transmission ef-
fects. This concept was defined as the time-lagged
association among influenza surveillance data across dif-
ferent places. In addition, since the estimated spatio-

temporal route only depends on surveillance data and
does not necessarily need personal contact data, it will be
convenient to be used for exploring the transmission net-
work with real-world surveillance data within statistical
framework. For illustration purpose, this study selected
Sichuan province in China as an example, but the concept
of spatio-temporal route as well as its estimation methods
mentioned below could also be applied to other places.

Materials and methods
Data preparation
The data of this study came from all the sentinels of
influenza-like illness (ILI) of Sichuan province from 2010 to
2016. Sentinel surveillance is one of the important mea-
sures for infectious diseases surveillance. According to the
unified deployment of the National Center for Disease Con-
trol and Prevention (CDC) and the real-world situation of
Sichuan province, the sentinel surveillance of influenza-like
illness is simultaneously conducted in each of the 21 cities
in Sichuan province by hospitals, CDCs, and primary health
service institutions. According to the report requirement,
the medical staffs of monitoring clinics in sentinels re-
corded the number of ILI and the total number of outpa-
tients in each age group in each department every day, and
uploaded the data to the China Influenza Surveillance In-
formation System before midnight every Monday. For this
study, the definition of influenza-like illness (ILI) referring
to WHO [10] was as follows: a case measured fever of ≥38
C° and cough; with onset within the last 10 days. Besides, to
estimate the absolute ILI case number in city j, we collected
the data of yearly number of medical outpatients in each
city of Sichuan from Sichuan Health Statistics Yearbook
2010 ~ 2012 and Sichuan Health and Family Planning Stat-
istical Yearbook 2013 ~ 2016. We defined the ILI case num-
ber in city i and week t as ILI(i, t) so that for any city i (i.e.,
when i is fixed), ILI(i, t) (t = 1, 2, 3, …) could be regarded as
time series, and the task of this study was to model the
time-lagged correlation between any of the two time series
ILI(i, t) and ILI(j, t) (i ≠ j, t = 1, 2, 3,…).

The estimation of spatio-temporal routes
The definition of spatio-temporal routes
Some previous researches engaged in constructing the
influenza transmission network by temporal and spatial
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statistics [11–16]. For example, Alonso WJ [16] used
Fourier decomposition to find a seasonal southward
traveling wave of influenza across Brazil originating from
equatorial and low population regions in March–April
and moving towards temperate and highly popular re-
gions over a 3-month period. In addition, Paul and Held
[17] proposed a random effect model (the epidemic-en-
demic model) to consider the transmission effects of
neighboring places. From the statistical point of view,
the phenomenon that influenza transmitting from place
A to place B could be reflected by the time-lagged asso-
ciation. Equivalently, the time-lagged association could
also be visualized by A→ B, where the directed arc indi-
cated that node A (i.e., influenza in place A) had a time-
lagged effect on node B (i.e., influenza in place B), and
we defined such directed arc as spatio-temporal route.
Furthermore, if the time-lagged associations existed in
more than two places in the overall study area, then all
the arcs would interweave into a network. Such a net-
work could show how historical influenza in one place
would influence its neighbors in the near future so as to
make some possible inferences on the temporal and
spatial transmission features of influenza. To this end,
we defined this network as spatial transmission network
because it was essentially a set of spatio-temporal routes.
More precisely, the spatio-temporal routes could also

be defined in a mathematical way. Let X = {ILI (i,r)}be
the set of all the influenza data from different places.
Define A the set of arcs between any two places in set X
and then the spatio-temporal routes could be defined as
network G = (X, A). Specifically, the network G contains
two types of information. The first type was the struc-
ture information, which was related to arc existence as
well as its direction for any pair of two nodes in G. The
second type was the parameter information, which mea-
sured the strengths of associations among different
nodes. Correspondingly, the estimation of spatio-
temporal routes consisted of structure learning and par-
ameter learning, which was dedicated to drawing the
structure and parameter information respectively from
the original data. Specifically, this study used the dy-
namic Bayesian network (DBN) model for structure
learning and the vector autoregressive moving average
(VARMA) model for parameter learning. More details
were given as below.

The structure learning of spatio-temporal routes by the
DBN
The DBN is a dynamic directed acyclic graph (DAG)
using nodes and arcs to express the conditional prob-
abilistic dependencies between a set of time series [18].
In the DBN model, an arc is drawn between two vari-
ables at successive time points. For example, from ILI(i,
t-1) to ILI(j, t), which means the ILI cases of city j at

time t (e.g., the current week) are conditionally
dependent on the ILI cases of city i at time (t-1) (e.g., 1
week ago) given the remaining variables at the past time
points. Due to its good theoretical properties, the DBN
model was used to characterize the gene regulatory
network by characterizing the time-lag associations of
multiple gene expression data [19, 20]. Recently, our
previous work had also used simulation studies to prove
that the DBN could be very well applied to the infectious
disease surveillance data even when confronted with
some rigorous challenges such as high noise, nonlinear
correlation, small sample and latent variables [21].
Therefore, this study used the DBN model for the struc-
ture learning of influenza spatio-temporal routes.
In particular, we estimated the DBN model by using

the first-order conditional dependencies approximation
algorithm [22]. It implemented DBN learning as a two-
step procedure. At the first step, it learned a DAG
encoding first-order partial dependence relationships.
Then it inferred the real network structure of the DBN
using the graph from the first step [18]. Once the struc-
ture learning of influenza spatio-temporal routes was
completed, it could be used to infer which cities have
impact on others in influenza transmission. Then the
next step was to further estimate the strength of these
impacts by the means of parameter learning.

The parameter learning of spatio-temporal routes by the
VARMA model
As mentioned above, the parameter learning of influenza
spatio-temporal routes was required to quantify how the
current ILI cases in one place were impacted by the past ILI
cases in other places. To this end, the multivariate time series
(MTS) models were used for parameter learning [23]. Fur-
thermore, it has been proven that the DBN is mathematically
equivalent to the vector-autoregressive model (VAR) [24]
(i.e., one of the most commonly used MTS model), which
again shed light upon the application of the VAR model to
parameter learning of influenza spatio-temporal routes. Spe-
cifically, the basic formula of VAR(p) was:

ILI t ¼
Xp

i¼1

AiILI t − i þ εt ;

where K stood for the overall number of the involved
places (i.e., K = 21 in this study since there were 21 cities
in Sichuan province), ILI(i, t) was defined in Section 2.1
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and ε(i, t) was defined as the residual of the fitted model
for ILI cases in city i at time t. For the VAR model, it as-
sumed that at any given time t, all the residualsε (1, t), ε
(2, t), …, ε(K, t) were independent with each other. How-
ever, in the real-world situation of influenza transmis-
sion, since some important information of influenza
transmission factors (e.g., population density, the effect-
iveness of influenza transmission in the city, festival ef-
fects and so on) may not be captured, consequently the
assumption of residual independence would be violated.
Therefore, this study improved the VAR model to the
VARMA model as below [25]:

Compared with the VAR model, the VARMA model
could compensate for the violation of residual independence

assumption by adding the moving average term
Pq

j¼1
B jεt − j

to extract the remaining dependency information between
residuals. Therefore, it was plausible that the VARMA
model could complete the parameter learning while redu-
cing the error of parameter estimation as possible.
During the estimation of spatio-temporal routes,

both the DBN and the VARMA models could be im-
plemented in R 3.6.3, a free sofware environment for
statistical computing and graphics. The DBN model
was implemented using the {G1DBN} package and the
VARMA model was built by the {MTS} package. All
the packages were downloaded from the Comprehen-
sive R Archive Network (CRAN) at http://cran.r-
project.org/ and installed in advance. Additionally, the
time series plots of ILI% in Sichuan and the maps of
Sichuan were generated by us with R software.

Results
The ILI% in Sichuan between 2010 and 2016
The total number of outpatients in Sichuan surveillance
sentinels from 2010 to 2016 was 31,898,487, and the
total number of influenza-like cases in Sichuan was 784,
984. As a result, the ILI% of Sichuan was 2.46% within 6
years. From 2010 to 2016, the cumulative ILI% was 2.51,
2.36, 2.38, 2.69, 2.60, 2.34 and 2.36%, respectively. The
year with lowest ILI number was 2010 (84,766 visits),
and highest was 2016 (137,945 visits); the lowest ILI%
was in 2016 (2.36%) and the highest was in 2013
(2.69%). The 2010–2016 weekly ILI% distribution was
shown in Fig. 1 and Fig. 2 below:
From Fig. 1 and Fig. 2, the weekly ILI% in Sichuan

province from 2010 to 2016 was between 1.69 and
3.66%, which was consistent with the past years. From
Fig. 2, it could be seen there was a slight peak in
winter and spring (From the 47th to 52nd week, and
from 1st to 9th week), similar to the result of the
whole country [26].

Results of structure learning of possible influenza spatio-
temporal routes
Combining the longest incubation period of influenza
(i.e. 2 weeks [27]) and our exploratory work, we set 1-
week lag, 2-week lag and 3-week lag as lags of time
order respectively, and the final influenza spatial trans-
mission network was obtained as Fig. 3:
In the perspective of prevention for influenza, from

Fig. 3, it could be observed that during 3-week influenza
transmission cycle, the number of suspected influenza
spatio-temporal routes in Sichuan province showed a de-
creasing trend. Hence, it could be speculated that the
period of influenza transmission cycle was longer in
Western Sichuan and Chengdu Plain and shorter in
Northeastern Sichuan, suggesting that we should con-
sider extending the period for influenza prevention and
control in Western Sichuan and Chengdu Plain appro-
priately compared with Northeastern Sichuan.
To verify the robustness of structure learning across

different ages and years, we fitted DBN models within
each data subset of different age groups (0–5 year age
group, 5–15 year age group, 15–25 year age group, 25–
60 year age group and 60+ year age group) and each year
(2010, 2011, 2012, 2013, 2014, 2015 and 2016). In terms
of age stratification analysis, we found that the structure
learning results in each subset were almost consistent
with the original result shown in Fig. 3, except for the
result in 0–5 year age group and 60+ age year group.
Such differences might be explained by the variance of
population mobility across different age groups, because
the aged and the infants were much less likely to go on
a long journey than the young adults. As for subset ana-
lysis within each year, the results in 2010, 2011, 2012,
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2013 and 2014 were also consistent with the structure in
Fig. 3 A to some extent, but in 2015 and 2016 the results
were a bit different. As the Fig. 2 implied, the ILI%s in
those 2 years were lower, so it was plausible to infer that
the lower sample size weakened the statistical power of
structure learning in 2015 and 2016, resulting in incon-
sistencies in 2015 and 2016.
More importantly, it could be seen from Fig. 4 that

there were four cities with single-direction arrows point-
ing to other cities in the province while with no city in
the province pointing to themselves, i.e., Ziyang, Guan-
gyuan, Yibin and Panzhihua. In addition, all the four cit-
ies are bordering cities in Sichuan province and essential
transportation hubs connecting to other adjacent prov-
inces. Furthermore, influenza is a typical human-to-
human infectious disease, so transportation could play
an important role in the transmission of influenza logic-
ally, which has already been confirmed by a large num-
ber of studies. For example, Hidenori [28] found that
traffic control could delay the spread of flu during peak
flu periods in a simulation study. Therefore, it was
plausible to speculate that there would be potential

spatio-temporal routes of influenza from bordering
provinces or municipalities into Sichuan province.
In addition, to verify the rationality of this speculation,

it was interesting to show the high correlation between
the number of estimated influenza spatio-temporal
routes and the highway transportation capacities in each
subregion of Sichuan province (Table 1). Except for the
correlation in numbers, the relations between influenza
and transportation could again be suggested by the coin-
cidence of the estimated influenza spatio-temporal
routes and the major highways in Sichuan. Taking
Chengdu Plain subregion as an example, the Ziyang→-
Meishan influenza spatio-temporal routes coincided with
the Suizimei Expressway; the Chengdu→Ya’an influenza
spatio-temporal route was to some extent in accordance
with the Chengya Expressway; the Guangyuan→Mia-
nyang←→Deyang←→ Chengdu→Ya’an influenza
spatio-temporal route was possibly in line with the G5
Jingkun Expressway (the Mianguang section, the Cheng-
mian section and the Chengya section); the Nanchong
←→Mianyang ←→Deyang ←→Chengdu influenza
spatio-temporal route was expected to be brought by the

Fig. 1 The ILI% time series in Sichuan surveillance sentinels, 2010–2016. *The time series of ILI% in Sichuan was generally stable from 2010 to
2016, with maximum of 3.66% at week 237 and minimum of 1.69% at week 46

Fig. 2 The yearly ILI% time series in Sichuan surveillance sentinels, 2010–2016. *The time series of ILI% in different years were almost similar
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Chengdemiannan Expressway. Besides, Leshan→-
Meishan←→ Ya’an influenza spatio-temporal route was
supposed to be related with the Leya Expressway, which
was another important highway flowing through Ya’an.
More examples about the coincidence of the estimated
influenza spatio-temporal routes and the major highways
in other subregions in Sichuan province could be seen in
the Additional file 1. All these examples indicated that
highway transportation might be a key factor underlying
the estimated influenza spatio-temporal routes in Si-
chuan province.

Results of parameter learning of possible influenza
spatio-temporal routes
The estimated parameters of influenza spatio-temporal
routes were summarized in Table 2, and meanwhile the
specific parameter learning results using the VARMA
model were in Additional file 2. It could be seen that the
median of the estimated parameters lied around zero, in-
dicating that most of the influenza spatio-temporal
routes were in general not obvious. Among the four bor-
dering cities mentioned in Section 3.2, the spatio-
temporal effect of Ziyang deserved special attention. In
particular, the 1-week lagged spatio-temporal effect of
Ziyang to Meishan was 0.35, and from Meishan to Ya’an
was 0.07, implying that Ziyang played an essential role
in terms of spatio-temporal effects. All these results
showed that the estimated time-lagged relationships of
influenza cases among these cities were relatively close,
suggesting that the prevention of influenza transmission
among those cities should be highlighted. In addition, it
could be seen from Table 2 that from a lag of 1 week to
a lag of 3 weeks, the degrees of dispersion were almost
stable, implying the change of spatio-temporal effects
might not be obvious.

Discussion
This study proposed the concept of spatio-temporal
route as well as its estimation methods to construct the
influenza transmission network in a novel way. To our
knowledge, this study may contribute to the infectious
diseases surveillance in at least the following three ways.

(1) This study initially proposed the concept of spatio-
temporal route to better solve the problem of how
to construct a potential spatial transmission
network of influenza when mobility data is
unavailable. On the one hand, in traditional
epidemiology, there is a similar concept named the
route of transmission, which mainly refers to the
entire process experienced by pathogens in the
external environment from the time they are
discharged from infection sources to the time they
invade new susceptible hosts [29]. Hence, one could
judge by definition that it is impossible to answer
the question of constructing a spatial transmission
network by study on the route of transmission. On
the other hand, in most of the latest researches
about the influenza transmission network, the
analytical models were based on theoretical physics
or internet disciplines [30, 31], as well as the
mobility information like the air transportation
network. However, very few studies participated in
constructing a spatial transmission network of
influenza through the perspective of spatio-
temporal distribution. Hence, the spatio-temporal
routes not only help to clarify the parameters of
interest in this study, but also provide a theoretical
foundation for further researches to study the
propagation and epidemic law of infectious diseases
from the temporal and spatial dimensions.

Table 1 The number of estimated influenza spatio-temporal routes and the highway transportation capacities in each subregion of
Sichuan province

Subregion No. of the summaried estimated influenza
spatio-temporal routes regardless of directions

No. of passengers
by highway

No. of passenger turnovers
(thousand person-kilometers)

Western Sichuan 3 184,650 7,868,210

Northeastern Sichuan 4 279,490 13,915,980

Southern Sichuan 7 342,710 15,535,290

Chengdu Plain 9 349,340 22,464,720

Table 2 The estimated parameters of influenza spatio-temporal routes at sequential-lagged week

Lagged week No. of possible spatio-
temporal routes

Min Lower
Quartile

Median Upper
Quartile

Max Interquartile
Range

1 week 43 −0.8300 −0.1000 − 0.0100 0.0700 0.7500 0.1700

2 week 27 −0.4300 −0.0750 − 0.0300 0.1000 0.8400 0.1750

3 week 7 −0.9000 −0.0950 − 0.0100 0.0100 0.1100 0.1050

Total 77 −0.9000 −0.0925 − 0.0200 0.0700 0.8400 0.1625
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(2) This study also put forward a joint pattern based on
DBN and VARMA models to estimate the spatio-
temporal routes for the first time. Although neither
of the two models was proposed by this study for
the first time, this research has made full use of the
theoretical properties and combined their advan-
tages together. In particular, previous studies have
proved the validity and robustness of DBN model
when handling complicated data structure such as
high dimension, high noise and nonlinearity [21],
which served as a powerful guarantee to reveal the
spatio-temporal correlations between the ILIs of dif-
ferent areas. In addition, the VARMA model has
advantages in dealing with the potential con-
founders due to data unavailability in practice.
Therefore, when the two models were combined, it
was plausible that they would be well applied to
infer influenza transmission network in the compli-
cated real-world of influenza surveillance.

(3) Another potential contribution of this study was to
help making timely and reliable prediction of the
spatio-temporal trend of influenza, and further de-
termining the possible key areas for the next influ-
enza epidemic outbreak. According to Stoto [32], a
practical symptom surveillance system required
continuous surveillance data (possibly multivariate
data), an alert generated by the application of pre-
dictive algorithms, and a prescribed process for how
to respond to the alert. To this end, it was promis-
ing that this study could help to improve the
current influenza surveillance system in the follow-
ing ways. Firstly, this study confirmed that our
model could efficiently utilize continuous surveil-
lance data of multiple places for influenza sur-
veillance. Secondly, the results of this study
revealed that some adjacent cities were indeed
close to each other in ILI cases, which suggested
that there might be some potential stable spatio-
temporal routes among these cities so that the
CDC could locate the key areas of the epidemics
and send alarms when necessary. For example, as
mentioned before, the spatio-temporal association
between Ziyang to Meishan was relatively high.
Therefore, if an influenza outbreak happened in
Ziyang, one should pay attention to Meishan be-
cause our model reminded close relationship be-
tween them. Finally, on the basis of the previous
early warning prevention and control policies, the
local authorities receiving the alert could formu-
late specific prevention and control strategies ac-
cording to the actual situation, such as
identifying the key population for vaccination, en-
hancing inspection and quarantine as well as
timely allocating health resources.

Although there were some interesting findings in this
study, some limitations should also be acknowledged.
First, as mentioned above, this study did not consider
the possible influences affected by population density,
influenza effectiveness, festival effects and other factors
directly in the process of constructing the spatio-
temporal routes. Although we have adopted the
VARMA model which specifically dealt with residual
effects as a remedy, it was definitely not as good as in-
corporating these factors into the analysis directly. Sec-
ond, this study only analyzed the possible spreading
directions of influenza between different cities from the
perspective of spatio-temporal statistics. However, statis-
tical significance cannot fully represent actual signifi-
cance after all. In order to further demonstrate the issue
of the spreading directions of spatio-temporal transmis-
sion, much additional work involving pathogenic detec-
tions, epidemiological investigations and so on still
needs to be done. To this end, it is highly expected that
this study could provide a bit inspiration and reference
for future researches on surveillance of infectious dis-
eases including but not limited to influenza.

Conclusions
This study proposed a new framework for exploring the
potentially stable spatio-temporal routes among different
places and measuring specific sizes of the transmission
effects. It showed that the period of influenza transmis-
sion cycle was longer in the Western Sichuan and
Chengdu Plain than that in Northeastern Sichuan, and
there would be potential spatio-temporal routes of influ-
enza from bordering provinces or municipalities into
Sichuan province. Furthermore, this study also pointed
out several estimated spatio-temporal routes with rela-
tively high strengths of associations, which could serve
as clues of hot spot areas detection for influenza surveil-
lance. The results could be used for the detection and
early warning of infectious diseases in the future.
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