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Abstract

Background: Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite with a broad host range
including most warm-blooded animals, including humans. T. gondii surface antigen 1 (SAG1) is a well-characterized
T. gondii antigen. T. gondii expresses five nonmitochondrial rhomboid intramembrane proteases, TJROM1-5.
TgROM4 is uniformly distributed on the surface of T. gondii and involved in regulating MIC2, MIC3, MIC6, and AMA1
during T. gondii invasion of host cells. Bioinformatics have predicted ROM4 B-cell and T-cell epitopes. Immunization
strategy is also a key factor in determining the effectiveness of the immune response and has gained increasing
attention in T. gondii vaccine research. In this study, we used a DNA prime-peptide boost vaccination regimen to
assess the protective efficacy of various vaccination strategies using TgROM4.

Methods: We identified a polypeptide (YALLGALIPYCVEYWKSIPR) using a bioinformatics approach, and immunized
mice using a DNA-prime and polypeptide-boost regimen. BALB/c mice were randomly divided into six groups,
including three experimental groups (peptide, pPROM4 and pROM4/peptide) and three control groups (PBS, pEGFP-
C1 and pSAGT1). Mice were then immunized intramuscularly four times. After immunization, IgG and cytokine
productions were determined using enzyme-linked immunosorbent assays. The survival time of mice was evaluated
after challenge with tachyzoites of T. gondii RH strain. Additionally, the number of cysts in the brain was
determined after intragastric challenge with cysts of T. gondii PRU strain.

Results: Mice vaccinated with different immunization regimens (peptide, pROM4 and pROM4/peptide) elicited
specific humoral and cellular responses, with high levels of IgG, IgG2a, and interferon (IFN)-y. Moreover, IgG, IgG2a
and IFN-y levels were highest in the pROM4/peptide group. Immunized mice, especially those in the pROM4/
peptide group, had prolonged survival times after challenge with tachyzoites and reduced numbers of brain cysts
after infection compared with negative controls.

Conclusion: A DNA prime-peptide boost regimen based on ROM4 elicited the highest level of humoral and cellular
immune responses among immunization regimens, and may be a promising approach to increase the efficacy of
DNA immunization.
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Background

Toxoplasma gondii (T. gondii) is an obligate intracel-
lular protozoan parasite with an extremely broad host
range inclusive of almost all warm-blooded animals,
including human [1]. Toxoplasmosis is a zoonotic
parasitic disease with a worldwide distribution that
poses a serious risk to animal husbandry and human
health [2]. T. gondii infection is usually asymptomatic,
but not in immunosuppressed patients (e.g. organ
transplantation, malignant tumor radiotherapy, and
HIV infection). Infection can spread widely, involving
the brain, eyes, lymph nodes, can damage multiple or-
gans, and even cause death. T. gondii infection in
pregnant women can be transmitted to the fetus via
the placenta, leading to miscarriage, premature birth,
stillbirth, fetal malformation, and eye toxoplasmosis [3].

There are three infectious stages in the T. gondii life
cycle: tachyzoites, cysts, and oocysts [4]. Tachyzoites
cause acute infection, while chronic infection is mainly
mediated by bradyzoites in cysts. When the host im-
mune function is compromised, bradyzoites transform
to tachyzoites [3]. Current drugs are effective for the
treatment of toxoplasmosis (acute or reactivated) but
they cause many side effects, especially in the fetus, and
have no effect on cysts and bradyzoites [5]. Therefore, a
safe and effective vaccine is important for the prevention
and control of toxoplasmosis. DNA vaccines induce a
persistent and strongly protective immune response [6, 7].
For example, T. gondii surface antigen 1 (SAG1) induces
effective and durable humoral and cellular immune re-
sponses in immunized mice and is regarded as a standard
compared to other antigens [8].

T. gondii expresses several proteases, including serine,
cysteine, and aspartic proteases, which play an important
role in infection [9-11]. Rhomboid proteases belong
to the serine protease family. T. gondii expresses 5
nonmitochondrial rhomboid intramembrane proteases,
TgROM1 to TgROM5. ROM proteins affect the cleav-
age of microneme protein (MIC), which plays an es-
sential role in T. gondii invasion [12, 13]. TgROM4 is
expressed primarily in tachyzoites, at lower levels in
bradyzoites, and is weakly detected in sporozoites [12, 13].
TgROM4 is localized to the plasma membrane of T. gondii
and uniformly distributed on the parasite surface [12, 13].
When T. gondii effectively invades host cells, TgROM4
plays an important role in regulating microneme protein 2
(MIC2), MIC3, MIC6, and apical membrane antigen 1
(AMA1) [14-16]. Li et al. showed that a TgROM1 DNA
vaccine was protective against 7. gondii in mice [17].
We therefore used bioinformatics to examine whether
ROM4 is antigenic. Bioinformatics is a powerful ap-
proach for genomics and proteomics and has been
widely used to predict and analyze protein antigenic
epitopes [18, 19].
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Immunization strategy is also a key factor in deter-
mining the effectiveness of the immune response and
has gained increasing importance in vaccine research
[20, 21]. In particular, a prime-boost vaccination strat-
egy induced a more efficient humoral and cellular im-
mune response [22-24]. Studies have shown that a
synthetic multiple antigenic peptides (MAP) vaccine
induces protective immunity against intracellular par-
asites, including T. gondii [25, 26].

In the present study, we analyzed the ROM4 protein
to identify potential antigenic epitopes using a bioinfor-
matics approach. A eukaryotic expression plasmid
pEGFP-C1-ROM4 (pROM4) was constructed and used
in a DNA prime-peptide boost vaccination regimen to
immunize mice and assess protection against 7. gondii
infection. Furthermore, we assessed the protective effi-
cacy of different vaccination strategies (peptide, pPROM4,
and DNA/peptide).

Methods

Prediction of linear-B cell and Th cell epitopes

The TgROM4 (scaffold no. TGG995368, chromosome
VIII) nucleotide (GenBank ID: AY704175.1) and amino
acid sequences (GenBank ID: AAU11320.1) were ob-
tained from GenBank. Protein epitopes determine anti-
gen specificity [27, 28]. The linear-B cell epitopes of
ROM4 were analyzed using DNASTAR (Madison, WI,
USA). The PROTEAN subroutine was used to predict
the antigenic index and ROM4 surface probability. Pep-
tides with a good antigenic index and surface probability
were chosen. The Immune Epitope Database (IEDB)
(http://tools.immuneepitope.org/mhcii) online service
was used to analyze the half-maximal inhibitory concen-
tration (IC50) values of peptides that bind to the major
histocompatibility complex (MHC) class II molecules of
ROMA4.

Mice and parasites

Female BALB/c mice (7-8 weeks old) were purchased
from the Shandong University Laboratory Animal
Center (Shandong, China). All mice were maintained
under specific-pathogen-free conditions. All animal ex-
periments were approved by the Ethics Committee on
Animal Experiments of the Medical School of Shandong
University.

The T. gondii RH strain was used to challenge BALB/c
mice. Tachyzoites were extracted from human foreskin
fibroblast cells 1 h before injection to ensure freshness
prior to challenge. About 8 x 10° tachyzoites were used
to create soluble tachyzoite antigens (STAg) after iso-
lation by centrifugation, and resuspended in sterile
PBS as previously described [5], while about 8 x
10°tachyzoites were used to extract total RNA with TRIzol
Reagent (Life Technologies, Carlsbad, CA, USA). After
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tachyzoites were lysed with 1 ml TRIzol, 0.2 ml chloro-
form was added, and the homogenate was separated into
three layers after centrifugation. RNA was precipitated
from the upper aqueous layer with isopropanol and then
was washed to remove impurities. RNA was resuspended
in RNase-free water and incubated in a water bath at 55—
60 °C for 10-15 min. The RNA was reverse-transcribed
into cDNA with RevertAid First Strand cDNA Synthesis
Kit according to the manufacturer’s protocol (Thermo
Scientific, Carlsbad, CA, USA)

Eukaryotic expression plasmid construction and
preparation

The whole SAG1 open reading frame (ORF) was ampli-
fied by polymerase chain reaction (PCR) from 7. gondii
tachyzoite ¢cDNA (forward primer: 5'-CCGCTCGAG
CTATGTCGGTTTCGCTGCACCAC -3', reverse pri-
mer: 5'-CGGAATTCTCACGCGACACAAGCTGCGAT-
3"). Xhol and EcoRI restriction sites are underlined,
respectively. The ROM4 ORF was amplified by PCR from
T. gondii tachyzoite cDNA (forward primer: 5'-CCG
CTCGAGTGGCGTCCCCTCACGGATCC-3', reverse
primer: 5'-GGGGTACCTTACGGTTCAAGGTAATAC
TGCGC-3"). Xhol and Kpnul restriction sites are
underlined, respectively.

The SAG1 and ROM4 DNA fragments were respect-
ively inserted into a pEASY-T1 vector (TransGen
Biotech, Beijing, China). After sequencing, SAG1 and
ROM4 were respectively subcloned into the eukaryotic
expression plasmid pEGFP-C1 (Novagen, Billerica, MA,
USA) to form pEGFP-C1-SAG1(pSAG1) and pEGFP-
C1-ROM4 (pROM4), respectively using the Xhol, EcoRI
and Xhol, Kpnl restriction sites. The new recombinant
plasmids were then used to transfect HEK 293-T cells.

Recombinant pSAG1 and pROM4 were transformed
into Escherichia coli DH5a. After being verified by PCR,
double restriction enzyme digestion and double stranded
sequencing, recombinant plasmids were extracted using
an endotoxin-free mega kit following the manufacturer’s
instructions (Qiagen, Hilden, Germany), and stored at
-20 °C until use. pSAG1 and pROM4 concentrations
were determined by A260/A280 measurement.

Preparation of polypeptide

ROM4 peptide 405-424 (YALLGALIPYCVEYWKSIPR)
was synthesized by SynPeptide Co Ltd (Shanghai,
China), and purity was confirmed by analytic HPLC.

Expression of pEGFP-C1-ROM4 in HEK 293-T cells

HEK 293-T cells were maintained in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with
streptomycin (100 mg/ml), penicillin (100 IU/ml) and
10% fetal bovine serum (FBS), at 37 °C in a humidified
atmosphere with 5% CO2. Before transfection, HEK293
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cells (about 1-2 x 10°/well) were transferred into Costar
6-well culture plates (Sigma-Aldrich, St. Louis, MO,
USA). When HEK 293-T density reached 80-90%,
pEGFP-C1, pSAG1 and pROM4 were transfected with
Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s protocol. Plasmids
(2.5 pg/well) were mixed with Lipofectamine 2000 re-
agent (7 pL/well) in DMEM, incubated at room
temperature for 20 min, and then added drop by drop
on to HEK 293-T cells. After incubation for 6 h, the
medium was exchanged with medium containing 10%
FBS. After 48 h, the cells from different groups (control,
pEGFP-C1, pSAG1 and pROM4) were observed using
fluorescence microscopy under a blue laser.

Immunization and challenge

All BALB/c mice were divided randomly into six groups
(27 per group). Mice were immunized twice at 2-week
intervals with PBS (100 pl), pEGFP-C1 (100 pg), pSAG1
(100 pg), pPROM4 (100 pg), peptide (100 ug), or pPROM4
(100 pg)/peptide (100 pg) by intramuscular injection. All
groups were immunized four times. The last group was
injected with pROM4 the first two times and with pep-
tide the last two times.

Two weeks after the final immunization, seven mice
per group were euthanized and splenocytes harvested
under aseptic conditions for cytokine detection. Ten
mice from each group were challenged intraperitoneally
with T. gondii RH strain (1 x 10* tachyzoites). Changes
in health status were observed and survival times re-
corded. The remaining mice were infected intragastri-
cally with 20 cysts of 7. gondii PRU strain. At
1 month after challenge, brains were removed and
homogenized in 1 ml PBS. The number of cysts in
each brain was determined by counting three samples
of 10 pl from the homogenate via an optical micro-
scope, and the average value was used to evaluate the
effect of the vaccine.

Determination of antibodies

Serum samples were collected from all mice prior to
each immunization and 2 weeks after the final injection.
Anti-T. gondii 1gG, IgG1, and IgG2a antibodies were de-
tected using enzyme-linked immunosorbent assay
(ELISA). Briefly, 96-well plates (Costar) were coated with
STAg (10 pg/well) and incubated at 4 °C overnight.
Plates were washed three times with special ELISA solu-
tion and blocked with PBS containing 1% BSA for 2 h at
room temperature, followed by three washes. Plates were
then incubated with PBS-diluted mouse sera for 1 h at
37 °C. After washing, plates were incubated with horse-
radish peroxidase (HRP)-conjugated anti-mouse IgG
(diluted 1:4000 in PBS-1% BSA), IgGl (1:2000), and
IgG2a (1:2000) for 1 h at 37 °C, washed with ELISA
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solution, with orthophenylene diamine (Sigma) and
0.15% H,O, added. Plates were then incubated in the
dark for 30 min at 37 °C, and the reaction stopped by
adding 2 M H,SO,. The optical density was measured at
490 nm using an ELX800 ELISA reader (BioTek, Winoo-
ski, VT, USA). All samples were run four times.

Cytokine assays

Spleens were isolated from seven mice per group 2 weeks
after the last immunization and used to form a cell sus-
pension adjusted to 1 x 10° cells/ml. Then, 1 x 10° spleen
cells was added to each well in a 96-well plate with 10 pl
non-specific irritant Con A (5 pg/ml) and cultured at
37 °C in 5% CO2. Cell-free supernatants were harvested
and assayed for interleukin-2 (IL-2) and IL-4 at 24 h, IL-
10 at 72 h, and IL-12 (p70) and interferon (IFN)-y at
96 h. The concentrations of cytokines were measured by
ELISA according to the manufacturer’s instructions
(R&D Systems, Minneapolis, MN, USA). The detection
limits of the assays for IFN-y, IL-2, IL-4, IL-10 and IL-12
(p70) were 2.1 pg/mL, 3.5 pg/mL, 2.3 pg/mL, 1.97 pg/mL
and 2.24 pg/mL, respectively. All samples were run four
times.

Statistical analysis

SPSS 17.0 (IBM, Chicago, IL, USA) was used for statis-
tical analysis. The mean of total IgG, IgG1, IgG2a, cyto-
kine levels and cyst numbers among the different groups
were analyzed and determined by one-way analysis of
variance (ANOVA). Mouse survival time was compared
using the Kaplan-Meier method. When a significant dif-
ference (P<0.05) was observed among treatments, a
Tukey’s studentized range test was used for post-test
comparisons.

Results

Epitope analysis

DNASTAR was used to determine hydrophilicity plots,
flexible regions, antigenic index, and surface probability.
SAG] had an excellent antigenic index and surface prob-
ability, making it a good vaccine candidate (Fig. 1). Pre-
diction results indicated that ROM4 had a better
antigenic index than SAG1. Moreover, ROM4 had sig-
nificantly more surface probability and more flexible re-
gions than SAGL.

The ROM4 Th predicted epitopes, and the IC50 values
of ROM4 peptides binding to MHC class II molecules,
and the minimum percentile ranks of each ROM4 MHC
I allele are listed in Table 1. The minimum percentile
ranks of HLA-DRB1¥01:01, H2-IAb, H2-IAd, and H2-
IEd alleles of ROM4 were smaller than those of SAGI,
indicating that ROM4 may have better Th epitopes than
SAGL.
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Identification and expression of recombinant plasmid

In pSAG1-, pPROM4- and vector pEGFP-Cl1-transfected
cells, proteins emitted green fluorescence upon exposure
to a blue laser when observed by fluorescence micros-
copy, whereas no fluorescence was observed in control
cells.

Detection of antibody responses in immunized mice

The levels of T. gondii-specific IgG antibodies in im-
munized mice were determined by ELISA at weeks 0,
2, 4, 6, and 8. Elevated IgG levels were detected in
the sera of mice immunized with pSAGI1, peptide,
pROM4, or pROM4/peptide, compared to negative
controls (PBS or pEGFP-C1) (P<0.05) (Fig. 2). Im-
portantly, T. gondii-specific IgG antibodies were not
detected in the sera of mice injected with PBS or
pEGFP-C1. Furthermore, mice immunized by pROM4/
peptide generated the highest levels of T. gondii-specific
IgG antibodies among all group (respectively increased by
24%,38%, and 41% compared with pSAG1, pROM4, or
peptide immunization, P < 0.05). No statistical differences
were found between PBS and pEGFP-C1, pROM4 and
peptide (P> 0.05).

The levels of IgG subclass (IgG1 and IgG2a) at 2 weeks
after the last injection were assayed to determine
whether a Thl and/or Th2 response was elicited (Fig. 3).
An apparent predominance of IgG2a over IgG1 was de-
tected in immunized mice, suggesting a shift toward a
Thl type response. Furthermore, IgG2a levels in mice
immunized with pROM4/peptide respectively increased
by about 2-fold compared to negative controls and 16%,
31%, 36% compared to mice injected with pSAGI,
pROM4 or peptide (P < 0.05). IgG2a levels in mice im-
munized with pSAG1 were increased by 10.3% com-
pared with mice injected with pROM4, but with no
statistical difference (P >0.05). There was no statistical
difference in IgG2a levels between the pPROM4 and pep-
tide groups (P > 0.05).

Cytokine production

Culture supernatants of immunized splenocytes were
obtained 2 weeks after the last injection and IFN-y, IL-2,
IL-12(p70), IL-4 and IL-10 activity determined. IFN-y
levels in mice immunized with pSAG1, pROM4, pep-
tide or pPROM4/peptide were increased about 12-fold,
10-fold, 9-fold, and 15-fold (P<0.05), respectively,
compared to PBS injected groups (Table 2). Moreover,
mice immunized with pROM4/peptide generated
higher IEN-y levels than mice injected with pSAGI,
peptide or pROM4 (P<0.05). IFN-y levels in mice
immunized with pSAG1 were increased by about 15%
compared with pROM4, but there was no statistical
difference. No difference in IFN-y levels was found
between the PBS and pEGFP-C1 groups. Significantly
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higher levels of IL-2 and IL-12(p70) were generated
from mice vaccinated with pSAG1, peptide, pROM4
or pROM4/peptide, compared to mice immunized
with PBS or an empty plasmid (P <0.05). IL-2 levels
in pROM4/peptide immunized mice increased by
38%, 62%, and 63%, compared to pSAG1, pROM4 or
peptide groups (P <0.05), respectively, and the highest
IL-12 level also was detected in the pROM4/peptide
group (P<0.05) (Table 2). The highest level of IL-4
or IL-10 was detected in mice immunized with pROM4/

Table 1 IC50 values for SAGT and ROM4 peptide binding to
MHC class Il molecules obtained using the immune epitope
database®

MHC Il Allele® Start-Stop® Percentile Rank®
SAGT ROM4 SAGT ROM4
HLA-DRB1*01:01 12-26 570-584 0.88 0.09
35-49 399-413 2.74 0.6
H2-1Ab 26-40 483-497 215 1.75
297-313 42-56 281 1.95
H2-1Ad 21-35 502-516 0.34 0.39
168-182 529-543 122 0.58
H2-IEd 14-28 179-193 1845 491
34-48 412-426 30.62 11.21

@ The immune epitope database (http://tools.immuneepitope.org/mhcii). The
prediction was run for three times

B H2-1Ab, H2-IAd and H2-IEd alleles are mouse MHC class Il molecules; the
HLA-DRB1*01:01 allele is a human MHC class Il molecule

€ We chose 15 amino acids for analysis each time

9 Low percentile = high level binding, high percentile = low level binding

peptide, but there was no statistically significant difference
between pROM4/peptide and other groups (P > 0.05).

Protection of DNA vaccine against T. gondii

Survival days after challenge by 1 x 10* tachyzoites of
T. gondii RH strain were tabulated (Fig. 4). Mice
injected with PBS or empty vector developed some
symptoms characterized by reduced feeding, arched
back, vertical hair and feces around the anus begin-
ning at 2 days. Mice also started to die at 3 days after
tachyzoite challenge, and all mice in negative controls
were dead at day 6 postinfection. Mice showed symp-
toms at later timepoints and survived longer following
single or multiple-immunization compared with the
PBS or pEGFP-C1 groups (P <0.05). Moreover, mice
immunized with pROM4/peptide exhibited the latest
onset of symptoms (beginning at 9 days after chal-
lenge) and the longest survival time (18 days) among
all groups (P <0.05).

Two weeks after the last injection, all the mice were
challenged intragastrically with 20 cysts from the 7. gon-
dii PUR strain to evaluate the protective effect of the
DNA vaccine. Brain cysts were reduced in mice vacci-
nated with pSAG1, pROM4, peptide, or pPROM4/peptide
compared to mice injected with PBS or pEGFP-C1
(P<0.05) (Table 3). The cyst numbers were reduced
to 57% of controls in the brains of mice immunized
with pROM4/peptide. However, no statistically sig-
nificant difference was found between the pSAGI,
pROM4 and peptide groups (P >0.05), or between
the PBS and pEGFP-C1 groups (P> 0.05).
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Discussion

In the present study, ROM4 B-cell and T-cell epitopes
were analyzed using DNAStar software and online
services. This approach yielded several potential ROM4
T-cell epitopes, suggesting that it may serve as a vaccine
against T. gondii. Following bioinformatics analysis, the
ROM4 gene was cloned into the eukaryotic expression
plasmid pEGFP-C1, and recombinant plasmids trans-
fected into HEK 293-T cells. The results showed that the
recombinant plasmid pROM4 was efficiently transcribed
and expressed in eukaryotic cells.

Cellular immunity mediated by T cells plays an im-
portant role in T. gondii infection [29]. To develop an ef-
fective vaccine against toxoplasmosis, it is necessary to
elucidate which type of Th cell-mediated immune re-
sponse is elicited. Several studies have indicated that
CD4+ and CD8+ T cells play a major role in the anti-T.
gondii response [30, 31]. Cytotoxic CD8+ T cells and the
Thl cytokine IFN-y play an important role in T. gondii
immunity [30, 32]. CD4 + T lymphocytes are divided

into two subtypes, Thl and Th2, based on the cyto-
kines produced post-stimulation. Thl cells produce
IL-2, IL-12 and IFEN-y, and Th2 cells secrete IL-4, IL-
5, IL-6, and IL-10 [32]. IFN-y plays a leading role in
restricting both acute phase tachyzoite breeding and
chronic phase bradyzoite activation in the cysts. Stud-
ies have shown that good DNA vaccines tend to
stimulate a Thl-type rather than a Th2-type immune
response [8, 33]. The Th2 cytokines IL-4 and IL-10
limit the differentiation of CD4+ T cell to Thil,
thereby decreasing the level of IFN-y [34, 35]. In
addition, B lymphocytes play an important role in
anti-infection immunity by producing IgG anti-T.
gondii antibodies, and inhibiting parasite and host cell
adhesion, especially during vaccine-induced protective
immunity [36, 37].

In the current study, IgG antibody levels in immunized
mice were significantly higher than in negative controls,
illustrating that the vaccine constructed here induces a
sufficient amount of 7. gondii-specific IgG antibodies.
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Table 2 Cytokine production by splenocyte® cultures from
immunized BALB/c mice

Group Cytokine production (pg/mL) °

IFN-y IL-2 IL-12
PBS 489+65 3324356 375473
PEGFP-C1 51.1+7.1 339453 381460
PSAGT 61394593 2479+ 290" 1602 +355"
pROM4 531.8+63.3" 2124+ 224 1461 +31.1°
peptide 4886+79.1" 2101 +207 13294260
PROM4/peptide 77824932 34324204 2471 +488"%
Group Cytokine production (pg/mL) ®

IL-4 IL-10
PBS 389+89 395+85
PEGFP-C1 386+ 107 415+68
PSAGT 365+40 397+59
pROM4 402+58 407 +48
peptide 381+77 376+86
pROM4/peptide  412+57 424+65

2 Splenocytes from seven mice per group 2 weeks after the final immunization.
All samples were performed four times

b Values for IL-12 (p70) and IFN-y at 96 h, IL-2 and IL-4 at 24 h, IL-10 at 72 h

are expressed as mean + SD

‘P <0.05, as compared with PBS and pEGFP-C1; #P < 0.05, as compared with

PROM4 or peptide; & P < 0.05, as compared with pSAG1

Page 7 of 9

IgG, IgG2a, IL-2, IL-12 and IFN-y levels in immu-
nized mice were higher than in negative controls, and
IgGl1, IL-4, and IL-10 levels were similar between all
groups. These results suggest that pSAG1l, pROM4
and peptide mainly induced a Thl immune response.
In addition, IgG and IgG2a levels in pSAG1 immu-
nized mice were higher than in pROM4 immunized
mice. This is not in accord with the results of the
bioinformatics analysis, suggesting that bioinformatics
analysis is predictive and that the predicted protein
antigenic epitopes need to be verified by an experi-
mental approach.

To assess the protective efficacy of the vaccine, BALB/
¢ mice were infected with 7. gondii tachyzoites and cysts.
The results showed that the onset of symptoms were
later in immunized mice, which had prolonged survival
times and reduced brain cysts compared with negative
controls. Zhang et al. [38] constructed a pVAX-TgROM4
DNA vaccine and evaluated the immunogenicity in
Kunming mice. They showed that the TgROM4 DNA
vaccine induced strong humoral and cellular responses
and was a potential vaccine candidate against toxoplas-
mosis. Our study confirmed the protective immunity of
ROM4 DNA vaccine against toxoplasmosis in BALB/c
mice. However, we added the ROM4/peptide group and
showed that the group had the greatest protective effect.
Of note, some parameters (the parasite strain, vaccine
constructs, dose of vaccination, mouse strain, et al.)
might affect the assessment of protective immunity in
different studies [6].

100

80

Survival (%)

—&—PBS
—&—PEGFP-C1
—8—pROM4
—4—pSAGI
—¥—peptide

—— pROM4/peptide

o
—
ko H
W
o
=)

| T T T T I I I T T T T T T
6 78 9101112131415161718 19
Days after challenge

Fig. 4 Survival curves of injected BALB/c mice against T. gondii challenge. The six groups of mice were challenged with 1 x 10* tachyzoites of
virulent T. gondii RH strain 2 weeks after the last immunization. Each group was composed of ten mice and survival time was monitored daily for
18 days after challenge. * P < 0.05, as compared with PBS or pEGFP-C1; ** P < 0.05, as compared with pSAG1, pROM4 or peptide
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Table 3 Brain cyst burden in injected mice after infection with
cyst of PRU strain

Challenged group® Brain cysts per mouse (mean + SD) °
PBS 1283 +£193

pEGFP-C1 1251+ 199

PSAGT 812+92

pROM4 761+102°

peptide 827+100"

PROM4/peptide 551+ 89

@ Ten mice from each group were challenged intragastrically by 20 cysts 2
weeks after the last immunization

® The mean number of cysts of each group was obtained from every mice
brain cysts in the group

* P <0.05, as compared with PBS or pEGFP-C1; *P < 0.05, as compared with
ROM4 or peptide; & P < 0.05, as compared with pSAG1. All samples were
performed four times

DNA vaccines often induce insufficient protective im-
munity against 7. gondii challenge [39]. Prime-boost
vaccination strategies have been used to enhance immune
responses of some DNA vaccines [5, 22]. The first
immunization primes the immune response and subse-
quent immunizations trigger the further expansion of anti-
gen specific cells and selection of cells with high antigen
avidity [40]. Synthetic MAP contains a high concentration
of the relevant antigen to induce immune responses to pre-
defined epitopes and leads to protective immunity [25, 41].
Meng et al. [5] used the DNA prime-peptide boost vaccin-
ation regimen to enhance the effectiveness of T. gondii
DNA vaccines, which produced a stronger immune re-
sponse and better protection compared to priming with
polypeptide and boosting with DNA.

The prime-boost vaccination usually include two strat-
egies: homologous boosting and heterologous boosting.
Researches display that homologous boosting is rela-
tively inefficient at boosting cellular immunity than that
of heterologous boosting,. So-called heterologous boost-
ing means that different antigen-delivery systems are
used [42]. In the present study, we selected a polypep-
tide and immunized mice using a DNA-priming and
polypeptide-boosting regimen. The results showed that
the levels of IgG, IgG2a over 1gG1, IL-2, IL-12 and IEN-
y in the DNA/peptide group were highest. In addition,
mice treated with the DNA/peptide exhibited the longest
survival time after challenge with tachyzoites and the
greatest reduction in brain cysts after infection by cysts.

Conclusion

In conclusion, T. gondii ROM4 is a potential DNA vac-
cine candidate against toxoplasmosis. A DNA prime-
peptide boost regimen based on ROM4 elicited the high-
est level of humoral and cellular immune responses
among the immunization regimens, indicating it may be
a promising approach to generate an efficient protective
immune response and prevent 7. gondii infection.
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